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Abstract The accurate estimation of students’ grades

in future courses is important as it can inform the selec-

tion of next term’s courses and create personalized de-

gree pathways to facilitate successful and timely grad-

uation. This paper presents future-course grade pre-

dictions methods based on sparse linear and low-rank

matrix factorization models that are specific to each

course or student-course tuple. These methods iden-

tify the predictive subsets of prior courses on a course-

by-course basis and better address problems associated

with the not-missing-at-random nature of the student-

course historical grade data. The methods were eval-

uated on a dataset obtained from the University of

Minnesota, for two different departments with different

characteristics. This evaluation showed that focusing

on course specific data improves the accuracy of grade

prediction.

Keywords Learning Analytics · Next-Term Grade

Prediction · Course-Specific Models

1 Introduction

Data mining and machine learning approaches are be-

ing increasingly used to analyze educational- and learning-
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related datasets towards understanding how students

learn and improving learning outcomes. This has led

to the development of various approaches for model-

ing and predicting the success or failure of students in

completing specific tasks in the context of intelligent

tutoring systems [15, 19, 14, 18, 11, 8], building intel-

ligent “early warning systems” that monitor the stu-

dents’ performance during the term [17, 2], predicting

how well the students will perform by analyzing their

activities with the learning management system (e.g.,

Moodle) [7, 16, 10], and predicting students’ term and

final GPA [13, 12, 1].

Our work focuses on developing methods that uti-

lize historical student-course grade information to ac-

curately estimate how well students will perform (as

measured by their grade) on courses that they have not
yet taken. Being able to accurately estimate students’

grades in future courses is important as it can be used

by them (and/or their academic advisers) to identify

the appropriate set of courses to take during the next

term, and create personalized degree pathways that en-

able them to successfully and effectively acquire the re-

quired knowledge to complete their studies in a timely

fashion.

Existing approaches for predicting a student’s grade

in a future course [5, 6, 3] rely on neighborhood-based

collaborative filtering methods. For each student whose

grade needs to be predicted, a set of similar students

are identified that have already taken that course and

their grade is used to estimate the desired grade via

some similarity-weighted aggregation function. Despite

their relative simplicity, the estimations obtained by

these methods are reasonably accurate indicating that

there is sufficient information in the historical student-

course grade data to make the estimation problem fea-

sible.
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In this paper we improve upon these methods by

developing various future-course grade prediction meth-

ods that utilize approaches based on sparse linear mod-

els and low-rank matrix factorizations. These meth-

ods rely entirely on the performance that the students

achieved in previously taken courses. A unique aspect of

many of our methods is that their associated models are

either specific to each course or specific to each student-

course tuple. This allows them to identify and utilize

the relevant information from the prior courses that

are associated with the grade for each course and bet-

ter address problems associated with the not-missing-

at-random nature of the student-course historical grade

data.

We experimentally evaluated the performance of our

methods on a dataset obtained from the University of

Minnesota that contained historical grades that span

12.5 years. Our results showed that the course specific

models outperformed various competing schemes. An-

other conclusion was that the performance can signifi-

cantly vary across different departments.

The remainder of the paper is organized as follows.

Section 2 introduces the notation and definitions used.

Section 3 describes the methods developed and Sec-

tion 4 provides information about the experimental de-

sign. Section 5 presents an extensive experimental eval-

uation of the methods and compares them against ex-

isting approaches. Finally, Section 6 provides some con-

cluding remarks.

2 Definitions and Notations

Throughout the paper, bold lowercase letters will de-

note column vectors (e.g., y) and bold uppercase let-

ters will denote matrices (e.g., G). Individual elements

will be denoted using subscripts (e.g., for a vector yi,

and for a matrix gs,c). A single subscript on a matrix

will denote its corresponding row. The sets will be rep-

resented by calligraphic letters.

The historical student-course grade information will

be represented by a sparse matrix G ∈ Rn×m, where

n and m are the number of students and courses, re-

spectively, and gi,j is the grade in the range of [0,4] that

student i achieved in course j. If a student has not taken

a course, the corresponding entry will be missing. The

course, semester and student, whose grades need to be

predicted will be called target course, target semester,

and target student, respectively.

3 Methods

In this section we describe various classes of methods

that we developed for predicting the grade that a stu-

dent will obtain on a course that he/she has not yet

taken.

3.1 Course-Specific Regression (CSR)

Undergraduate degree programs are structured in such

a way that courses taken by students provide the nec-

essary knowledge and skills for them to do well in fu-

ture courses. As a result, the performance that a stu-

dent achieved in a subset of the earlier courses can be

used to predict how well he/she will perform in future

courses. Motivated by this, we developed a grade pre-

diction method, called course-specific regression (CSR)

that predicts the grade that a student will achieve in

a specific course as a sparse linear combination of the

grades that the student obtained in past courses.

