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ABSTRACT

Automated course recommendation can help deliver person-
alized and effective college advising and degree planning.
Nearest neighbor and matrix factorization based collabora-
tive filtering approaches have been applied to student-course
grade data to help students select suitable courses. How-
ever, the student-course enrollment patterns exhibit group-
ing structures that are tied to the student and course aca-
demic features, which lead to grade data that are not miss-
ing at random (NMAR). Existing approaches for dealing
with NMAR data, such as Response-aware and context-
aware matrix factorization, do not model NMAR data in
terms of the user and item features and are not designed
with the characteristics of grade data in mind. In this work
we investigate how the student and course academic fea-
tures influence the enrollment patterns and we use these
features to define student and course groups at various lev-
els of granularity. We show how these groups can be used to
design grade prediction and top-n course ranking models for
neighborhood-based user collaborative filtering, matrix fac-
torization and popularity-based ranking approaches. These
methods give lower grade prediction error and more accu-
rate top-n course rankings than the other methods that do
not take domain knowledge into account.
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1. INTRODUCTION

While the flexibility of degree requirements provides col-
lege students with ample choices, it can complicate course
selection. From among the courses that the students are el-
igible to take in the next term, they need to select the ones
that they like, they are expected to perform well in, and
also satisfy their degree requirements. Efficient college ad-
vising is essential for helping students select the right courses
and thus, maintain high student retention rates and timely
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graduation. Automated course recommendation can help
improve college advising by recommending courses that are
suitable for the students degrees. Moreover, predicting stu-
dent grades in the next term can help students and educators
make informed decisions about course enrollments in order
to produce better learning outcomes.

Collaborative filtering approaches have been previously
used for grade prediction and course recommendation [23,
6, 8]. The majority of these methods rely on user-based col-
laborative filtering (User-CF) [11] which makes recommen-
dations by relating to the courses that were taken by similar
students. Recently, techniques based on matrix factorization
(MF) have been used for movie and product recommenda-
tions [14] and also applied for course recommendation and
grade prediction [27, 26].

The grade data has special characteristics as the student-
course enrollments are influenced by the academic features
(e.g., student majors, academic levels and course subjects).
Consequently, the student-course grade matrix exhibits group-
ing structures as students with certain majors tend to en-
roll in courses of certain subjects, resulting in not missing
at random (NMAR) data. Response-aware MF uses miss-
ing data theory to model the NMAR user response patterns
[16]. However, the response patterns are not tied to the
user and item features. Features-based MF methods can
incorporate the user and/or item features into the predic-
tion model. However, they do not explicitly model how the
features determine the grouping structures in the data.

In this paper we analyze grade data and show how the
student and course academic features determine the enroll-
ment patterns. We use these features to define student and
course groups and show how they can be incorporated in
matrix factorization, user-based collaborative filtering, and
popularity-based ranking.

We investigate various ways to define the groups at multi-
ple levels of granularity using different amounts of academic
features. We show that in some cases the small sample sizes
associated with finer granularity groups make the prediction
models prone to poor generalization, especially with matrix
factorization based methods. To overcome this issue, we
build multiple models using the various granularity groups.
We then generate multiple grade predictions and combine
them based on the sample sizes associated with the various
groups.

We tested our methods on a dataset obtained from the
University of Minnesota. The dataset spans 13 academic
years and includes over 1,700,000 grades. Our results show
that the methods that utilize finer groups give significantly
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Figure 1: Cumulative percentage plots for student-course enrollments in a grade dataset. Left: percentage of courses vs.
number of student majors. An (x,y) point indicates that y% of the courses were taken by students from at most x majors. For
example, 40% of the courses were taken by students from at most three majors. Middle: percentage of courses vs. percentage
of students belonging to the academic level that most of the enrolled students belong to. An (x,y) point indicates that for y%
of the courses, at least x% of the enrolled students belong to the same academic level. For example, for 27% of the courses, at
least 96% of the enrolled students belong to the same academic level. Right: percentage of students vs. number of subjects
for the courses they have enrolled in. An (x,y) point indicates that y% of the students took courses that belong to at most x
different subjects. For example, 70% of the students took courses that cover at most 16 different subjects.

more accurate top-n course rankings than the methods that
utilize coarser groups and than other methods from the liter-
ature; even when domain knowledge is used to pre-filter the
recommended courses. Moreover, defining the groups using
the academic features gives better top-n rankings than clus-
tering the students and courses using the enrollment data.
For grade prediction, utilizing the finer groups gives more ac-
curate predictions than the coarser groups only when they
are associated with reasonable sample sizes. For the matrix
factorization methods, where model training suffers more
from the sample-size issue, combining the various model
predictions while accounting for the sample sizes associated
with the model parameters gives higher prediction accuracy
than the various individual MF models and than the other
methods from the literature.

