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Abstract. The accurate estimation of students’ grades in future courses
is important as it can inform the selection of next term’s courses and
create personalized degree pathways to facilitate successful and timely
graduation. This paper presents future-course grade predictions methods
based on sparse linear models and low-rank matrix factorizations that
are specific to each course or student-course tuple. These methods iden-
tify the predictive subsets of prior courses on a course-by-course basis
and better address problems associated with the not-missing-at-random
nature of the student-course historical grade data. The methods were
evaluated on a dataset obtained from the University of Minnesota. This
evaluation showed that the course specific models outperformed various
competing schemes with the best performing scheme achieving a RMSE
across the different courses of 0.632 vs 0.661 for the best competing
method.

1 Introduction

Data mining and machine learning approaches are being increasingly used to
analyze educational- and learning-related datasets towards understanding how
students learn and improving learning outcomes. This has led to the develop-
ment of various approaches for modeling and predicting the success or failure
of students in completing specific tasks in the context of intelligent tutoring
systems [9,12,15,16,18,19], building intelligent “early warning systems” that
monitor the students’ performance during the term [1,3], predicting how well
the students will perform by analyzing their activities with the learning man-
agement system (e.g., Moodle) [8,11,17], and predicting students’ term and final
GPA [2,13,14].

Our work focuses on developing methods that utilize historical student-course
grade information to accurately estimate how well students will perform (as
measured by their grade) on courses that they have not yet taken. Being able to
accurately estimate students’ grades in future courses is important as it can be
used by them (and/or their academic advisers) to identify the appropriate set of
courses to take during the next term, and create personalized degree pathways
that enable them to successfully and effectively acquire the required knowledge
to complete their studies in a timely fashion.
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Existing approaches for predicting a student’s grade in a future course [4,6,7]
rely on neighborhood-based collaborative filtering methods [10]. Despite their
relative simplicity, the estimations obtained by these methods are reasonably
accurate indicating that there is sufficient information in the historical student-
course grade data to make the estimation problem feasible.

In this paper we improve upon these methods by developing various future-
course grade prediction methods that utilize approaches based on sparse linear
models and low-rank matrix factorizations. These methods rely entirely on the
performance that the students achieved in previously taken courses. A unique
aspect of many of our methods is that their associated models are either specific
to each course or specific to each student-course tuple. This allows them to
identify and utilize the relevant information from the prior courses that are
associated with the grade for each course and better address problems associated
with the not-missing-at-random nature of the student-course historical grade
data. We experimentally evaluated the performance of our methods on a dataset
obtained from the University of Minnesota that contained historical grades that
span 12.5 years. Our results showed that the course specific models outperformed
various competing schemes and that the best performing scheme, which is based
on course-specific regression, achieves a RMSE across the different courses of
0.632 whereas the best competing method achieves an RMSE of 0.661.

The reminder of the paper is organized as follows. Section 2 introduces the
notation and definitions used. Section 3 describes the methods developed and
Sect. 4 provides information about the experimental design. Section5 presents
an extensive experimental evaluation of the methods and compares them against
existing approaches. Finally, Sect. 6 provides some concluding remarks.

2 Definitions and Notations

Throughout the paper, bold lowercase letters will denote column vectors (e.g.,
y) and bold uppercase letters will denote matrices (e.g., G). Individual elements
will be denoted using subscripts (e.g., for a vector y;, and for a matrix g ).
A single subscript on a matrix will denote its corresponding row. The sets will
be represented by calligraphic letters.

The historical student-course grade information will be represented by a
sparse matrix G € R"*™_  where n and m are the number of students and
courses, respectively, and g; ; is the grade in the range of [0,4] that student i
achieved in course j. If a student has not taken a course, the corresponding entry
will be missing. The course and student whose grades need to be predicted will
be called target course and target student, respectively.

3 Methods

In this section we describe various classes of methods that we developed for
predicting the grade that a student will obtain on a course that he/she has not
yet taken.
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3.1 Course-Specific Regression (CSR)

Undergraduate degree programs are structured in such a way that courses taken
by students provide the necessary knowledge and skills for them to do well in
future courses. As a result, the performance that a student achieved in a subset
of the earlier courses can be used to predict how well he/she will perform in
future courses. Motivated by this, we developed a grade prediction method,
called course-specific regression (CSR) that predicts the grade that a student
will achieve in a specific course as a sparse linear combination of the grades that
the student obtained in past courses.