In order to estimate the CSR model for course c,

we extract from the overall student-course matrix G

the set of rows corresponding to the students that have

taken c. For each of these students (rows), we keep only

the grades that correspond to courses taken prior to

course c. Let Gc ∈ Rnc×m be the matrix representing

that extracted information, where nc is the number of

students that took course c. In addition, let yc ∈ Rnc be

the grades that the students in Gc obtained in course c

(yci is the grade that was obtained by the student of the

ith row of Gc). Given this, the CSR model wc ∈ Rm+
for c is estimated as:

minimize
wc�0

‖yc − 1wc0 −Gcwc‖22 +λ1 ‖wc‖22 +λ2 ‖wc‖1 ,

(1)

where wc0 is a bias term, 1 ∈ Rnc is a vector of ones, and

λ1, λ2 are regularization parameters to control overfit-

ting and promote sparsity. The model is non-negative

because we assume that prior courses can only provide

knowledge to future courses. The individual weights of

wc indicate how much each prior course contributes

to the prediction and represent a measure of the im-

portance of the prior course within the context of the

estimated model. Using this model, the grade that a

student will obtain in course c is given by:

ŷc = wc0 + sTwc, (2)

where s ∈ Rm is the vector of the student’s grades in

the courses he/she has taken so far.

In this approach, prior to estimating the model us-

ing Equation 1, we first subtract from each gci,j grade
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the GPA of the i-th student (GPA is calculated based

on the information in Gc). This centers the data for

each student and takes into consideration a notion of

student bias as it predicts the performance with respect

to the current state of a student. Note that in the case

of GPA-centered data, we remove the non-negativity

constraint on wc. We found that by centering each stu-

dent’s grades around his/hers GPA leads to more accu-

rate predictions (see Section 5.1).

3.2 Student-Specific Regression (SSR)

Depending on the major, the structure of different un-

dergraduate degree programs can be different. Some de-

gree programs have limited flexibility as to the set of

courses that a student has to take and at which point in

their studies they can take them (i.e., specific semester).

Other degree programs are considerably more flexible

and are structured around a fairly small number of core

courses and a large number of elective courses.

For the latter type of degree programs, a drawback

of the CSR method is that it requires the same linear re-

gression model to be applied to all students. However,

given that the set of prior courses taken by students

in such flexible degree programs can be quite different,

a single linear model can fail to capture the various

prior course combinations. In fact, there can be cases

in which many of the most important courses that were

identified by the CSR model were simply not be taken

by some students, even though these students have ac-

quired the necessary knowledge and skills by taking a

different set of courses. To address this limitation, we
developed a different method, called student-specific re-

gression (SSR), which estimates course-specific linear

regression models that are also specific to each student.

The student specific model is derived by creating a

student-course specific grade matrix Gs,c for each tar-

get student s and each target course c from the Gc

matrix used in the CSR method. Gs,c is created in

two steps. First, we eliminate from Gc any grades for

courses that were not taken by the target student. Sec-

ond, we eliminate from Gc the rows that correspond to

the students that have not taken a sufficient number

of courses that are in common with the target student

s. Specifically, if Cs and Ci are the set of courses for

student s and i, respectively, we compute the overlap

ratio (OR) = |Cs ∩ Ci|/|Cs| and if OR< t, then student

i is not included in Gs,c. The value of t is a parameter

of the SSR method and high values ensure that the set

of students forming Gs,c have taken many courses in

common with s and have followed similar degree plans.

Given Gs,c, the SSR method proceeds to estimate the

model using Equation 1 (with Gs,c replacing Gc), and

uses Equation 2 for prediction.

3.3 Methods based on Matrix Factorization

Low rank matrix factorization (MF) approaches have

been shown to be very effective for accurately estimat-

ing ratings in the context of recommender systems [9].

These approaches can be directly applied to the prob-

lem of predicting the grade that a student will achieve

on a particular course by treating the student-course

grade matrix G as the user-item rating matrix.

The use of such MF-based approaches for grade pre-

diction is postulated on the fact that there is a low

dimensional latent feature space that can jointly repre-

sent both students and courses. Given the nature of the

domain, this latent space can correspond to the space

of knowledge components. Each course vector is the set

of components associated with a course and each stu-

dent vector represents the student’s level of knowledge

across these knowledge components.

By applying the common approaches of MF-based

rating prediction to the problem of grade prediction, the

grade that student i will obtain on course j is estimated

as

ĝi,j = µ+ sbi + cbj + piqj
T , (3)

where µ is a global bias term, sbi and cbj are the student

and course bias terms, respectively, and pi and qj are

the latent representations for student i and course j, re-

spectively. The parameters of the MF method (µ, sb ∈
Rn, cb ∈ Rm,P ∈ Rn×l, and Q ∈ Rn×l) are estimated

following a matrix completion approach that considers

only the observed entries in G as

minimize
µ,sb,cb,P,Q

∑
gi,j∈G

(gi,j − µ− sbi − cbj − piq
T
j )

2

+λ(‖P‖2F + ‖Q‖2F + ‖sb‖22 + ‖cb‖22),

(4)

where λ is a regularization parameter and l is the di-

mensionality of the latent space, which is a parameter

to this method.