2. DEFINITIONS AND NOTATIONS

Let G denote the grade matrix; each row in G represents a
student, denoted by s, and each column represents a course,
denoted by c. The entry gs,. in G represents the grade ob-
tained by student s in course c. A predicted grade is denoted

by gs,e-

3. CHARACTERISTICS OF GRADE DATA

In a university setting, each student enrolls in a certain
college/school and declares a certain major. Each student
selects from among a variety of courses to take in order to
fulfill the requirements of his major (also referred to as the
degree requirements). Each course has a subject that it falls
under and a level that describes its difficulty. As the student
takes more courses, his academic level advances and he can
take higher level courses.

Students tend to enroll in courses that are related to their
majors and are appropriate to their academic levels. This
is illustrated in Figure 1 which shows various characteristics
that were extracted from a grade dataset that was obtained
from the University of Minnesota. These plots show that:
(i) each course is taken by students that belong to a lim-
ited number of majors; (ii) each course is mostly taken by
students belonging to one academic level; and (iii) each stu-
dent takes courses that cover a limited number of subjects.
For example, from Figure 1-left we can see that 22% of the
courses are taken by students that all come from one ma-
jor, and 80% of the courses are taken by students that come
from at most 24 majors. From Figure 1-middle we can see

that for 50% of the courses, at least 66% of the enrolled
students belonged to the same academic level. Finally, from
Figure 1-right we can see 90% of the students took courses
that covered less than 20 subjects.

These characteristics imply that the missing entries in the
grade matrix are not missing at random. This resulted be-
cause students with certain student features tend to enroll
in courses with certain course features. We refer to this as
the grouping structures in the grade data.

4. RELATED WORK

Response aware techniques [16, 17, 12] model NMAR data
by utilizing a data model that is based on missing data the-
ory. The method proposed in [16] modified probabilistic
matrix factorization by introducing two variations to model
NMAR data. The first variation assumes that the probabil-
ity of observing a rating depends only on the value of the
rating. The second variation assumes that the probability
also depends on the user and the item latent factors. None
of these methods incorporate the user and item features that
influence the response patterns.

Feature-based MF methods incorporate user and/or item
features within the rating prediction or the top-n ranking
models. The method proposed in [2] linearly transformed
the user and item features to the latent space in order to
predict a user’s preference over a given item. Other meth-
ods incorporated the features within a top-n recommenda-
tion model in order to estimate user preferences or bias the
recommendations based on the item features [18, 10]. None
of these methods were designed to address how the user and
item features determine the grouping structures in the data.

Context-aware methods make recommendations in accor-
dance with the different contexts [4, 13, 3, 25, 28, 1]. Some of
these methods utilized the context information to pre-filter
items. Other techniques incorporated contextual informa-
tion within the model.

Methods for course recommendation applied various data
mining techniques to tackle the problem. The work done in
[5] applied association rule mining to recommend relevant
courses. The method in [15] estimated course recommenda-
tion scores by accumulating weights for subject importance
within the study field, satisfied prerequisites and the ex-
tent by which a course broadens the student’s knowledge
state. Methods for course recommendation with constraints
focused on satisfying the degree program requirements [20,



22, 21, 19]. They take course prerequisites into consideration
in order to generate valid course recommendations. They fo-
cus on finding a short path to fulfill the degree requirements
and thus, reduce time to graduation.

S. DOMAIN-AWARE METHODS FOR
COURSE RECOMMENDATION

We develop methods that model the grouping structures
of the grade data by using the academic features to de-
fine student and course groups. These groups are defined
at various levels of granularity by utilizing various amounts
of features. Then they are incorporated within the recom-
mendation methods for the purpose of performing (1) grade
prediction and (2) top-n course ranking.

