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INTRODUCTION AND
BACKGROUND

Modeling protein structures continues to garner great
interest for its applications in drug discovery, disease
study, and bio-products. However, it remains an
extremely difficult task due to the large size of protein
systems. Single protein systems involve thousands of
atoms and even short runs of molecular dynamics
require large computational resources.

A promising avenue to surmount this hurdle is to use

coarse-grained (CG) models. The central idea is very

simple: to avoid the cost of modeling all atoms, merge

atoms into groups with a single interaction center. The

merged object is referred to here as a bead. Appropriate

merging choices should preserve most aspects of the

physical system reasonably in the CG model while reduc-

ing the calculations required for simulations. Coarse-

grained models are increasingly used in general molecular

dynamics,1 whereas a wide variety of CG models specific

to proteins have been proposed to overcome the tremen-

dous number of variables in these systems (see the thor-

ough review by Tozzini2). Researchers have merged all

atoms in a residue into a single bead or limited number

of main and side chain beads since the inception of pro-

tein modeling.3,4 Side chain interactions of proteins of

particular importance leading some models such as

SICHO use a single interaction center centered on the

sidechain.5 The popular and successful ROSETTA

approach to protein structure prediction relies on a

model in which all heavy atoms of the backbone are used

but sidechain atoms are merged into a bead.6 Recent

years have seen the advent of other models such as the
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ABSTRACT

Coarse-grained models for protein structure are increasingly used in simulations and structural bioinformatics. In this study,

we evaluated the effectiveness of three granularities of protein representation based on their ability to discriminate between

correctly folded native structures and incorrectly folded decoy structures. The three levels of representation used one bead

per amino acid (coarse), two beads per amino acid (medium), and all atoms (fine). Multiple structure features were com-

pared at each representation level including two-body interactions, three-body interactions, solvent exposure, contact num-

bers, and angle bending. In most cases, the all-atom level was most successful at discriminating decoys, but the two-bead

level provided a good compromise between the number of model parameters which must be estimated and the accuracy

achieved. The most effective feature type appeared to be two-body interactions. Considering three-body interactions

increased accuracy only marginally when all atoms were used and not at all in medium and coarse representations. Though

two-body interactions were most effective for the coarse representations, the accuracy loss for using only solvent exposure

or contact number was proportionally less at these levels than in the all-atom representation. We propose an optimization

method capable of selecting bead types of different granularities to create a mixed representation of the protein. We illus-

trate its behavior on decoy discrimination and discuss implications for data-driven protein model selection.

Proteins 2013; 00:000–000.
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two-center per residue UNRES force field,7,8 the three-

center CABS approach,9 and MARTINI force field which

groups four heavy atoms together.10 Kurkcuogu et al.

showed that coarse-graining preserves the vibrational

modes of two proteins even when reducing 5, 10, or 20

heavy atoms into a single interaction center.11 They also

explored using a fine-grained view of ‘‘interesting parts’’

of a protein while coarse-graining the remainder. The

notion of a such a mixed representation is explored in

the latter part of our work here.

Despite such attention, it is still not clear how much

modeling accuracy is lost by switching to coarse repre-

sentations. Part of the difficulty is that even coarse-

grained models require heavy computation to perform

molecular dynamics. Though such simulations are begin-

ning to become tractable, it is still difficult to sample

protein state space enough to evaluate a variety of mod-

els using dynamics. An example from a recent study of

alpha-helical proteins using the coarse-grained UNRES

force field found that for the 66-residue GCN4 protein, 4

of 10 simulation runs folded to near-native conforma-

tions for a total cost of around 99 h of CPU time12

(TableT2 II). Directly optimizing force field parameters

using simulation is still largely out of reach.

An alternative vehicle for assessing protein models is

through decoy discrimination. In this setting, one or more

correctly folded proteins (natives) has associated with it

incorrectly folded structures (decoys). The goal is to

develop a scoring function that differentiates a native

structure from its decoys. Since there are no dynamics

involved, decoy discrimination is much cheaper as means

to quickly evaluate models. One can also control the

number of decoys and their characteristics directly if

greater sampling of the state space is desired. Decoy

discrimination has a long history in protein structure

prediction and analysis. Scoring functions go by a variety

of names including empirical force field, knowledge-

based potential, and statistical potential. The idea is

always to assign an extreme score to natives and the op-

posite extreme to decoys. If low scores are assigned to

natives, the score can be interpreted as a kind of energy

function due to the widely held belief that native

structures are at the protein’s global potential energy

minimum.

In this work, we evaluate three levels of protein model

granularity using decoy discrimination. At each granularity

level, we assessed a variety of feature types including n-body

interactions, solvent exposure, and dihedral angle bending.

This gives insight into which features are informative at

high versus low granularity and which may be discarded

without affecting accuracy. For robustness, we used four

different machine learning techniques to determine the

model parameters. Comparing their relative performance

illustrates aspects of linear versus nonlinear estimation and

shows whether binary classification is a suitable means to

determine model parameters. We adhered to a strict cross-

validation methodology: models are assessed on a large

dataset of 15 decoy sets and performance is measured only

on structures that were not seen during parameter estima-

tion. Two styles of cross-validation were used: balancing

decoys amongst folds and leaving whole decoy sets out.

Both make for a strong test of whether the models general-

ize and allows us to identify difficult decoy sets.