The accurate recovery of the low rank model (when

such a model exists) from a set of partial observations

depends on having a sufficient number of observed en-

tries, and on these entries be randomly sampled from

the entries of the target matrix G [4]. However, in the

context of student grade data, the set of courses that

students take is not a random subset of the courses be-

ing offered as they need to satisfy their degree program

requirements. As a result, such an MF approach may

lead to suboptimal prediction performance.
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In order to address this problem we developed a

course specific matrix factorization (CSMF) approach

that estimates an MF model for each course by utiliz-

ing a course specific subset of the data that is denser

(in terms of the number of observed entries and the di-

mensions of the matrix). As a result, it contains a larger

number of randomly sampled subsets of sufficient size.

Given a course c and a set of students Sc for which

we need to estimate their grade for c (i.e., the students

in Sc have not taken this course yet), the data that

CSMF utilizes are the:

(i) the students and grades of the Gc matrix and yc

vector of the CSR method (Section 3.1), and

(ii) the students in Sc and their grades.

This data is used to form a matrix Xc ∈ R(nc+nt)×(mc+1),

where nc is the number of students in Gc, nt = |Sc|,
and mc is the number of distinct courses that have at

least one grade in Gc or Sc. The values stored in Xc

are the grades that exist in Gc and Sc. The last column

of Xc stores the grades yc for the course c that were

obtained from the students in Gc. Thus, Xc contains

all the prior grades associated with the students who

have already taken course c and the students for which

we need to have their grade on c predicted. Matrix Xc

is then used in place of matrix G in Equation 4 to

estimate the parameters of the CSMF method, which

are then used to predict the missing entries of the last

column of Xc, which are the grades that need to be

predicted.

4 Experimental Design

4.1 Dataset

The student-course-grade dataset that we used in our

experiments was obtained from the University of Min-

nesota which has a very flexible degree program. It con-

tains the students that have been part of the Computer

Science and Engineering (CS&E) and Electrical and

Computer Engineering (ECE) programs from Fall of

2002 to Spring of 2014. Both of these degree programs

are part of the College of Science & Engineering. Stu-

dents have to take a common set of core science courses

during the first 2–3 semesters, but they can select more

courses from different levels and departments.

Because of the nature of these departments, the cur-

riculum coherence tends to be vertically aligned, i.e.,

what students learn in one lesson, course, or grade level

is most likely going to be used by the next lesson,

course, or grade level. Students select courses in or-
der to learn the knowledge and skills that will progres-

sively prepare them for more challenging, higher-level

topics. However, we need to point out that this might

not always be the case, as there are departments that

are more horizontally aligned, where there do not exist

such strong dependancies across different courses and

levels.

While preprocessing the dataset, we removed any

courses that are not part of those offered by depart-

ments in the college, as these correspond to various

liberal arts and physical education courses, which are

taken by few students and in general do not count to-

wards degree requirements. Furthermore, we eliminated

any courses that were taken as pass/fail. The initial

grades were in the A–F scale, which was converted to

the 4–0 scale using the standard letter-grade to GPA

conversion. The resulting dataset consists of 2,949 stu-

dents, 2,556 different courses, and 76,748 student-course

grades.

We used this dataset to assess the performance of

the different methods for the task of predicting the

grades that the students will obtain in the last semester

(i.e., the most recent semester for which we have data).

For this reason, the dataset was further split into two

parts, one containing the students that are still active,

i.e., have taken courses in the last semester (Dactive)

and one that contains the remaining students (Dinactive).

Dactive contains 876 students, 19,089 grades, out of

which 3,427 grades are for the 475 distinct classes taken

in the last semester. Dinactive contains 2,073 students

and 57,659 grades.

These datasets were used to derive various train-

ing and testing datasets for the different methods that

we developed. Specifically, for the CSR method we ex-

tracted the course specific training and testing datasets

as follows. For each course c that was offered in the last

semester, we extracted course-specific training and test-

ing sets (Dc,≥k
train and Dc,≥k

test ) by selecting from Dinactive

and Dactive, respectively, the students that have taken

c, and prior to taken c, they also took at least k other

courses. The reason that these datasets were parametrized

with respect to k is because we wanted to assess how

the methods perform when different amount of histori-

cal student performance information is available. In our

experiments we used k in the set {5, 7, 9}. That informa-

tion creates the grade matrix Gc, where gci,j is the grade

of the ith student on the jth course from the training

set Dc,≥k
train. Table 1 shows various statistics about the

various course-specific datasets for different values of k.

For the CSMF method, the training dataset for course

c was obtained by combining Dc,≥k
train and Dc,≥k

test into a

single matrix after removing the grades that the target

students achieved in course c.

For the MF method, the matrix G is constructed

using data from all Xc matrices. It refers to the union
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Table 1 Statistics for Course-Specific datasets.

CS&E courses ECE courses

Prior courses 5 7 9 5 7 9

Average number of students in training set 386 325 258 414 377 332
Average number of students in test set 41 37 29 34 33 32
Average number of prior courses 178 176 173 158 156 155
Average number of grades 5,671 5,186 4,484 7,084 6,804 6,366
Courses predicted 24 24 24 25 25 25
Grades predicted 1,004 910 712 858 841 800
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Fig. 1 Statistics of the datasets used in SSR w.r.t. overlap
ratio.

of the sets Dc,≥k
train and Dc,≥k

test for every course to be pre-

dicted, after removing the grades that the active stu-

dents achieved in the courses we want to predict. We

formulated the dataset in this way in order to provide

the same information for training and testing to all our

models. Moreover, since we predict the grades for a spe-

cific semester, matrix G does not contain any grading

information regarding following semesters.