For grade prediction, the grade of a student s in a course
¢ should be predicted by relating to how students of the
same group as s performed in ¢, and how s performed in
courses of the same group as c. Since the groups are de-
fined at different levels of granularity, various models can be
built that account for various academic features. In general,
the finer groups are more homogeneous and thus, utilizing
them can give more accurate predictions than utilizing the
coarser groups. However, based on how the groups are in-
corporated into the prediction models, some models can be
affected when the finer groups have small sample sizes and
they can become prone to poor generalization. Such cases
are addressed by building multiple models using different
granularity groups and combining the predictions of all the
models based on the group sample sizes.

For top-n course ranking, it is required to generate a list
of n relevant courses for each student to consider enrolling in
them. Unlike other recommendation scenarios, course rec-
ommendation has special considerations. Students need to
enroll in courses that they are interested in, and that ful-
fill their degree requirements. Accordingly, students some-
times need to take some courses in order to fulfill some de-
gree requirement, regardless of their expected grade in these
courses. Moreover, in the typical user-item-rating scenario,
when a user likes an item, he gives that item a high rating.
This is not always the case with the student-course-grade
scenario where a student might like a course, but this does
not necessarily mean that he will get a high grade when
he takes that course. Based on that, course ranking should
rely on the enrollment patterns more than relying on the ex-
pected grades. In this sense, the grade matrix is considered
as binary where all grades are set to 1’s and the rest of the
entries are considered 0’s. Similar to grade prediction, mul-
tiple models can be built by utilizing various student and
course groups. Also, utilizing finer groups can give more
accurate recommendations that the coarser groups. How-
ever, unlike with grade prediction, the fact that some finer
groups are associated with small sample sizes is an indicator
for less relevant courses and as such, should not hurt model
generalization.

We next describe how to define the multi-granularity groups.

5.1 Defining the Multi-Granularity Student
and Course Groups

The student groups define the various student subpopu-
lations that can take a course. At the coarsest level, the

All Students All Courses

Student Majors Course Subjects

Course Levels

Student Academic Levels

Figure 2: An illustrative example for defining the stu-
dent(left) and course(right) multi-granularity groups.

set of all students is defined without using any student aca-
demic features. Then finer groups are defined by using one
student feature at a time to segment the student group(s)
further based on the value of that feature to give smaller and
more homogeneous groups. The course groups are defined
similarly using the course academic features.

One way to define the student groups is shown in Figure 2-
left. The node at the top represents the group of all students.
The second level segments the students based on their ma-
jors and it has one node (group) for each major. The third
level segments the students further based on their academic
levels and it has one node for each academic level within each
major. Similarly, the course groups can be defined as shown
in Figure 2-Right. The node at the top represents the group
of all courses. The second level segments the courses based
on their subjects and it has one node (group) for each sub-
ject. The third level segments the courses further based on
their levels and it has one node for each course level within
each subject. In the rest of the paper, we will use the groups
defined in Figure 2 as an illustrative example.

We next describe how the groups are incorporated into
popularity based ranking, neighborhood based user collabo-
rative filtering and matrix factorization.

5.2 Popularity based Top-» Course Ranking

A popularity ranking scheme ranks the courses based on
how frequently they were taken by the students. In our case,
we rank the courses for a student s based on how frequently
they were taken by students of the same group as s. The
ranking score of course c for a given student s is computed as
|s—c|, where ps—sc is the set of students in the same group
as s that have taken ¢ and |X| represents the cardinality of
set X.

Utilizing a different student group from the multi granu-
larity groups gives a different model. The various models are
referred to as Grp-Pop-h,,, where h, is the student group
level in the multi-level groups. For example, the model that
utilizes the groups at the second level of the multi-level stu-
dent groups in Figure 2-left is referred to as Grp-Pop-2.

5.3 User based Collaborative Filtering

User-CF predicts a grade of a student s in a course ¢ by
relating to how students that have taken same courses as s
performed in ¢ as

ZS’ENS Sim(‘S? Sl)(gS’,C - gs')
Z:s’eNS |Sim(57 5,)‘
where g, is the average grade of s, Ny is the set of neigh-

bor students to s, and sim(s, s’) is some similarity between
students s and s’.

gs,c = gs + ) (1)



5.3.1 Grade Prediction

For grade prediction, the neighborhood set N is selected
based on the student groups as follows. Any student in the
same group as s and has taken at least n. courses that were
taken by s is selected as part of Ns;. Moreover, the size of
N is limited so that it only contains the n, students that
are most similar to s. The threshold parameters n. and n,
are fine-tuned using a validation set. In the case where not
enough neighbors are found, the grade is then estimated as

1, _
gs,c = E(gs + QC):

where g. is the average grade for course c.