Finally, we propose a new method which can select

bead types from a mixture of model granularities while

maximizing the discrimination of native from decoys.

This is a first step towards a data-driven method for

protein model selection. We illustrate its behavior on the

full set of decoys and explore how bead types from the

different levels of granularity are combined.
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Table I
The Combined Dataset of Decoys used for all Experiments

Set Natives Decoys Total Reference Source

fisa 4 200 204 6 http://dd.compbio.washington.edu/
fisa3 5 250 255 6 http://dd.compbio.washington.edu/
4state 7 300 307 18 http://dd.compbio.washington.edu/
lattice 8 400 408 48 http://dd.compbio.washington.edu/
lmds 9 450 459 42 http://dd.compbio.washington.edu/
casp5 17 267 284 49 http://www.fiserlab.org/potentials/casp_decoys/
moulder 20 1000 1020 50,51 http://salilab.org/decoys/
casp6 24 447 471 49 http://www.fiserlab.org/potentials/casp_decoys/
tsai 30 1500 1530 52 http://depts.washington.edu/bakerpg/decoys/
casp7 34 755 789 49 http://www.fiserlab.org/potentials/casp_decoys/
rose 42 2100 2142 6 http://depts.washington.edu/bakerpg/decoys/
skol 47 2350 2397 43 http://cssb.biology.gatech.edu/amberff99
ro62 59 2950 3009 45,46 http://depts.washington.edu/bakerpg/decoys/
casp8 68 1159 1227 49 http://www.fiserlab.org/potentials/casp_decoys/
lkf 115 5318 5433 36 http://titan.princeton.edu/2010-10-11/Decoys/
Combined 415 19446 19861

Proteins were drawn from 15 decoy sets generated by previous researchers. The columns are (Set) the decoy set, (Natives) the number of distinct native proteins in the

set, (Decoys) the number of decoys in each set limited to 50 per native, (Total) the total structures in the set, (Reference) a citation describing the production of the

decoy set, and (Source) the URL from which the decoy set was downloaded. Some native proteins belong to multiple decoy sets thus the Natives and Total column do

not total to the the Combined row.
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MATERIALS AND METHODS

Dataset details

We combined decoys from 15 different sets of decoys

that have been reported in literature, several of which are

available from the Decoys R Us project.13 The dataset is

summarized in TableT1 I. The number of decoys associated

with each native in different decoy sets varies. To keep

the size of data manageable, we limited the number of

decoys per native per decoy set to 50 structures. For

example, though there are more decoys available in it, we

used only 50 decoy structures for each of the four natives

in the fisa set giving a total of 200 decoys and 204 total

structures. We sampled the 50 decoys from those avail-

able to give each native both high-RMSD decoys which

were badly misfolded and low-RMSD decoys which

resemble the native structure closely. In several decoy

sets, such as casp sets, each native had fewer than 50

decoys in which case we used all decoys.

Some native proteins appear in several decoy sets. This

is why adding each entry in the Natives column of Table

I gives more than the 415 natives in the Combined row.

The combined set was pruned to ensure that no identical

proteins were present. The 415 proteins share less than

90% sequence identity with one another. Some close rela-

tives were kept to keep the set as large as possible but

the majority of entries share little sequence similarity:

there are 376 sequence clusters using blastclust at the

30% sequence identity threshold.

Cross-validation

In cross-validation, the available data is divided into

multiple folds. We used four-fold cross-validation so that

in the experiments of Section Four-fold cross-validation

experiment (4CV), we trained models on 3/4 of the pro-

teins and tested the learned model on 1/4 of the proteins.

This process was done four times with a different quarter

of the data left out each time. Performance statistics were

collected for each fold and their mean and standard devia-

tion are given in the experimental results. For the results in

Section Four-fold cross-validation experiment, each decoy

set was evenly divided amongst the folds so that each fold

had examples from every decoy set. We also performed
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Table II
Comparison of Linear and Nonlinear SVM learners

Feature Level Method Rank Top-1 Z-Score Params

Two-body res svm 7.23 (1.11) 0.499 (0.029) 22.09 (0.11) 1073
res svmrbf 6.66 (0.82) 0.549 (0.036) 22.25 (0.07) 1073
mc1 svm 3.50 (0.62) 0.771 (0.040) 23.24 (0.07) 1189
mc1 svmrbf 3.46 (0.71) 0.771 (0.032) 23.29 (0.06) 1189
t32 svm 2.62 (0.52) 0.889 (0.033) 24.44 (0.24) 1584
t32 svmrbf 2.57 (0.44) 0.896 (0.029) 25.11 (0.34) 1584

(Two 2 and three-body res svm 7.52 (1.87) 0.410 (0.041) 21.92 (0.08) 2682
res svmrbf 7.25 (1.70) 0.456 (0.033) 22.01 (0.06) 2682
mc1 svm 4.36 (0.50) 0.694 (0.019) 22.81 (0.09) 3075
mc1 svmrbf 5.16 (0.55) 0.634 (0.030) 22.62 (0.14) 3075
t32 svm 1.97 (0.36) 0.911 (0.020) 24.25 (0.28) 7567
t32 svmrbf 2.58 (0.53) 0.870 (0.025) 24.15 (0.28) 7567