In the SSR, the grade matrix Gs,c is created by

selecting from Dc,≥k
train the set of courses that were also

taken by student s and the set of students whose OR

with s is at least t. Figure 1 shows some statistics about

these datasets as a function of t, and Figure 2 shows

only the common subsets that can be predicted by both

course specific and SSR datasets. When the OR is more

than 0.8, we cannot predict many grades because there

are not enough students that had followed the same

degree plan as the selected student.

Finally, we did not consider the courses that have

less than 20 students in their corresponding dataset, as

we consider them to have too few training instances for

reliable estimation, or less than 4 test students, as we

might not get valid results.
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Fig. 2 Statistics of the common subset of datasets used in
SSR and in course specific approaches w.r.t. overlap ratio.

4.2 Competing Methods

In our experiments, we compared our methods with the

following competing approaches.

1. BiasOnly. We only took into consideration local

and global biases to predict the students’ grades.

These biases were estimated using Eqn. 4 by setting

l = 0.

2. Student-Based Collaborative Filtering (SBCF).

This method implements the approach described

in [3]. For a target course c, every student i is repre-

sented by a vector whose non-zero entries are the

grades that the student obtained on the courses

taken prior to c. We compare the vector of a target

student s against the vectors of the other students

that have taken course c using the Pearson’s correla-

tion coefficient. We perform grade prediction while

taking into consideration the positively similar stu-

dents to s according to

ĝs,c = ḡs +
min(r, nbr)

r

∑nbr
i=1(gi,c − ḡi) sims,i∑nbr

i=1 sims,i

, (5)

where nbr is the number of students selected, r is a

confidence lower limit for significance weighting, ḡi
is the average grade of the student prior taking c,
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and sims,i represents the similarity of target student

s with i.

4.3 Parameters and Model Selection

For CSR, we let λ1 take values from 0 to 40 in incre-

ments of 1 and λ2 from 0 to 50 in increments of 1. For

SSR, we let λ1 take values from 0 to 10 in increments

of 1 and λ2 from 0 to 14 in increments of 2. For Bi-

asOnly, MF and CSMF, we let λ take values from 0

to 16 in increments of 0.05. For SSR, the range of the

tested values for overlap ratio is 0.3 to 1, in increments

of 0.04 and for the confidence lower limit is 10 to 100,

in increments of 10. For SBCF, we tested the number

of neighbors to be from 10 to 100 with increments of

10. For MF and CSMF methods we tested the number

of latent dimensions with the values 2, 5 and 8.

For SBCF, CSR and SSR, we used the semester be-

fore the target semester to estimate and select the best

parameters. For BiasOnly, MF and CSMF, model selec-

tion was based on the performance of the validation set,

which was a randomly selected 10% subset of the train-

ing data. For the CSMF model, the best-performing

parameters were selected for each course.

4.4 Evaluation Methodology & Performance Metrics

We evaluated the performance of the different approaches

by using them to predict the grades for the last semester

in our dataset using the data from the previous semesters

for training. We report the results for the courses be-

longing to CS&E and ECE departments.

We assessed the performance using the root mean

square error (RMSE) between the actual grades and

the predicted ones. Since the courses whose grades are

predicted have different number of students, we com-

puted two RMSE-based metrics. The first is the over-

all RMSE in which all the grades across the different

courses were pooled together, and the second is the av-

erage RMSE obtained by averaging the RMSE values

for each course. We will denote the first by RMSE and

the second as AvgRMSE.

In order to get a better understanding of the qual-

ity of the predictions, we also report the distribution of

the actual vs predicted letter grades. The grading sys-

tem used by the University of Minnesota has 11 letter

grades (A, A-, B+, B, B-, C+, C, C-, D+, D, F) that

correspond to grades from 4 to 0 (4, 3.667, 3.333, 3,

2.667, 2.333, 2, 1.667, 1.333, 1, 0). After converting the

predicted grades to their closest letter grade, we com-

pute the percentage of grades that are within or more

than x ticks away from their actual grades. A tick is

defined as the difference between two successive letter

grades (e.g., B vs B+ is one tick, A vs B is 3 ticks).

5 Experimental Results

5.1 Course-Specific Regression

Table 2 shows the performance achieved by the CSR

and CSR-RC models when trained using the three dif-

ferent data sets discussed in Section 4.1. These results

show that between the two models, CSR-RC, which

operates on the GPA-centered grades, leads to consid-

erably lower errors both in terms of RMSE and Av-

gRMSE, especially for the CS&E courses.

In terms of the sensitivity of their performance on

the amount of historical information that was avail-

able when estimating these models (i.e., the minimum

number of prior courses), we can see that the perfor-

mance of the models does not change significantly for

the CSR-RC method. CSR predicts CS&E courses bet-

ter when using 5 prior courses, while it predicts better

the ECE courses with 9 prior courses. This indicates

that the model benefits from increased number of stu-

dents that increased number of prior courses, because

the students with 9 prior courses are only 67% of the

students with 5 prior courses. The ECE department

does not suffer from such low number of students left

with 9 prior courses, as the corresponding percentage

is 80% (statistics according to Table 1).