In order to estimate the CSR model for course ¢, we extract from the overall
student-course matrix G the set of rows corresponding to the students that
have taken c. For each of these students (rows), we keep only the grades that
correspond to courses taken prior to course c. Let G¢ € R™*™ be the matrix
representing that extracted information, where n. is the number of students that
took course c. In addition, let y© € R™ be the grades that the students in G
obtained in course ¢ (the y¢ is the grade corresponding the student in the ith
row of G¢). Given this, the CSR model w® € R for ¢ is estimated as:

minimize |y© — Lw§ — GWEl + Ar [[we ][5 + Ao W]l (1)
wWE =

where w§ is a bias term, 1 € R" is a vector of ones and A, A2 are regular-
ization parameters to control overfitting and promote sparsity. The model is
non-negative because we assume that prior courses can only provide knowledge
to future courses. The individual weights of w* indicate how much each prior
course contributes in the prediction and represent a measure of the importance
of the prior course within the context of the estimated model. Using this model,
the grade that a student will obtain in course c is estimated as

§° = wi +s"w", (2)
where s € R™ is the vector of the student’s grades in the courses he/she has
taken so far.

We found that by centering each student’s grades around his/hers GPA leads
to more accurate predictions (see Sect. 5.1). In this approach, prior to estimating
the model using Eq. 1, we first subtract from each g7 ; grade the GPA of each
student (GPA is calculated based on the information in G€). This centers the
data for each student and takes into consideration a notion of student bias as
it predicts the performance with respect to the current state of a student. Note
that in the case of GPA-centered data, we remove the non-negativity constraint
on w¢. We will refer to this model as the CSR-RC (Row Centered) model.

3.2 Student-Specific Regression (SSR)

Depending on the major, the structure of different undergraduate degree pro-
grams can be different. Some degree programs have limited flexibility as to the
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set of courses that a student has to take and at which point in their studies they
can take them (i.e., specific semester). Other degree programs are considerably
more flexible and are structured around a fairly small number of core courses
and a large number of elective courses.

For the latter type of degree programs, a drawback of the CSR method is
that it requires the same linear regression model to be applied to all students.
However, given that the set of prior courses taken by students in such flexible
degree programs can be quite different, a single linear model can fail to capture
the various prior course combinations. In fact, there can be cases in which many
of the most important courses that were identified by the CSR model were
simply not taken by some students, even though these students have acquired
the necessary knowledge and skills by taking a different set of courses. To address
this limitation, we developed a different method, called student-specific regression
(SSR), which estimates course-specific linear regression models that are also
specific to each student.

The student specific model is derived by creating a student-course specific
grade matrix G*¢ for each target student s and each target course ¢ from the G¢
matrix used in CSR method. G*° is created in two steps. First, we eliminate from
G° any grades for courses that were not taken by the target student. Second,
we eliminate from G€ the rows that correspond to students that have not taken
a sufficient number of courses that are in common with the target student s.
Specifically, if Cs; and C; are the set of courses for student s and i respectively,
we compute the overlap ratio (OR) = |Cs N C;|/|Cs| and if OR< ¢, then student
i is not included in G*°. The value of ¢ is a parameter of the SSR method and
high values ensure that the set of students forming G*:¢ have taken many courses
in common with s and have followed similar degree plans. Given G*¢, the SSR
method proceeds to estimate the model using Eq.1 (with G*° replacing G°),
and uses Eq. 2 for prediction.

3.3 Methods Based on Matrix Factorization

Low rank matrix factorization (MF) approaches have been shown to be very
effective for accurately estimating ratings in the context of recommender sys-
tems [10]. These approaches can be directly applied to the problem of predicting
the grade that a student will achieve on a particular course by treating the
student-course grade matrix G as the user-item rating matrix.

The use of such MF-based approaches for grade prediction is postulated on
the fact that there is a low dimensional latent feature space that can jointly
represent both students and courses. Given the nature of the domain, this latent
space can correspond to the space of knowledge components. Each course vec-
tor is the set of components associated with a course and each student vector
represents the student’s level of knowledge across these knowledge components.

By applying the common approaches of MF-based rating prediction to the
problem of grade prediction, the grade that student ¢ will obtain on course j is
estimated to be

Gij = b+ sb; +cbj + piqu, (3)
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where 11 is a global bias term, sb; and cb; are the student and course bias terms,
respectively, and p; and g; are the latent representations for student ¢ and course
Jj, respectively. The parameters of the MF method (u,sb € R",cb € R™, P €
R™! and Q € R™*!) are estimated following a matrix completion approach that
considers only the observed entries in G as

inimi T2 2 2
minimize EEIG (g1 — 1 — sbi — cb; — pia])” + A(IPIE + (1QI1%
9i,j

+[Isbl5 + [lebll3),  (4)

where A is a regularization parameter and [ is the dimensionality of the latent
space, which is a parameter to this method.