By utilizing different student groups, different models are
built. The various models are referred to as User-CF-h,,,.
For example, the model that utilizes the groups at the sec-
ond level of the multi-level student groups in Figure 2-left is
referred to as User-CF-2.

5.3.2  Top-n Course Ranking

Since in this case the enrollment patterns are the main
indicators and not the grade values, G is converted into a
binary matrix with all grades set to 1’s and other entries
considered as 0’s. The recommendation scores are then es-
timated as in Equation 1. In practice this gives better rec-
ommendations than using the actual grade values. In the
case where not enough neighbors are found, this indicates
an irrelevant course and the course rank is set to 0.

5.4 Matrix Factorization

MF predicts the grade of student s in course c as
gs,c = bs + bc + ugvm (2)

where bs and b. are the bias terms of s and ¢, and us and
v. are the latent factor vectors of s and ¢, respectively.

5.4.1 Grade Prediction

While the literature is rich with feature-based and context-
aware MF techniques that can be modified and used as a
framework to implement our ideas, we choose to modify the
context-aware technique in [4] as we find it most relevant.
This technique accounts for context via additional bias terms
that are defined for each (item, context) pair.

In our case, we use the student groups to describe the con-
texts in which a course is taken, and use the course groups
to describe the contexts in which a student takes a course.
Considering the example in Figure 2, the third level student
groups describe course-side contexts in terms of the student
majors and academic levels. Similarly, the third level course
groups describe student-side contexts in terms of the course
subjects and levels. Accordingly, we define multiple bias
terms per student and per course to account for the vari-
ous student- and course-side contexts. The recommendation
score of a given student s and course c is estimated as

Js,c = by +bZ° + ui.’vc, (3)

where b?¢ is some student bias that accounts for the context
described by the course group of ¢, bf* is some course bias
that accounts for the context described by the student group
of s, and us and u. are the latent factor vectors for s and c,
respectively.

Multiple models can be defined using the different groups.
For the example in Figure 2, considering the various student

and course group combinations, we can build nine different
models. The various models are referred to as MF-h -h,,
where hy is the level of the student group, which defines
the granularity of the course bias, and similarly h,,. is the
level of the course group, which defines the granularity of
the student bias. For example, considering Figure 2, MF-1-
3 is used to refer to the model that uses the coarsest-grain
student groups (at the 1st level) to define the coarsest-grain
course biases, and uses the finest-grain course groups (at the
3rd level) to define the finest-grain student biases.

Since the finer groups are more homogeneous than the
coarser groups, the MF models that utilize them can give
more accurate predictions. However, the student groups are
recognized through defining multiple biases for each course,
and similarly with the course groups and the student bi-
ases. For example, if we have 2,000 student groups and 1,000
course groups, then 2,000 biases are defined per course and
1,000 biases are defined per student. Only a handful of bi-
ases for each student/course are associated with some data
points. and the remaining majority of the biases are associ-
ated with very few or no data points. Therefore, the models
that utilize finer groups can become prone to poor gener-
alization. To understand why this happens, consider the
following example. Assume an Artificial Intelligence course
c that is offered by the Computer Science department was
taken by 47 Computer Science major students and 2 other
Liberal Arts major students. If we define student groups
using the major, and if we have 100 different majors, then ¢
will have one bias associated with 47 data points, one bias
associated 2 data points and 98 biases associated with 0
data points. Obviously, the biases with 0 and 2 data points
cannot be as accurately estimated as the other bias.

To overcome this problem, we build multiple models uti-
lizing various groups and use them to generate multiple pre-
dictions. Then the predictions are combined based on the
sample sizes that are associated with the bias terms of the
various models as described next.

5.4.1.1 Combining the Predictions of the Different
MF Models.

Before discussing how the various model predictions are
combined, it is worth noting that the user and item latent
factors are not shared among the various models but each
model has its own factors. The various predictions are com-
bined while accounting for the associated sample sizes as
follows. Each model MF-h -h,, has a combination weight
given by

Wihg, hy.) = sup(bL®) + sup(bZ?),

where sup(b¥©) is the sample size (i.e., number of training
samples) associated with the bias term b7<. The total weight
is aggregated over the individual model weights as

Wtotal = § § W{hyyhpo}-

h‘Ps h‘Pc

The final prediction is then given by

R W{hg,g by, } hpgihee}
Gfs,c} = Zza{h%,h%} X 7wiomj X greoy7er, (4)

h‘ﬁs h#’c

where ﬁé:ﬁi e

he., and ap,, h,, 3} is some global combination weight for

Y is the prediction given by model MF-h,, -



Table 1: The student and course features used to define various multi-level groups and the resulting number of groups.