5.2 Student-Specific Regression

As one of the parameters for this problem was the over-

lap ratio between the courses of the target student and

other students, Figure 3 presents the behavior of the

model’s RMSE (left) and AvgRMSE (right) as we vary

the OR for Dc,≥9
test (k = 9). When the OR is increased,

the selected students have more courses in common

with the target user and that leads to better perfor-

mance.

In order to compare the performance of SSR against

CSR-RC, Figure 4 shows the RMSE of the best CSR-

RC and SSR models. The RMSE values were computed

on the subsets of the test set that was predicted by both

models for Dc,≥9
test (k = 9). These results show that SSR

leads to consistently worse predictions for the CS&E

courses than the CSR-RC model. However, in the case

of the ECE courses, SSR does better than CSR-RC

when the OR is greater than 0.8. That might be re-

lated to the fact that the degree program of ECE is
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Table 2 The performance achieved by Linear Course-Specific Regression per department.

CS&E courses ECE courses

RMSE AvgRMSE RMSE AvgRMSE

Prior courses 5 7 9 5 7 9 5 7 9 5 7 9

CSR 0.928 0.958 0.990 0.994 1.034 1.082 0.717 0.693 0.704 0.702 0.685 0.699
CSR-RC 0.727 0.725 0.722 0.726 0.726 0.716 0.634 0.632 0.634 0.651 0.646 0.651

The performance of the models trained on the different datasets were evaluated on the D≥9
test test set, which is the common

subset among their respective test sets.
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Fig. 3 The performance achieved by the SSR model w.r.t. overlap ratio.
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more structured than the CS&E degree program, giv-

ing some advantage to the SSR method. As shown in

Figure 1, at such high OR values, the number of grades

that can be predicted by SSR is small. For example,

when OR is 0.8, the SSR model can predict less than

10% of the grades in the target semester.

5.3 Methods based on Matrix Factorization

The performance of the methods based on matrix fac-

torization (Section 3.3) is shown in Table 3.

These results show that for the CS&E courses, CSMF

performs the best in terms of RMSE and AvgMSE,

for any number of prior courses. That confirms that

by building matrix factorization models on smaller but

denser course-specific sub-matrices, we can derive low-

rank models that lead to more accurate matrix com-
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Table 3 Errors per department for Matrix Factorization methods.

CS&E courses ECE courses

Prior courses Latent Factors MF CSMF MF CSMF

5

2
RMSE

0.740 0.734 0.603 0.606
5 0.753 0.731 0.605 0.616
8 0.735 0.734 0.596 0.602
2

AvgRMSE
0.726 0.716 0.614 0.615

5 0.732 0.717 0.608 0.628
8 0.721 0.714 0.605 0.612

7

2
RMSE

0.741 0.739 0.606 0.615
5 0.750 0.735 0.611 0.607
8 0.744 0.734 0.598 0.601
2

AvgRMSE
0.726 0.729 0.610 0.626

5 0.720 0.711 0.607 0.617
8 0.727 0.728 0.604 0.609

9

2
RMSE

0.740 0.735 0.604 0.603
5 0.746 0.723 0.600 0.601
8 0.751 0.733 0.597 0.598
2

AvgRMSE
0.726 0.732 0.611 0.617

5 0.721 0.714 0.601 0.611
8 0.735 0.725 0.607 0.610

pletion. On the other hand, the performance of the

ECE courses does not vary a lot. For that department,

the best predictions are performed by MF, followed by

CSMF with a RMSE difference of 0.002. A potential

explanation for these results is that the ECE courses

are part of a stricter degree program, whose structure

is present even in the more general setting of MF. As a

result, by selecting the course-specific sub-matrices does

not provide any further insight to the data, as happens

for the CS&E courses.

In order to see how the size of the training set associ-

ated with the different courses impacts the performance

of the MF and CSMF methods, Figure 5 shows the cu-

mulative AvgRMSE over the courses with increasing

training size and the RMSE per course achieved from

each method. Cumulative AvgRMSE is used to provide

some insight to the impact that the training size has on

the performance of our models. We can notice that for

the ECE courses, MF model has an advantage against

CSMF for relatively smaller courses. MF performs bet-

ter for eight out of the ten smallest courses, indicating

that it gains its accuracy by utilizing other data that

are not included in the course specific datasets in order

to compute better biases. Moreover, from the bottom

part of the figure, we can confirm that the performance

of both MF and CSMF is similar for the ECE courses

in comparison to the CS&E courses.

In terms of the number of latent factors, we see

that when we are using the smallest dataset for training

(the one with 9 prior courses), the best performance is

achieved for smaller number of latent factors compared

to the datasets with 5 or 7 prior courses. In that case,

the average number of grades per course is lower, which

might not support a large number of latent factors.

5.4 Comparison with other methods

Table 4 compares the performance of the baseline ap-

proaches described in Section 4.2 (BiasOnly and SBCF)

with the best-performing course-specific regression method

(CSR-RC), the MF and CSMF methods. From these re-

sults we can see that CSR-RC leads to the best RMSE

for the CS&E courses and MF leads to the best RMSE

for the ECE courses, closely followed by CSMF (0.002

difference).