Contacts res svm 8.28 (0.89) 0.417 (0.050) 21.74 (0.09) 212
res svmrbf 7.36 (0.80) 0.492 (0.075) 21.96 (0.20) 212
mc1 svm 4.17 (0.54) 0.730 (0.017) 22.81 (0.09) 222
mc1 svmrbf 4.92 (0.58) 0.655 (0.057) 22.73 (0.13) 222
t32 svm 3.69 (0.76) 0.781 (0.083) 23.21 (0.21) 204
t32 svmrbf 4.20 (1.04) 0.749 (0.061) 23.20 (0.24) 204

Exposure res svm 7.62 (0.88) 0.409 (0.052) 21.75 (0.11) 1266
res svmrbf 7.21 (0.64) 0.496 (0.049) 22.31 (0.19) 1266
mc1 svm 5.17 (0.82) 0.660 (0.037) 22.54 (0.09) 1360
mc1 svmrbf 4.82 (0.57) 0.687 (0.024) 23.06 (0.17) 1360
t32 svm 2.92 (0.85) 0.750 (0.045) 22.98 (0.12) 1386
t32 svmrbf 2.82 (1.00) 0.769 (0.025) 24.95 (0.42) 1386

Angles 3 groups svm 7.65 (0.88) 0.407 (0.030) 21.62 (0.06) 598
3 groups svmrbf 6.12 (0.49) 0.492 (0.050) 21.86 (0.08) 598
20 groups svm 7.76 (0.97) 0.511 (0.047) 22.01 (0.10) 25,221
20 groups svmrbf 7.35 (1.00) 0.518 (0.054) 22.06 (0.11) 25,221

Results of the 4CV experiment are given divided by the type of feature used (Feature), the level of representation (Level), and the discrimination method used to learn

models (Method). The performance metrics Rank, Top-1, and Z-Score are described in Section Performance metrics. The mean across four cross-validation folds is given

along with the standard deviation in parenthesis. The final column (Params) is the number of parameters in the row model.

Coarse-grained Models for Protein Decoys
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cross-validation where whole decoy sets were left out for a

total of 15 folds (DCV). At each step, one whole decoy set

such as fisa or ro62, was left out and all remaining data was

used to estimate model parameters.

As noted in Section Four-fold cross-validation experi-

ment, some natives are present in multiple decoy sets.

During experiments, this handled in the following way.

In the cross-validation experiments of Section Four-fold

cross-validation experiment, whenever a particular native

was selected for training, all decoys from all sets associ-

ated with that native were also used for training. For

whole decoy cross-validation experiments in Section

Four-fold cross-validation experiment, we divided the

data on decoy sets. To test performance on a decoy set,

the natives and decoys in it were removed from the train-

ing set. In addition, any decoys from different sets which

were associated with a left out native were omitted from

both training and testing. This prevents models from

learning from any direct information on the test pro-

teins.

Fine-, medium-, and coarse-grained
representations

The first key design choice of an empirical forcefield is

the type of body which will be represented. This choice

has the largest impact on how accuracy will be traded for

efficiency. We use the generic term bead when referring

to an object in a protein representations. In the fine-

grained model, beads are physical atoms while at coarser

levels of representation several atoms are merged into a

single bead. We use three granularities of models.

Fine-grained: t32

We adopted the model of Qiu and Elber which assigns

all atoms to 32 types14 and is referred to as the t32 rep-

resentation. This set was chosen as the original study

showed expanding to 46 types of atoms did not improve

the discriminative power of the model and the t32 set

prove quite robust on an evaluation of atomic and

coarse-grained potentials to detect decoys using support

vector machines by Zhang and Zhou.15 An alternative

would be the RAPDF/DFIRE set of 167 atom types which

have been widely used.16,17 These proved less effective

in Zhang and Zhou’s evaluation potentially due to the

large number of parameters which must be estimated.

Medium-grained: mc1

The physical atoms of each residue were assigned to ei-

ther the main-chain or side-chain giving each residue

except glycine two beads. The barycenter (mean XYZ

coordinate) of physical atoms in main-chain or side-

chain groups determined the coordinates of each mc1

bead. This is an intermediate representation, more coarse

than the atomic level but still allowing independent inter-

action centers for each residue. Each side-chain was

assigned a type based on the amino acid. Glycine, ala-

nine, and proline were treated specially: each was

assigned a single interaction point specific to the residue.

All other amino acids were assigned a specific side-chain

atom and a generic main-chain atom. There are a total

of 21 bead types in mc1. The mc1 model is similar to

several prior models which use two beads per resi-

due.7,18,19

Coarse-grained: res

All physical atoms in a residue were merged into a sin-

gle bead at their barycenter. The res representation has

20 types of beads corresponding to each of the amino

acids.

Types of features

After choosing a level of representation, a variety of

structural features may be calculated for a protein. We

explored a range of generic features that represent com-

mon energy terms in empirical forcefields.

Two- and three-body interaction features

Interactions between two bodies are the most prevalent

features in empirical force fields, particularly for decoy

detection. Most empirical force fields take a discretized

approach to two-body interactions: distances between

each bead pair are assigned to a distance bin and a sepa-

rate parameter is associated to each bin and pair-type.