2nd level student feature 3rd level student feature 2nd level course feature 3rd level course feature
H-1 | student major (565) student academic level (565x4) course subject (570) course level (570%8)
H-2 | student academic level (4) student major (565x4) course subject (570) course level (570x8)
H-3 | student college (10) student academic level (10x4) course subject (570) course level (570x8)
H-4 | student academic level (4) student college (4x10) course subject (570) course level (570%8)
H-5 | student major (565) student academic level (565x4) course level (8) course subject (8x570)
H-6 Students/courses are clustered by splitting a nearest-neighbor similarity graph into k-clusters via min-cut graph partitioning.

Clustering is repeated 2 times with (k1 =10, k2=30 for students) and (k1=5, ka=25 for courses) to generate 3-level groups.

that model. This method is referred to as INTRP-MF, the
interpolative multi-granularity MF method.

5.4.1.2 Model Parameter Estimation.

Parameter estimation is done via a step-wise optimization
process in which the parameters of each of the individual
models are first estimated, and then the Qfhg, hpo} global
combination weights are estimated.

The parameters of each of the various models are esti-
mated via a regularized optimization process of the form

mini@mize L(©) + R(9), (5)

where O represents the model parameters, £(0) is the loss
function and R(O) is a regularization function to avoid over-
fitting. We use a squared error loss function of the form

‘C’(@) = Z (gs,c 7.@5,8(@))25

9s,c€EG

where §,,.(0) is given by Equation 3. This loss function is
suitable as the letter grades can be transformed to numeric
values. The regularization function R(©) is given by

R(©) = Mu(lIUII7 +[IBECIIF) + Au(IVIIE + [ BE 7). (6)

where A, and ), are the regularization parameters and ||U||r
is the ¢-2 norm of the matrix U.

After the parameters of each model are estimated, the
Q{h,, h,,.} Weights are estimated by minimizing a mean squared
error loss as well.

5.4.2 Top-n Course Ranking

We use a learning to rank approach to generate person-
alized course recommendations per student. The rank of
course ¢ for student s is estimated as in Equation 3. The
model parameters of each model are estimated using a per-
sonalized pair-wise ranking loss function [7] of the form

‘6(6) = Z Z Z d)(gs,c(@) - gs,c'(g))v (7)
SEG ceCyq C/EEws

where C,s is the set of courses taken by student s, C,, is
the set of courses never taken by any student in the same
group as s, and ¢(z) = e~ *. Although §s.(0©) is estimated
using Equation 3, it represents a ranking score in this case
and not a predicted grade because the model parameters
are estimated using the ranking-based loss function. We use
the same regularization function as in Equation 6 to avoid
overfitting.

The ranking loss function is of order O(n, x n;), where
n, and n; are the number of students and courses, respec-
tively. The learning time can be reduced by sampling, for
each student, from among his C,, instead of considering the
whole set. If the number of samples is of order O(Cs), the
run time is reduced to O(NNZ¢), the number of non-zero
entries in the grade matrix G.

6. EXPERIMENTAL DESIGN

In this section we describe the dataset that is used for eval-
uation, the evaluation metrics, the methods that we compare
against, how the various methods are trained and how the
student and course groups are defined.

6.1 Dataset

The dataset used for evaluation is obtained from the Uni-
versity of Minnesota. It spans 13 academic years and it has
over 1.7 million letter grades that involve around 60,000 stu-
dents, 10,000 courses, 10 colleges, 570 course subjects, 565
majors, 4 academic levels and 8 course levels. The grades
are converted into numbers according to the 4.0 GPA stan-
dard®. All Pass/Fail grades are removed from the dataset.

The last term in the dataset is used for testing and the
rest are used for training and model selection. The last
term in the training set is used for model selection and the
rest is used for training. Grades of the students that have
graduated before the test term are included in the training
set. Grades for the new courses and the new students that
first appear in the test term are excluded.