A summary of the comparison between every pair

of methods tested can be found on Table 5. For each

method, we count the courses for which a method wins,

ties and losses in terms of RMSE against each other

method tested. This analysis shows that for the CS&E

courses, CSR-RC outperforms the other methods, ex-

cept SBCF that is very close, in the majority of the

courses, whereas for the ECE courses, the CSMF out-

performs each one of the other methods (even MF method

that has slightly better RMSE) in the majority of the

courses.

5.5 Fine grain analysis of the predictions

In order to gain a better understanding as to the types

of errors generated by the different methods and the

real-world implication of the predictions Tables 6 and

7 analyze the performance achieved by the different
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Fig. 5 Cumulative AvgRMSE w.r.t. increasing training size (top) and RMSE achieved per course (bottom) of CSMF and MF

models for Dc,≥9
test (k = 9).

Table 4 Errors per department.

CS&E courses ECE courses

RMSE AvgRMSE RMSE AvgRMSE

Prior courses 5 7 9 5 7 9 5 7 9 5 7 9

BiasOnly 0.752 0.752 0.754 0.740 0.734 0.738 0.633 0.634 0.634 0.642 0.640 0.642
SBCF 0.733 0.733 0.732 0.713 0.713 0.710 0.619 0.619 0.619 0.621 0.620 0.620
CSR-RC 0.727 0.725 0.722 0.726 0.726 0.716 0.634 0.632 0.634 0.651 0.646 0.651
MF 0.735 0.741 0.739 0.726 0.726 0.726 0.596 0.598 0.597 0.605 0.604 0.607
CSMF 0.731 0.734 0.722 0.717 0.728 0.714 0.602 0.601 0.598 0.612 0.609 0.610

The performance of the models trained on the different datasets were evaluated on the D≥9
test test set, which is the common

subset among their respective test sets.

Table 5 Wins/Ties/Losses for every pair of methods tested.

CS&E courses ECE courses

OnlyBias SBCF CSR-RC MF CSMF OnlyBias SBCF CSR-RC MF CSMF

OnlyBias 7/1/16 7/1/16 6/5/13 7/2/15 8/2/15 10/3/12 7/6/12 6/2/17
SBCF 16/1/7 12/1/11 11/3/10 13/2/9 15/2/8 13/4/8 8/4/13 8/4/13
CSR-RC 16/1/7 11/1/12 13/2/9 12/4/8 12/3/10 8/4/13 7/4/14 6/3/16
MF 13/5/6 10/3/11 9/2/13 9/2/13 12/6/7 13/4/8 14/4/7 8/3/14
CSMF 15/2/7 9/2/13 8/4/12 13/2/9 17/2/6 13/4/8 16/3/6 14/3/8

The cell (i, j) refers to the wins/ties/losses of the i-th method compared to the corresponding j-th method.

methods by focusing on grade ticks as opposed to RMSE

values.

Table 6 shows the percentage of predicted grades

that were close to the true grades, over all the instances

predicted by a model. For the CS&E department, CSMF

is the model with the most grades that are predicted to

be within two ticks from their true values, while CSR-

RC is the best model when focusing on exact predic-

tions. For the ECE department, MF has the highest

percentages, and CSMF can be better only for the case

of 9 prior courses, within two letter grades from the

actual grades.

Table 7 analyzes the performance of the models on

the instances that they fail to accurately predict. We

examine the difference between the grades over or un-

der predicted, i.e., they are predicted to be more or less
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than their real values respectively. In this case, the lower

the percentage, the better the model is, as there are less

inaccurate predictions. These results show that, com-

pared the CS&E, ECE has less under predictions, but

higher number of over predictions of more than one tick.

Moreover, the best methods for the CS&E courses are

the CSR-RC and CSMF, and for the ECE courses, are

the MF and CSMF. Another finding is that CSR-RC

has the highest percentages of under prediction errors

for the ECE department. The reason this is happening

is because a student might have not taken an important

course, and its corresponding regressor will be missing

while estimating their grade. As a result, we can see

that in the case of this department, that has a stricter

degree program, CSR-RC (that is a linear model) can-

not handle the absence of an important prior course.

However, CSR-RC is the only model that manages to

lower the over prediction error while using more dense

data (case of 9 prior courses).

Table 8 compares the RMSE per course for the meth-

ods of BiasOnly, SBCF, CSR-RC, CSMF and MF, for

both the CS&E and ECE departments. Some statistical

information per course is also included. This informa-

tion suggests that if a course has a poor RMSE, then it

is very likely that the standard deviation of the grades

on the test set is quite high or higher that the standard

deviation of the grades on the training set.

6 Conclusions

In this paper, we presented two course-specific approaches

based on linear regression and matrix factorization that

perform better than existing approaches based on tra-

ditional methods, assuming that the degree programs

involved have a vertical structure. In that case, focusing

on a course specific subset of the data can result in more

accurate predictions. Moreover, the performance for dif-

ferent departments can significantly vary, as they may

have different characteristics and structures. A student-

course specific approach was also developed but its ac-

curacy in grade prediction is limited by the diverse na-

ture of degree plans. Overall, the course-specific meth-

ods can improve the performance of grade prediction

over other methods tested for our dataset, while the

degree of improvement depends on the department.
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Table 6 Analysis of the accuracy of the predictions in terms of letter grades.