For the fine-grained t32 representation, we adopted

the same three distance bins as the original study by Qiu

and Elber:14 2.0–3.5, 3.5–5.0, and 5.0–6.5 Å. Atom pairs

not in one of these distance ranges were ignored. There

were 3 3 (32 3 (32 1 1))/2 5 1584 features of this

type. This forcefield appeared as t32S3 in the original

and subsequent studies.14,15 For the medium-grained

mc1 and coarse-grained res types, we included two addi-

tional bins for a total of five bins: 2.0–3.5, 3.5–5.0, 5.0–

6.5, 6.5–8.0, and 8.0–10.0Å. No attempt was made to

optimize distance bins for predictive performance. The

arbitrary nature of how bin cut-offs must be chosen is

unsatisfactory and deserves further investigation into a

more disciplined approach. These are refereed to as the

two-body features.

Examples of a potential energy functions which calcu-

late interactions higher than two were first explored in

by Munson and Singh.20 They analyzed two-, three-, and

four-body potentials and found that four-body potentials

explain patterns of four-body contacts in a statistically

superior fashion to lower order interactions. However,

two-body potentials recognized native sequence-structure

pairs equally as well as three- and four-body potentials in

threading, the only difference being better Z-scores in the

higher body case. There has been some recent work ana-
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lyzing four-body potentials mainly for their use in

threading.21–23 The number of parameters that must be

estimated increases exponentially with n for n-body

interactions. Estimating a large number of parameters

given the limited number of native protein structures

available can compromise the generality of such models.

To assess whether this happens, we computed three-body

interactions for the three representation levels. To avoid

an explosion of parameters, three-body features used

only a single distance bin: 2.0–6.5 Å; for t32 (fine-

grained) and 2.0–10.0 Å; for mc1 and res (medium- and

fine-grained). In our experiments, three-body features

were always included in addition to the two-body fea-

tures, the two-body having the distance bins described

above. These are referred to as two- and three-body fea-

tures.

Proteins represented by two-body and two- and three-

body features are simply vectors of counts. However, lon-

ger proteins tend to have much larger total counts than

their shorter counter-parts as they number of two-body

interactions increases quadratically with the length of the

protein. Data with drastically different scales tend to de-

grade the performance of machine learners we used. We

adopted a simple normalization: count vectors were nor-

malized by the number of atoms (t32) or pseudoatoms

(mc1,res) in the protein. A similar normalization proce-

dure was used in previous decoy studies.15

Contact (single-body) features

Rather than distinguish interactions by the types of

both bodies, a forcefield may instead limit consideration

how densely individual bodies are packed. Typically, this

is done by counting the number of beads in a volume

centered on a bead of one type. The count is attributed

to the central bead type. This amounts to a sort of sin-

gle-body energy as the types of the other beads are

ignored. The density can correlate with a bead’s place-

ment at the surface of the protein (less crowded) or the

interior (more crowded). Single-body potentials are

referred to as ‘‘contact numbers’’ in some bioinformatics

literature24,25 and we follow that convention referring to

the feature as contacts. We calculate contacts using the

same bins as are used for two-body interactions above

except that interactions count towards the total for both

bodies (e.g., an alanine–arginine interaction counts

towards both the contacts of alanine and arginine).

Solvent exposure features

Solvent accessibility was calculated for each bead by a

sampling algorithm: 100 evenly spaced points were placed

on the surface of each bead and were counted as buried

if they were inside the radius of another bead and

exposed if not. The fraction of exposed points was multi-

plied by the surface area of the bead to get the area.

The exposed areas were converted into discretized fea-

tures using binning. Initially, we experimented with fixed

bin widths but determining appropriate cutoffs for each

type of bead proved difficult. Beads which agglomerated

several physical atoms do not have established radii.

Their radii must be estimated from the data. Some decoy

structure contain unrealistic bond lengths which can

make the maximum surface area for a bead-type abnor-

mally large. In turn, this large maximum distorts binning

based on the proportion of a beads surface area to the

maximum observed. A more robust strategy is required.

We discretized by calculating the empirical distribution

of the surface areas of a bead-type across the entire data

set and used quantiles to determine bins. Beads are,

therefore, evenly divided into the bins: if four bins are

desired, each contains 25% of the beads. After examining

the distribution for a number of bead types, it was not

clear which number of bins was appropriate to use.

Some bead types had complex distributions which would

cause information loss if too few bins are used, whereas

other distributions were flat requiring only a few bins to

represent. To avoid information loss, we included multi-

ple overlapping bins and allowed the feature selection to

determine which were important for identifying decoys.

We included 5, 10, and 20 bins for each bead type. This

mixed-quantile strategy gave better performance than a

fixed number of bins according to initial tests with

glmnet and we report it as the exposure feature subse-

quently.

Angle features

Angles were generated by first examining all phi–psi

angle pairs for each residue in the dataset (aside from N-

and C-terminal residues). These were then clustered in

two different ways. In the first, each residue was assigned

to one of eight clusters of phi–psi angle pairs which were

determined according to K-means clustering as imple-

mented by the kmeans function of the R package stats.26

Counts of cluster membership were used as features for

each protein giving 8 3 20 5 160 features. In addition,

we counted transitions between two angle states as giving

1602 5 25600 features. Since not every transition

occurred in the data, there fewer angle features than the

combined total of individual and transition clusters: on

25,221, total features were observed rather than 25,760.

These are referred to as the angle features with 20 groups

of amino acids.