6.2 Defining the Student and Course Groups

We experimented with six different ways to define the
multi-level groups, namely, H-1 up to H-6. Each one con-
tains three levels of student and course groups and thus, the
corresponding MF models are referred to as MF-1-1 up to
MF-3-3. The various User-CF and Grp-Pop methods that
are defined based on the student groups are referred to as
User-CF-1 up to User-CF-3, and Grp-Pop-1 up to Grp-Pop-
3, respectively. The features used to define the groups are
listed in Table 1.

6.3 Evaluation Metrics

Methods are evaluated for (1)the accuracy of top-n course
ranking and (2)the accuracy of grade prediction.

Course top-n ranking is evaluated with Recall@n which
is computed for each student s as

Recall@Qng = Nsn ,
n

to

where ng, is the number of courses that appeared in the
test set of s and in his list of n recommended courses, and
ne, is the number of courses in the test set of s. Recall@n
is computed by averaging over Recall@n for all s and for n
in the range [1,10]. The relative methods performances did
not change with n and so, we only report results for n = 5.

Grade prediction accuracy is evaluated by computing the

!See “http://www.collegeboard.com /html/academicTracker-
howtoconvert.html” for letter grade-grade point conversion.
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6.4 Comparison with Other Methods

We compare the performance of our method against the
following approaches:
User Collaborative Filtering: User-CF with Pearson
correlation for user similarity [9].
Matrix Factorization: Typical MF as described in Equa-
tion 2.
Response-aware Matrix Factorization: The context
aware response model described in [16]. We implemented
RAPMFc as we think it is the most relevant because it cap-
tures the probability that rating an item depend on the rat-
ing value, the user and the item.
Regression Latent Factor Models: The feature-based
MF-based method described in [2], referred to as RLFM.
We used libFM [24] to generate the results for grade predic-
tion only as it is not a top-n ranking technique.
Ensemble-based Grade Combination: We compare the
predictive performance of the the interpolative multi gran-
ularity method INTRP-MF against various ensembles. The
Minimum, Maximum, Average and Median ensembles are
considered where the minimum, maximum, average and me-
dian grades are selected as the final prediction, respectively.
These ensembles are referred to as MIN-En, MAX-En, AVG-
En and MED-En, respectively. We also include results for
the interpolative method with excluding the a parameters
in order to show how the sample-size-based weights perform.
This method is referred to as WT-MF and it does not need
a secondary learning step as the a weights are omitted.

6.5 Model Training and Selection

For training the MF models, we tried a number of latent
factors in the range [1,10] and A, and A, in the range [le-
4,5]. The values that gave the best results were latent factors
in the range [1,3], Ay and A, in the range [0.1,3.5].

For User-CF, we have tried values for the parameters, n,
and n. in the range [1,50]. The best results were obtained
with values in the range [2,36].

For RAPMFc, we have tried parameter values for A,, A,
and ), in the range [1073,10'], 8 in the range [0,1] and
number of factors in the range [1,10]. The values that gave
the best results were in the range [0.01, 0.1] for Ay, Ay, 1 for
Au, 0.01 for 8 and [7,10] for L.

For grade prediction, and top-n ranking, model selection
is based on the lowest RMSE and the highest Recall@n on
the validation set, respectively.

7. EXPERIMENTAL RESULTS

We assess the effectiveness of the developed methods in
order to answer the following questions:

Q1. Does incorporating the groups in the various methods
lead to better top-n course rankings?

Q2. Does incorporating the groups in the various methods
lead to better grade predictions?

Q3. How is the grade prediction performance of the MF
models defined using various groups affected by the
sample sizes that are associated with the biases?

Table 2: Recall@5 for the various groups. The highest Re-
call@5 for each set of methods within each group (column)
is underlined.