The accurate recovery of the low rank model (when such a model exists) from
a set of partial observations depends on having a sufficient number of observed
entries, and on these entries be randomly sampled from the entries of the target
matrix G [5]. However, in the context of student grade data, the set of courses
that students take is not a random subset of the courses being offered as they
need to satisfy their degree program requirements. As a result, such an MF
approach may lead to suboptimal prediction performance.

In order to address this problem we developed a course specific matrixz fac-
torization (CSMF) approach that estimates an MF model for each course by
utilizing a course specific subset of the data that is denser (in terms of the num-
ber of observed entries and the dimensions of the matrix). As a result, it contains
a larger number of random by sampled subsets of sufficient size.

Given a course ¢ and a set of students S¢ for which we need to estimate
their grade for ¢ (i.e., the students in S¢ have not taken this course yet), the
data that CSMF utilizes are the following: (i) the students and grades of the G°
matrix and y°© vector of the CSR method (Sect. 3.1), (ii) the students in S¢ and
their grades. This data is used to form a matrix X¢ € R(metn)x(met+1) where
n. is the number of students in G¢, n; = |S¢|, and m,. is the number of distinct
courses that have at least one grade in G¢ or S¢. The values stored in X¢ are
the grades that exist in G¢ and S§€. The last column of X¢ stores the grades y*
for the course ¢ that were obtained from the students in G¢. Thus, X¢ contains
all the prior grades associated with the students who have already taken course
c and the students for which we need to have their grade on ¢ predicted. Matrix
X¢ is then used in place of matrix G in Eq. 4 to estimate the parameters of the
CSMF method, which are then used to predict the missing entries of the last
column of X¢, which are the grades that need to be predicted.

4 Experimental Design

4.1 Dataset

The student-course-grade dataset that we used in our experiments was obtained
from the University of Minnesota which has a very flexible degree program.
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Table 1. Statistics for course-specific datasets.

Prior courses 5 7 9

Average number of students in training set | 270| 232| 212
Average number of students in test set 22 21 20
Average number of prior courses 141 141, 145
Average number of grades 3,872 | 3,663 | 3,663
Courses predicted 92 90 80
Grades predicted 2,088 1,959 | 1,666

It contains the students that have been part of the Computer Science and Engi-
neering (CSE) and Electrical and Computer Engineering (ECE) programs from
Fall of 2002 to Spring of 2014. Both of these degree programs are part of the
College of Science & Engineering (CS&E) in which students have to take a com-
mon set of core science courses during the first 2—3 semesters. We removed from
the dataset any courses that are not part of those offered by CS&E departments,
as these correspond to various liberal arts and physical education courses, which
are taken by few students and in general do not count towards degree require-
ments. Furthermore, we eliminated any courses that were taken as pass/fail. The
initial grades were in the A—F scale, which was converted to the 40 scale using
the standard letter-grade to GPA conversion. The resulting dataset consists of
2,949 students, 2,556 different courses, and 76,748 student-course grades.

We used this dataset to assess the performance of the different methods
for the task of predicting the grades that the students will obtain in the last
semester (i.e., the most recent semester for which we have data). For this reason,
the dataset was further split into two parts, one containing the students that
are still active, i.e., have taken courses in the last semester (Dgyctive) and one
that contains the remaining students (Dinactive)- Dactive contains 876 students,
19,089 grades, out of which 3,427 grades are for the 475 distinct classes taken in
the last semester. Dinqactive contains 2,073 students and 57,659 grades.

These datasets were used to derive various training and testing datasets for
the different methods that we developed. Specifically, for the CSR method we
extracted the course specific training and testing datasets as follows. For each
course ¢ that was offered in the last semester, we extracted course-specific train-
ing and testing sets (D;’%ﬁl and Dtcéik) by selecting from D;pnactive a0d Dgctives
respectively, the students that have taken ¢, and prior to taken ¢, they also took
at least k other courses. The reason that these datasets were parametrized with
respect to k is because we wanted to assess how the methods perform when
different amount of historical student performance information is available. In
our experiments we used k in the set {5,7,9}. That information will create the
grade matrix G, where g7 ; is the grade of the ith student on the jth course

from the training set Dfrfﬁl Table 1 shows various statistics about the various

course-specific datasets for different values of k.
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Fig. 1. Statistics of the datasets used in SSR w.r.t overlap ratio.

For the CSMF method, the training dataset for course ¢ was obtained by
combining Df;i’; and Dféik into a single matrix after removing the grades that
the target students achieved in course c.