We noted that most amino acids adopt similar phi–psi

angle distributions and can be grouped together. On

looking at the distribution of clusters, only proline and

glycine had significantly different cluster arrangements.

To reduce the number of angle features, eight clusters of

phi–psi angles were computed for proline, eight for gly-

cine, and eight for the combination of all other residue

types. Transitions between these 24 clusters were also
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counted as for the 20 groups. A total of 204 single and

transition features were used for the angle features with

three groups of amino acids.

Our treatment of angular features was inspired by the

clustering of angle states and transitions used by Zhang

et al.27 and Bahar et al.28 Both used reduced alphabets

of amino acids in determining angle states but favored

the use of reduced model angles rather than phi–psi

angles which require all atoms of the backbone to be

present.

Discrimination methods

Once the level of representation has been set and the

structural features selected, a method must be selected to

determine parameters (feature weights) for the final

model. For decoy discrimination, the goal is to establish

a set of model parameters that differentiate native pro-

teins from decoys. We assessed four methods for discrim-

ination and parameter estimation.

Support vector machines (SVM)

A linear SVM learns a vector of parameters w to repre-

senting a separating hyperplane between the positive

(native protein) and negative (decoy) classes. A nonlinear

SVM also separates the positive and native classes but

uses a kernel, in our case the radial basis function (RBF)

kernel (svmrbf). The kernel allows nonlinear boundaries

to be learned at the cost of not being able to determine

the parameter vector w for the structural features. We

used a customized R26 interface to LIBSVM29 to train

SVM models. We used a grid of values for the SVM cost

parameter C and RBF kernel parameter gamma during

cross-validation and report the best performing models.

The SVMRANK package was used to generate linear

ranking SVM models (svmrank).30,31 We did not

explore nonlinear ranking as the linear and nonlinear

results on the standard SVM were similar and the com-

putational requirements for nonlinear ranking problems

is prohibitive. We tuned the SVM cost parameter for

svmrank over a grid of values and report the best result.

Penalized regression models

A penalized logistic regression model is learned by

optimizing the following.

max
w

XN

i¼1

�
yiw

T xi � logð1þ ewT xiÞ
�
� k
�
ð1� aÞjjwjj2

þ ajjwjj1
�
ð1Þ

The left term represents the loss of the model and is the

conditional log-likelihood of observing the entire data set

of size N with features xi and classes yi. The right term is

regularizer. As in the SVM models, the end result of a

logistic regression model is a vector w of feature weights.

As the penalty parameter k is increased, elements of w

shrink to 0 which allows feature selection to be done.

The a parameter controls the relative L1 and L2 penalty

on the model. We set a 5 0.9 which introduces a small

amount of L2-regularization on feature selection along

with L1-regularization. This was found to improve over-

all performance. The glmnet R package was used to train

L1-penalized logistic regression models.32 This package

efficiently solves for all levels of the penalty parameter k.

We used 10-fold internal cross-validation with evaluation

based on the area under the ROC curve to determine the

optimal k value for each model.

Decoy separation with bead selection (BSM)

The glmnet method performs feature selection but it

has the following limitation. For two-body features, indi-

vidual pair-wise parameters such as R.res-A.res (a res

level interaction) may be driven to zero. However, in

another parameter associated with R.res, such as R.res-

C.res is nonzero, C.res still plays a part in the model.

Rarely does glmnet drive all parameters associated with a

bead type to zero simultaneously. As long as some pair-

wise interactions are nonzero for a bead type, it cannot

be dropped.

We surmounted this limitation by designing a method

which discriminates natives from decoys while doing

bead selection. As it is a bead selection method, we refer

to as BSM. BSM is designed to simultaneously drive all

parameters associated to a bead type to zero together

thereby allowing the bead to be eliminated.

As an optimization problem, BSM takes the following

form. The vector of parameters or feature weights w and

must be chosen so that the decoys have higher energy

than natives. Formally, this is

wT xdecoyi
� wT xnative > 0 ð2Þ

where x are the feature vectors for a decoy and its associ-

ated native structure. We constructed an n 3 f decoy ma-

trix D which is the difference of feature vectors between

each decoy and its corresponding native protein. The

rows of D are the term on the left-hand side of Eq. (2);

columns correspond specific feature differences. The ma-

trix vector product Dw gives a vector of the energy dif-

ferences between decoys and natives. In this formulation,

we only compare natives to their associated decoys as in

svmrank. Also as in support vector machine approaches,

we used the hinge loss to encourage a large energy gap

between decoys and associated natives. The hinge loss is

h(z) 5 max(0, 1 2 z) and when z is a vector, it produces

a positive vector. It reaches a minimum of zero when

input z is 1 or greater. The loss function is denoted

h(Dx): any decoy not exceeding the native in energy by 1

unit has nonzero loss. To balance the loss function, we

applied regularization to the parameters w. This took a
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special form where the penalty applied to groups of vari-

ables associated with a single bead type. In the case of

two-body interactions, each feature was associated with

two bead types such as the interaction of wCAH 2 R.sc,

where bead types CAH and R.sc are from the t32 and

mc1 representations, respectively. For a particular bead

type A, we compute the maximum absolute value, maxX

|wA 2 X|, where X can be any bead type. This coefficient

is penalized during parameter estimation. As in glmnet,

the absolute value or L1-penalty induces sparsity in pa-

rameters driving some of w to zero. The max or L-1
norm has also been used in literature for regularization,

and their combination has come under some scrutiny

recently.33

The final form of our optimization problem is then

min
w

hðDwÞ þ k
X

A

max
X
jwA�X j ð3Þ

where the fixed parameter k governs the trade-off

between loss and regularization. The problem is convex

so that it has a global minimum but nonsmooth due the

hinge, L1, and L-1 loss. We explored several methods

solve the optimization problem for BSM. Equation (3)

can easily be cast as a linear program, but standard LP

solvers have memory requirements that scale quadrati-

cally with the problem size. In our situation, we are

using a mixture of all two-body features from the res,

mc1, and t32 representations so that D is large and

dense, around 20K by 10K with 45% nonzero entries.