Model H-1 H-2 H-3 H-4 H-5 H-6

Grp-Pop-1 0.015 0.015 0.015 0.015 0.015 0.015
Grp-Pop-2 0.172  0.039 0.046 0.039 0.172 0.015
Grp-Pop-3 0.236 0.236 0.094 0.094 0.236 0.017

User-CF-1 0.046 0.046 0.046 0.046 0.046 0.046
User-CF-2 0.0560 0.034 0.037 0.034 0.050 0.035
User-CF-3 0.054 0.054 0.037 0.037 0.054 0.036

MF-1-1 0.013 0.013 0.013 0.013 0.013 0.013
MF-2-1 0.174 0.066 0.047 0.066 0.174 0.021
MF-3-1 0.239 0.239 0.100 0.104 0.239 0.018
MF-1-2 0.041 0.041 0.040 0.041 0.018 0.021
MF-2-2 0.174 0.133 0.055 0.133 0.169 0.021
MF-3-2 0.238 0.238 0.109 0.115 0.230 0.018
MF-1-3 0.023 0.023 0.021 0.022 0.018 0.020
MF-2-3 0.172  0.081  0.047 0.081 0.171  0.019
MF-3-3 0.236  0.236  0.100 0.105 0.236  0.017
RAPMFc 0.023

7.1 Top-» Course Recommendation Results

Prior to ranking the courses for each student, we apply a
domain-aware pre-filtering in which courses that have never
been taken by at least one student of the same major and
academic level as the target student are filtered out. This ap-
proach performed the best among other similar pre-filtering
rules that utilize various academic features.

Table 2 shows the Recall@5 for all the methods across all
groups. Notice that the typical popularity ranking, User-CF
and MF schemes are equivalent to Grp-Pop-1, User-CF-1
and MF-1-1, respectively.

For the popularity methods, Grp-Pop-3 and Grp-Pop-2
outperform Grp-Pop-1. Across the six groups H-1 to H-6,
Grp-Pop-3 gives the highest recall.

For the User-CF methods, User-CF-2 and User-CF-3 only
outperform User-CF-1 when the groups are defined in terms
of the student majors (H-1, H-2 and H-5). For these groups,
User-CF-3 gives the highest recall. For the other groups,
User-CF-1 gives the highest recall.

For the MF methods, the ones that utilize groups outper-
form MF-1-1 by an order of magnitude. In general, defining
the course biases using finer student groups gives better re-
call as it is the case, for example, with MF-1-2, MF-2-2 and
MF-3-2 in H-1. On the other hand, defining student biases
using finer course groups does not always give better recall
as it is the case with MF-2-2 and MF-2-3 in H-2, H-3 and
H-4. We believe this is related to the sample sizes associated
with the student biases. Since each student takes a limited
number of courses, the models utilizing the finest course
groups have less than 2 training points associated with their
student biases on average. RAPMFc performs better than
MF-1-1 but worse than all models that utilize groups across
H-1 to H-6.

Across all methods, the highest recalls are given by MF-3-
2 and MF-3-1 which slightly surpass MF-3-3 and Grp-Pop-3.
All User-CF methods outperform RAPMFc¢, MF-1-1, MF-1-
2 and MF-1-3 for all groups. MF models with finer student
groups, like MF-3-1, MF-3-2 and MF-3-3, always outper-
form all User-CF methods. The student groups that are
defined in using majors (H-1, H-2 and H-5) give higher re-
call than the groups defined using colleges (H-3 and H-4).
The clustering-based groups give the lowest recall, indicat-
ing that the clustering could not capture the groups that are
defined by the student and course academic features.



Table 3: RMSE for all groups. The lowest RMSE for each
set of methods within each group (column) is underlined.

Model H-1 H-2 H-3 H-4 H-5 H-6
User-CF-1 0.714 0.714 0.714 0.714 0.714 0.714
User-CF-2 0.705 0.704 0.706 0.704 0.705 0.706
User-CF-3 0.707  0.707 0.706  0.706  0.707  0.709
MF-1-1 0.666 0.666 0.666 0.666 0.666  0.679
MF-2-1 0.692 0.672 0.674 0.672 0.692 0.689
MF-3-1 0.689 0.689 0.692 0.692 0.689 0.713
MF-1-2 0.663 0.663 0.663 0.663 0.669 0.689
MF-2-2 0.680 0.671 0.672 0.671 0.696 0.702
MF-3-2 0.682 0.682 0.680 0.680 0.696 0.716
MF-1-3 0.664 0.664 0.664 0.664 0.664 0.687
MF-2-3 0.687 0.673 0.681 0.673 0.687  0.700
MF-3-3 0.694 0.694 0.689 0.689 0.694 0.713
MIN-En 0.715 0.704 0.713  0.709 0.730  0.722
MAX-En 0.711 0.680 0.688 0.686 0.705 0.716
AVG-En 0.660 0.660 0.660 0.662 0.665 0.681
MED-En 0.665 0.661 0.660 0.663 0.674  0.681
WT-MF 0.658 0.659 0.661 0.662 0.661 0.678
INTRP-MF | 0.658 0.659 0.660 0.662 0.661 0.678
RLFM 0.731 0.731 0.728 0.728 0.733  0.740
RAPMFc 1.175

7.2 Grade Prediction Results

We first discuss the performance of the different meth-
ods, then we discuss the effect of the sample sizes on the
performance of the different MF models.