5 prior courses 9 prior courses

BiasOnly SBCF CSR-RC MF CSMF BiasOnly SBCF CSR-RC MF CSMF

C
S

&
E no error 23.73 23.87 26.40 25.84 24.85 25.84 24.16 26.68 24.58 24.43

within one tick 62.63 63.59 63.45 65.02 62.47 62.08 63.32 63.31 63.04 63.74
within two ticks 81.58 82.95 83.81 81.98 84.22 81.46 83.25 84.37 81.98 84.52

E
C

E

no error 30.38 28.38 26.37 30.13 26.38 30.98 28.11 26.27 30.88 27.40
within one tick 66.62 65.39 64.89 67.36 66.24 65.74 64.98 65.52 67.51 66.00
within two ticks 87.75 88.26 86.50 90.12 88.86 87.59 88.09 86.26 88.62 89.73

These numbers correspond to the percentage of the predicted grades that were exactly, within one tick or two ticks away
from the true letter grade. One tick corresponds to a letter grade away from the true grade, i.e., we predict a grade of B
while the student took B- in a course.
While comparing models, the higher the percentage the better it is for the grades predicted exactly, or less than one or two
ticks away. For each case, the best percentage is in bold.

Table 7 Analysis of the error severity of the predictions in terms of letter grades.

5 prior courses 9 prior courses

BiasOnly SBCF CSR-RC MF CSMF BiasOnly SBCF CSR-RC MF CSMF

C
S

&
E

underpredict (>1 tick) 20.34 18.93 18.38 18.79 21.34 20.76 19.22 18.94 19.37 19.22
overpredict (>1 tick) 16.96 17.38 18.08 16.10 16.11 17.10 17.38 17.66 17.51 16.96

underpredict (>2 ticks) 9.53 7.56 7.98 8.97 8.00 9.10 7.28 7.14 8.28 7.00
overpredict (>2 ticks) 8.82 9.39 8.12 8.96 7.70 9.38 9.39 8.40 9.66 8.40

E
C

E

underpredict (>1 tick) 14.74 15.38 15.22 13.73 15.74 15.21 15.87 15.08 12.60 14.73
overpredict (>1 tick) 18.60 19.16 19.83 18.84 17.96 18.96 19.04 19.31 19.83 19.22

underpredict (>2 ticks) 4.88 3.75 4.99 2.73 4.50 4.86 3.75 5.47 3.61 3.63
overpredict (>2 ticks) 7.33 7.92 8.45 7.08 6.58 7.86 8.05 8.18 7.71 6.59

These numbers correspond to the percentage of the predicted grades that were one or two ticks away from the true letter
grade. One tick corresponds to a letter grade away from the true grade, i.e., we predict a grade of B while the student took
B- in a course.
A model under or over predicts when the grade predicted is lower or higher, respectively, than the actual one.
While comparing models, the lower the percentage the better it is for the grades predicted more than one or two ticks
away. For each case, the best percentage is in bold.

19. Toscher, A., Jahrer, M.: Collaborative filtering applied to
educational data mining. KDD cup (2010)
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Table 8 Errors per course for all methods for the case of 9 prior courses (Dc,≥9
test (k = 9)).

Course train test feat nnz offer Mn Tr StD Tr Mn Te StD Te OnlyBias SBCF CSR-RC MF CSMF