This proved to much for standard solvers. Coordinate

descent is another reasonable choice as it is used to great

effect in approaches such as glmnet.32 However, careful

analysis of Eq. (3) reveals that the regularization term is

nonseparable. In such cases, coordinate descent is not

guaranteed to converge.34 Instead we used the subgra-

dient descent method which is very general but suffers

from limited accuracy and speed.35 In our case, tractabil-

ity and solvabilty out-weight speed concerns.

In Eq. (3), we started k at a very large value which

drives the entire parameter vector w to zero and gradu-

ally reduced the magnitude of k. This is identical to the

regularization path approach of glmnet in that bead types

will enter the model by becoming nonzero at different

points along the path. We used 2500 subgradient steps at

each value of k. Step sizes were reduced in the subgra-

dient method using 1/
ffiffiffi
k
p

, where k was the subgradient

iteration.

Performance metrics

Decoy discrimination is an interesting problem from

the machine learning standpoint as it is always unbal-

anced: for every positive instance which is the native pro-

tein structure there are potentially many negative instan-

ces which are misfolded. Performance is measured only

on the ability to identify from amongst a pool of struc-

ture for a single protein the single native structure (or

closest to native). For that reason, typical classification

metrics such as ROC are unsuitable. We used several

metrics commonly used in other decoy discrimination

literature.

Mean native rank (rank)

The native and associated decoy proteins are ranked by

their prediction score and the rank of the native is taken.

In cross-validation, we report the mean of these ranks. A

lower rank is better with mean native rank of 1 being the

perfect prediction.

Top-1 fraction

In a given set of natives and decoys, we report the

fraction of natives that are ranked higher than all their

associated decoys (those that have native rank of 1). A

higher Top-1 Fraction is better with 1.0 being the perfect.

Z-score

The native protein structure is believed to have a lower

free energy than misfolded decoys. Interpreting the pre-

diction scores produced by an SVM or glmnet method as

an energy, the Z-score is defined

Z ¼
ldecoy � Enative

rdecoy

ð4Þ

where ldecoy and rdecoy are the mean and standard devia-

tion of the decoy prediction scores and Enative is the pre-

diction score for the native protein. A larger more nega-

tive Z-score corresponds to better separation of decoys

from natives.

RESULTS

Four-fold cross-validation experiment (4CV)

Proteins were represented at the coarse res level, me-

dium mc1 level, and fine-grained t32 level to determine

trade-offs associated with each representation. At each of

these levels, features were calculated for each protein

including two-body interactions, two- and three-body

interactions (called two- and three-body, contact counts

(or one-body interactions), and solvent exposure. Proteins

were also represented using only their backbone angle

data grouping residues into 3 or 20 groups for angle bin-

ning. Each representation/feature combination has a

number of model parameters associated with it which

may be set to discriminate native from decoy proteins.

Section Fine-, medium-, and coarse-grained representa-

tion describes the representation level and Section Types

of features describes structure features.
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We considered four methods to fit model parameters:

linear support vector machine training (svm), nonlinear

support vector machine training (svmrbf), ranking support

vector training (svmrank), and penalized logistic regression

(glmnet). These are primarily classification methods which

learn parameters to discriminate between two classes, in

our case native and decoy structures. Section Discrimina-

tion methods gives details of these methods.

In our first experiment, 415 proteins with associated

decoys (total 19,861 structures) were divided into four

folds, each fold having a balanced number of proteins

from each decoy set. We refer to this experiment as four-

fold cross-validation (4CV). At each step, three folds were

used for training and the remaining fold was used for

evaluation. Performance is averaged over the four folds.

The results are used to compare aspects of the parameter

learning models and also evaluate the viability of each

type of feature in each representation. The comparison is

done based on the mean rank of the native structure

(Rank), the fraction of all natives ranked in the top posi-

tion (Top-1), and the Z-score which gives a normalized

score (or energy) separation between natives and decoys.

These performance measures are detailed in Section Per-

formance metrics.

Linear versus nonlinear classification

We first focused on linear and nonlinear SVMs (svm and

svmrbf). Table II compares svm and svmrbf in the four-fold

cross-validation experiment. The two classifiers have very

similar performance. Of particular note are the two-body

results in the top section of Table II as they are most

directly comparable to the results from Dong and Zhou.15

With two-body interaction features, we see a small benefit

at the residue-level representation for using a nonlinear

kernel, but at finer-grained representations there is little to

no benefit over the linear version of SVM. This trend is

also present in the two-and three- body interactions and

the contact/one-body interactions: some benefit is given at

the coarsest representation level by using svmrbf but no

such benefit is present at the finer mc1 and t32 levels. Sol-

vent exposure features follow this trend but to a weaker

extent with svmrbf only slightly out-performing svm at

each level of granularity. Finally, angle data definitely bene-

fits from the nonlinear SVM though it is comparatively a

weak feature for identifying decoys.