7.2.1 Performance of the different methods

RMSE given by the different methods across all groups
are listed in Table 3. For the User-CF methods, User-CF-2
and User-CF-3 that utilize finer groups give lower RMSE
than User-CF-1. User-CF-2 gives the lowest RMSE when
the student sgroups are defined using the academic level.

For the MF methods, MF-1-1 gives the lowest RMSE
across the different groups. MF models that utilize finer
groups tend to give higher RMSE. We believe this has to
do with the effect of the sample sizes that are associated
with the various groups, which is analyzed in more details
in Section 7.2.2.

INTRP-MF gives lower RMSE than all the ensembles
across the different groups. That is because it only gives
higher weights to the finer models as their biases are associ-
ated with larger sample sizes, which indicates a better ability
to generalize. INTRP-MF does only marginally better than
WT-MF, which indicates that the improvement is largely
due to the sample-size-based weights. The AVG-En gives
the third lowest RMSE and in many cases it performs worse
than MF-1-1. Among all methods and groups, INTRP-MF
gives the lowest RMSE, followed by WT-MF.

RAPMFc gives higher RMSE than all MF and User-CF
methods. This is consistent with the results presented in
[16] since our test set represents inspected entries for courses
that students have taken. RLFM gives lower RMSE than the
User-CF methods but higher RMSE than the MF methods.

7.2.2 Change in MF models’ RMSE with the bias
sample sizes

To understand how the sample sizes associated with the
bias terms of the various MF models affect their perfor-
mance, and to show why INTRP-MF works, we analyze how
the RMSEs of the various models change with the number
of training samples associated with their biases. To do so,
we extract multiple subsets from the test set. Each subset

contains test cases whose corresponding student and course
biases in the finest model, MF-3-3, are associated with a
minimum number of training samples referred to as o and
B. We try values for « and S in the range [0,100] to generate
various test subsets. Then for each subset we compute the
RMSE for all the models and plot the RMSEs against the
subset coverage (number of test cases in the subset).
Figure 3 shows the RMSE against the coverage for the
various models with the H-1 groups. Each coverage point
represents a test subset with that amount of test cases. As
the coverage decreases, the sample sizes associated with the
biases of the various models increases. For each coverage
point we plot the RMSE of the various models. Subfigures
(a), (b) and (c) show how the models with various course
groups perform given a fixed student group. At the highest
coverage of 50,000 test cases, models with the coarsest course
groups and thus, coarsest student biases (MF-1-1, MF-2-1
and MF-3-1) give the lowest RMSEs. For lower coverages
between 10,000 and 500 (indicating that finer models have
more training examples), models with finer course groups
and thus, finer student biases (MF-1-2, MF-2-2 and MF-3-
2) give the lowest RMSEs. We can conclude from this that
INTRP-MF manages to yield lower RMSE as it gives higher
weights to the finer models when their biases are associated
with more samples, i.e., when they can give lower RMSE.

8. CONCLUSIONS & FUTURE WORK

In this paper we addressed the grade prediction and top-n
course ranking problems. We showed how the student and
course academic features determine the enrollment patterns
and we defined multi-granularity student and course groups
accordingly. We showed how these groups can be incorpo-
rated in user collaborative filtering, matrix factorization and
popularity ranking methods.

By evaluating the various methods on a large dataset, we
showed that incorporating the features-based groups into the
various methods leads to better grade predictions and top-n
course rankings. We also showed how the grade prediction
accuracy of matrix factorization methods slightly degrades
when their biases are associated with small sample sizes;
an issue occurring with utilizing finer groups. We showed
how this can be handled by building various models utilizing
various-granularity groups and combining their predictions
based on the sample sizes associated with their biases. Our
results also showed that the student groups defined using
the majors and academic level gave the best top-n rankings
and the most accurate grade predictions.

In the future we will consider special cases like ranking
non-required courses while considering grades in evaluation.
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