For the MF method, the matrix is constructed as the union of the sets D=k

train
and D§;ZF for every course to be predicted after removing the grades that the
active students achieved in the courses we want to predict. We formulated the
dataset in this way in order to provide the same information for training and
testing to all our models.

In the SSR, the grade matrix G*° is created by selecting from Dtc;ni-]fl the
set of courses that were also taken by student s and the set of students whose
OR with s is at least ¢. Figure 1 shows some statistics about these datasets as a
function of t.

Finally, we did not consider the models that have less than 20 students in their
corresponding dataset, as we consider them to have too few training instances
for reliable estimation.

4.2 Competing Methods

In our experiments, we compared our methods with the following competing
approaches.

1. BiasOnly. We only took into consideration local and global bias to predict
the students’ grades. These biases were estimated using Eq. 4 when [ = 0.

2. Student-Based Collaborative Filtering (SBCF). This method imple-
ments the approach described in [4]. For a target course ¢, every student i is
represented by a vector formed with his/hers grades in courses taken prior to
c. The vector of a target student s is compared against the vectors of the other
students that have taken course ¢ with the Pearson’s correlation coefficient.
We select the students with positive similarity to perform grade prediction
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for s in ¢ according to:

. b _ .
R _ min(r,nbr) Y17 (gie — Gi)simsg
9s,c = Ys + oy
" D=1 5 i
where nbr is the number of students selected, r is a confidence lower limit for

significance weighting, g; is the average grade of the student prior taking c,
and sim; ; represents the similarity of target student s with <.

; ()

4.3 Parameters and Model Selection

For CSR, we let Ay take values from 0 to 40 in increments of 2.5 and Ay from
0 to 50 in increments of 2.5. For SSR, we let A\; take values from 0 to 10 in
increments of 1 and Ay from 0 to 14 in increments of 2. For MF and CSMF, we
let A take values from 0 to 6 in increments of 0.05. For SSR, the range of the
tested values for overlap ratio is 0.3 to 1, in increments of 0.04. For MF and
CSMF methods we tested the number of latent dimensions with the values 2, 5
and 8.

As we could not use cross validation for the SSR, we did not apply it for any
regression model, in order to be fair with our comparisons. The best models are
selected based on their performance on the test set. For MF based approaches,
we used the semester before the target semester to estimate and select the best
parameters.

4.4 Evaluation Methodology and Performance Metrics

We evaluated the performance of the different approaches by using them to
predict the grades for the last semester in our dataset using the data from the
previous semester for training.

We assessed the performance using the root mean square error (RMSE)
between the actual grades and the predicted ones. Since the courses whose grades
are predicted have different number of students, we computed two RMSE-based
metrics. The first is the overall RMSE in which all the grades across the different
courses were pooled together, and the second is the average RMSE obtained by
averaging the RMSE values for each course. We will denote the first by RMSE
and the second as AvgRMSE.

5 Experimental Results

5.1 Course-Specific Regression

Table 2 shows the performance achieved by the CSR and CSR-RC models when
trained using the three different datasets discussed in Sect.4.1. These results
show that among the two models, CSR-RC, which operates on the GPA-centered
grades leads to considerably lower errors both in terms of RMSE and AvgRMSE.
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Table 2. The performance achieved by Linear Course-Specific Regression.

RMSE AvgRMSE
Prior courses | 5 7 9 5 7 9
CSR 0.751]0.761 | 0.779 | 0.757 | 0.785 | 0.762
CSR-RC 0.6340.632 | 0.632 | 0.585 | 0.579 | 0.543

The performance of the models trained on the dif-
ferent datasets were evaluated on the Dizt test set,
which is the common subset among their respective
test sets.
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Fig. 2. The performance achieved by the SSR model w.r.t. overlap ratio.

In terms of the sensitivity of their performance on the amount of historical
information that was available when estimating these models (i.e., the minimum
number of prior courses), we can see that for CSR-RC, the RMSE performance
of the models does not change significantly; though the AvgRMSE performance
improves when going from five to nine prior courses. This indicates that training
sets with more number of prior courses tend to help smaller courses.

5.2 Student-Specific Regression

As one of the parameters for this problem was the overlap ratio between the
courses of the target student and other students, Fig.2 presents the behavior
of the model’s RMSE (left) and AvgRMSE (right) as we vary the overlap ratio
for D&ZP(k = 5),D0Z" (k = 7) and DSZ(k = 9). When the overlap ratio is
increased, the selected students have more courses in common with the target
user and that results to better performance. In order to compare the performance
of SSR against CSR-RC, Fig. 3 shows the RMSE of the best CSR-RC and SSR
models. The RMSE values were computed as the subsets of the test set that
was predicted by both models. If the overlap ratio is more than 0.8, then SSR is
more accurate. However, the capability of this method to predict courses is very
low, i.e., we can predict 50 % less courses than the CSR model for k& = 9 when
the overlap ratio is more than 0.8, because there are not as many students that
had followed the same degree plan as the selected student.
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Fig. 3. RMSE of SSR model compared to the CSR-RC w.r.t. overlap ratio for the case
of 9 prior courses. The performance for other choices of prior courses is very similar.