The near equivalence of linear and nonlinear SVMs

(svm and svmrbf) conflicts with earlier work which indi-

cates linear SVMs or inferior to their nonlinear counter-

parts15 Our best explanation for this difference is that

experiments in the previous work were restricted to sin-

gle decoy sets for training and testing. For example, the

two cross-validation experiments were done within the

LKF and CASP7 datasets separately. Since decoy sets vary

greatly in how the structures are generated, it is possible

that characteristics of those datasets lent themselves to

nonlinear separation. However, the model learned does

not transfer to a decoy set with different characteristics.

The experiment in which potentials were transferred to

new decoy sets in Ref. 15 (Table T4IV) indicated that the

linear and nonlinear potentials behave similarly on truly

new data. The issue of how well any potential can be

applied to a truly new set of decoys is taken up in Sec-

tion whole decay set cross-validation experiment (DCV).

Despite their slightly superior performance on a few of

the protein representations, there is a major disadvantage

of nonlinear SVM models. Both linear and nonlinear

SVMs tend to learn classification models based on sup-

port vectors which are simply specific training examples

of some importance. In the linear case, through simple

algebraic operations, the parameters for each feature can

be recovered so we may know how each interaction

affects the likelihood of being a decoy. This is not so for

nonlinear SVMs: they learn a model that is implicitly

embedded in a higher dimensional space (infinite dimen-

sional in the case of the svmrbf) which makes it very

difficult to relate features in the original space to the

likelihood of a protein being native or decoy. Due to this

difficulty in interpretation and the fact that only

marginal performance gains come from using a nonlinear

kernel, we omit svmrbf from further discussion.

Regularized logistic regression vs. SVM classification

With the number of features in representations ranging

from 204 to 25,221, there is potential to over-fit parame-

ters to training data which decreases the generalization of

a model. A regularized method such as glmnet is

designed to avoid this by charging a cost for the inclu-

sion of any feature while learning model. Such method

tend to generate sparse models with zero parameters

associated to many features. SVMs do not encourage

sparse models explicitly.

Table T3III and Figure I show a comparison of the per-

formance of the linear SVM against the regularized logis-

tic regression classifier glmnet. The svmrank classifier in

this table is discussed later. Included in Table III are the

number of parameters in the model (Params) which is

also the number of structure features, how many parame-

ters were nonzero, (Selected), and the fraction of nonzero

parameters (Frac.). Also present are measures of model

stability amongst the four cross-validation folds: the cor-

relation of parameters learned and the overlap of nonzero

parameters.

In all representations, the effectiveness of regularization

is apparent. The glmnet method performed equal to or

better than svm while simultaneously selecting a relatively

small number of important features. While svm tended

to provide a slightly better Z-score than glmnet, glmnet

dominated svm in providing a better mean native rank

and top-1 fraction for natives.
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The Params, Nonzero, and Frac. columns of Table III give

information on the size of the models learned in each case.

The Nonzero column gives the average number of nonzero

parameters in the model and Frac. relates this to the total

possible number of nonzeros which is Params. The tendency

of SVMs to produce dense models is apparent as in nearly all

representations a large fraction of parameters are nonzero.

Conversely, glmnet produced relatively sparse models

everywhere except when the number of features was small

(contacts and angles with three groups).
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Table III
Comparison of Methods, Representations, and Features on four-fold cross validation (4CV)

Feature Level Method Rank Top-1 Z-score Params Nonzero Frac. Correlation Overlap

Two-body res 1 glmnet 6.45 (1.18) 0.532 (0.040) 22.19 (0.10) 1073 485 (95) 0.452 0.790 (0.022) 0.820 (0.046)
2 svm 7.23 (1.11) 0.499 (0.029) 22.09 (0.11) 1073 1054 (12) 0.982 0.720 (0.010) 0.994 (0.004)
3 svmrank 6.65 (0.99) 0.549 (0.039) 22.24 (0.04) 1073 1064 (12) 0.992 0.777 (0.016) 1.000 (0.000)

mc1 4 glmnet 2.96 (0.53) 0.771 (0.027) 23.15 (0.08) 1189 650 (26) 0.547 0.811 (0.006) 0.822 (0.014)
5 svm 3.50 (0.62) 0.771 (0.040) 23.24 (0.07) 1189 1154 (14) 0.971 0.804 (0.009) 0.989 (0.002)
6 svmrank 3.08 (0.24) 0.785 (0.035) 23.26 (0.23) 1189 1176 (16) 0.989 0.786 (0.018) 0.997 (0.002)

t32 7 glmnet 1.69 (0.50) 0.920 (0.017) 24.34 (0.16) 1584 845 (113) 0.533 0.805 (0.021) 0.842 (0.029)
8 svm 2.62 (0.52) 0.889 (0.033) 24.44 (0.24) 1584 1577 (2) 0.996 0.937 (0.009) 0.999 (0.001)
9 svmrank 1.93 (0.53) 0.920 (0.015) 24.44 (0.13) 1584 1578 (2) 0.996 0.830 (0.036) 0.999 (0.001)