CSCI2x 89 6 164 1345 23 3.180 0.596 3.000 0.577 0.492 0.357 0.454 0.499 0.499
CSCI2x 196 19 167 2796 23 2.697 1.109 2.825 0.670 0.511 0.540 0.531 0.527 0.629
CSCI2x 105 21 165 1843 6 2.686 1.011 3.032 0.625 0.390 0.466 0.416 0.373 0.403
CSCI3x 705 45 240 10272 21 3.135 0.813 3.104 0.852 0.738 0.651 0.803 0.755 0.715
CSCI4x 639 53 234 9774 23 2.847 0.821 2.799 0.912 0.795 0.809 0.788 0.792 0.801
CSCI4x 635 25 230 9147 23 3.035 0.906 2.747 0.981 0.787 0.812 0.756 0.809 0.759
CSCI4x 865 56 252 13502 23 3.099 0.924 3.018 1.191 0.952 1.005 0.852 0.984 0.891
CSCI4x 618 52 225 11379 19 3.530 0.630 3.141 0.904 0.857 0.815 0.736 0.831 0.771
CSCI4x 105 15 168 2136 20 2.797 1.048 3.400 0.762 0.928 0.916 0.879 0.884 0.924
CSCI4x 536 45 219 9593 21 3.173 0.784 3.015 0.886 0.826 0.747 0.757 0.749 0.771
CSCI4x 230 87 193 5198 4 3.229 0.826 3.134 0.849 0.760 0.732 0.738 0.733 0.730
CSCI4x 518 55 219 9448 20 3.094 0.813 3.345 0.422 0.513 0.433 0.502 0.454 0.427
CSCI5x 175 28 180 3409 13 3.154 0.773 2.738 1.146 0.942 0.947 0.980 0.945 0.993
CSCI5x 37 8 123 849 7 3.441 0.658 3.458 0.686 0.916 0.855 0.864 0.763 0.731
CSCI5x 59 15 132 1444 9 3.057 0.929 3.511 0.569 0.806 0.637 0.670 0.741 0.765
CSCI5x 34 10 96 804 5 3.167 0.901 3.767 0.300 0.400 0.372 0.524 0.408 0.428
CSCI5x 27 15 128 736 10 2.518 1.212 3.045 0.619 0.622 0.643 0.822 0.594 0.498
CSCI5x 182 65 231 4195 21 2.984 0.920 3.149 0.627 0.522 0.515 0.481 0.492 0.480
CSCI5x 51 9 131 1040 10 2.869 1.065 3.519 0.419 0.548 0.525 0.587 0.699 0.550
CSCI5x 45 15 119 1039 4 2.593 0.973 3.022 1.078 0.955 0.897 0.836 0.972 0.911
CSCI5x 35 15 135 866 5 2.771 1.053 3.089 1.380 1.161 1.102 1.086 1.147 1.094
CSCI5x 44 6 115 924 9 2.667 1.061 3.055 1.420 1.310 1.389 1.170 1.296 1.418
CSCI5x 77 17 122 1678 12 3.043 0.663 3.059 0.649 0.554 0.484 0.520 0.534 0.521
CSCI5x 199 30 167 4222 9 3.201 0.713 3.222 0.450 0.437 0.389 0.432 0.436 0.429

EE2x 334 19 111 4143 23 3.083 0.812 2.807 0.511 0.428 0.423 0.408 0.449 0.395
EE2x 467 33 185 6748 23 2.720 0.854 2.788 0.724 0.497 0.506 0.470 0.495 0.486
EE3x 509 19 139 7421 23 2.898 0.865 3.053 0.774 0.533 0.578 0.570 0.574 0.579
EE3x 624 43 181 11045 22 2.707 0.846 2.481 1.069 0.835 0.849 0.837 0.846 0.828
EE3x 32 5 92 629 13 3.552 0.739 3.800 0.400 0.578 0.482 0.647 0.497 0.534
EE3x 524 16 149 7758 22 3.357 0.689 3.813 0.333 0.736 0.681 0.766 0.638 0.754
EE3x 668 61 201 12230 21 3.564 0.565 3.404 0.392 0.651 0.602 0.607 0.532 0.524
EE3x 523 18 157 7812 22 2.683 0.926 2.537 1.112 0.866 0.856 0.823 0.861 0.846
EE3x 636 45 183 11597 23 2.759 0.879 2.644 0.970 0.777 0.768 0.860 0.781 0.760
EE3x 534 35 170 9141 22 2.917 0.835 2.638 0.889 0.783 0.749 0.788 0.789 0.752
EE4x 247 14 158 5070 11 2.831 0.931 3.071 0.402 0.541 0.457 0.554 0.540 0.523
EE4x 170 58 128 4631 3 2.998 0.782 3.052 0.729 0.521 0.535 0.564 0.520 0.520
EE4x 42 16 91 1161 3 3.786 0.674 3.958 0.110 0.451 0.368 0.420 0.389 0.441
EE4x 276 53 177 6679 10 2.992 0.897 2.918 0.666 0.452 0.479 0.468 0.479 0.463
EE4x 94 23 144 2269 10 3.784 0.643 3.942 0.188 0.501 0.422 0.496 0.396 0.314
EE4x 265 43 179 6485 11 2.782 0.794 2.876 0.810 0.444 0.446 0.443 0.458 0.458
EE4x 327 25 191 7237 21 3.002 0.815 3.213 0.810 0.706 0.725 0.672 0.714 0.707
EE4x 190 59 155 5029 5 2.942 0.739 2.780 0.701 0.550 0.567 0.584 0.554 0.561
EE4x 514 57 182 11080 10 3.243 0.652 3.398 0.644 0.470 0.463 0.462 0.464 0.443
EE4x 381 47 171 8313 13 3.802 0.446 3.901 0.167 0.541 0.460 0.500 0.393 0.349
EE4x 762 60 226 17340 21 3.627 0.449 3.706 0.713 0.855 0.812 0.774 0.734 0.751
EE4x 101 17 176 2680 9 3.865 0.345 3.882 0.196 0.208 0.174 0.187 0.168 0.186
EE5x 47 21 121 1270 3 3.702 0.675 3.905 0.426 0.455 0.447 0.504 0.378 0.414
EE5x 23 8 97 647 9 3.478 0.714 2.958 1.172 1.240 1.228 1.206 1.209 1.220
EE5x 32 5 116 743 10 3.219 0.762 3.133 1.572 1.427 1.435 1.662 1.411 1.453

feat = features, offer = offerings, Mn = Mean, Tr = Train, Te = Test, StD = Standard Deviation.
The second and third columns refer to the number of students in the training and test set, respectively.
From the course names, we can see the department and the academic level of the course.
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