5.3 Methods Based on Matrix Factorization

The performance of the methods based on matrix factorization is shown in
Table 3 for various number of latent factors. Besides the MF and CSMF schemes
that were described in Sect. 3.3, this table also shows results for a method labeled
“MF-GB”, which is derived from the MF scheme by eliminating the global bias
term (u) of Eq. 4. These results show that CSMF leads to lower RMSE values
when there are more than nine prior courses per student, which confirms that
by building matrix factorization models on smaller but denser course-specific
sub-matrices, we can derive low-rank models that lead to more accurate matrix
completion. Even for the case with more than five prior courses, if we focus
on denser models, the majority of courses are predicted better by CSMF* than
by the best model, MF-GB. In terms of the number of latent factors, we can
see that in most cases, the best performance is achieved with small number of
latent factors. This should not be surprising, as the average number of grades
per student is low, which does not support a large number of latent factors.

5.4 Comparison with other methods

Table4 compares the performance of the baseline approaches described in
Sect. 4.2 (BiasOnly and SBCF) with the best-performing course-specific regres-
sion method (CSR-RC), and the best CSMF method (two latent factors). In
addition, the results labeled “CSMF*” correspond to those obtained by CSMF
in which the best-performing number of latent factors for each course can be dif-
ferent and was selected based on their performance on the validation set (10 %
of the training data). CSR-RC and CSMF lead to RMSE and AvgRMSE val-
ues that are substantially better than either BiasOnly or SBCF. In terms of
the methods that we developed, we see that CSR-RC consistently outperforms
CSMF, suggesting that sparse linear regression methods are better than those
based on matrix factorization for this setting. Finally, comparing the perfor-
mance of CSMF* against CSMF, we see that even though the former achieved
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Table 3. The performance achieved by the methods based on matrix factorization
model w.r.t. the number of prior courses and the number of latent factors.

Prior courses | Latent Factors MF | MF-GB | CSMF | CSMF*
5 2 RMSE 0.662 | 0.661 0.683 |0.676
5 0.666 | 0.667 | 0.682 |0.682
8 0.667 | 0.672 0.679 |0.676
2 AvgRMSE | 0.597 | 0.581 0.648 |0.645
5 0.603 | 0.569 0.643 |0.647
8 0.604 | 0.596 0.645 |0.644
7 2 RMSE 0.667 | 0.671 0.684 |0.679
5 0.673 | 0.675 0.680 |0.677
8 0.676 | 0.681 0.681 |0.676
2 AvgRMSE | 0.590 | 0.598 0.641 |0.643
5 0.603 | 0.607 1 0.638 |0.640
8 0.604 | 0.610 0.637 |0.640
9 2 RMSE 0.675|0.684 0.683 |0.671
5 0.677/0.687 | 0.676 |0.672
8 0.681 | 0.692 0.677 |0.674
2 AvgRMSE | 0.581 | 0.600 0.653 |0.648
5 0.582/0.607 | 0.645 |0.646
8 0.579 |1 0.599 0.648 |0.647

Table 4. Comparison of the performance achieved from our methods with the com-

peting approaches.

RMSE AvgRMSE
Prior courses | 5 7 9 5 7 9
BiasOnly 0.728 0.687
SBCF 0.677 0.675
CSR-RC 0.6340.632|0.632 | 0.585 | 0.579 | 0.543
CSMF 0.679 | 0.680 | 0.676 | 0.645 | 0.638 | 0.645
CSMF* 0.676 | 0.676 | 0.671 | 0.644 | 0.640 | 0.648

The performance of the models trained on the dif-
ferent datasets were evaluated on the theit test set,
which is the common subset among their respective

test sets.
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better performance, the difference is not very large, which suggests that CSMF’s
performance is more consistent across its different model parameters.

6 Conclusions

In this paper, we presented two course-specific approaches based on linear regres-
sion and matrix factorization that perform better than existing approaches based
on traditional methods. This suggests that focusing on a course specific subset
of the data can result in more accurate predictions. A student-course specific
approach was also developed but its accuracy in grade prediction is limited by
the diverse nature of degree plans. The course-specific regression was the one
with the best results compared to any other method tested.
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