Two - and
three-body

res 10 glmnet 6.92 (1.48) 0.470 (0.035) 22.12 (0.16) 2682 774 (387) 0.289 0.680 (0.075) 0.738 (0.091)
11 svm 7.52 (1.87) 0.410 (0.041) 21.92 (0.24) 2682 2652 (48) 0.989 0.688 (0.011) 0.999 (0.000)
12 svmrank 6.97 (0.86) 0.482 (0.021) 22.11 (0.13) 2682 2657 (46) 0.991 0.742 (0.014) 0.999 (0.000)

mc1 13 glmnet 3.59 (0.17) 0.713 (0.032) 22.80 (0.11) 3075 1530 (328) 0.498 0.706 (0.024) 0.817 (0.036)
14 svm 4.36 (0.50) 0.694 (0.019) 22.81 (0.09) 3075 3031 (75) 0.986 0.747 (0.007) 0.999 (0.001)
15 svmrank 4.02 (0.30) 0.682 (0.009) 22.76 (0.18) 3075 3037 (74) 0.988 0.738 (0.019) 1.000 (0.000)

t32 16 glmnet 1.56 (0.45) 0.911 (0.021) 24.08 (0.19) 7567 2220 (125) 0.293 0.761 (0.025) 0.733 (0.022)
17 svm 1.97 (0.36) 0.911 (0.020) 24.25 (0.28) 7567 7538 (5) 0.996 0.827 (0.010) 0.998 (0.000)
18 svmrank 2.17 (0.72) 0.908 (0.025) 24.24 (0.24) 7567 7562 (4) 0.999 0.822 (0.033) 1.000 (0.000)

Contacts res 19 glmnet 7.13 (1.63) 0.472 (0.077) 21.97 (0.23) 212 189 (17) 0.891 0.490 (0.328) 0.976 (0.028)
20 svm 8.28 (0.89) 0.417 (0.050) 21.74 (0.09) 212 212 (0) 1.000 0.581 (0.075) 1.000 (0.000)
21 svmrank 6.64 (0.87) 0.499 (0.054) 22.06 (0.19) 212 212 (0) 1.000 0.806 (0.032) 1.000 (0.000)

mc1 22 glmnet 3.82 (0.37) 0.730 (0.049) 22.83 (0.12) 222 192 (18) 0.865 0.737 (0.119) 0.973 (0.025)
23 svm 4.17 (0.54) 0.730 (0.017) 22.81 (0.09) 222 222 (0) 1.000 0.850 (0.018) 1.000 (0.000)
24 svmrank 3.33 (0.61) 0.742 (0.054) 22.80 (0.28) 222 222 (0) 1.000 0.752 (0.034) 1.000 (0.000)

t32 25 glmnet 3.35 (0.56) 0.771 (0.068) 23.15 (0.12) 204 160 (34) 0.784 0.456 (0.272) 0.970 (0.018)
26 svm 3.70 (0.76) 0.781 (0.083) 23.21 (0.21) 204 204 (0) 1.000 0.829 (0.012) 1.000 (0.000)
27 svmrank 2.95 (0.45) 0.769 (0.040) 23.14 (0.19) 204 204 (0) 1.000 0.796 (0.045) 1.000 (0.000)

Exposure res 28 glmnet 6.66 (1.03) 0.491 (0.063) 22.03 (0.16) 1266 148 (16) 0.117 0.742 (0.029) 0.691 (0.040)
29 svm 7.62 (0.88) 0.409 (0.052) 21.75 (0.11) 1266 1266 (0) 1.000 0.606 (0.025) 1.000 (0.000)
30 svmrank 6.71 (0.58) 0.499 (0.053) 22.18 (0.17) 1266 1259 (1) 0.995 0.877 (0.009) 1.000 (0.001)

mc1 31 glmnet 4.55 (1.11) 0.696 (0.043) 22.74 (0.13) 1360 156 (18) 0.115 0.788 (0.024) 0.716 (0.038)
32 svm 5.18 (0.82) 0.660 (0.037) 22.54 (0.09) 1360 1360 (0) 1.000 0.754 (0.015) 1.000 (0.000)
33 svmrank 4.12 (0.67) 0.641 (0.067) 22.63 (0.18) 1360 1352 (1) 0.994 0.809 (0.016) 1.000 (0.001)

t32 34 glmnet 2.56 (0.91) 0.778 (0.027) 23.10 (0.12) 1386 183 (20) 0.132 0.740 (0.049) 0.712 (0.037)
35 svm 2.92 (0.85) 0.750 (0.045) 22.98 (0.12) 1386 1386 (0) 1.000 0.707 (0.020) 1.000 (0.000)
36 svmrank 2.32 (0.70) 0.807 (0.028) 23.26 (0.08) 1386 1370 (2) 0.989 0.755 (0.051) 1.000 (0.001)

Angles 3 40 glmnet 7.33 (0.49) 0.487 (0.033) 21.86 (0.10) 598 461 (6) 0.771 0.795 (0.026) 0.923 (0.007)
groups 41 svm 7.65 (0.88) 0.407 (0.030) 21.62 (0.06) 598 503 (3) 0.841 0.677 (0.020) 0.978 (0.006)

42 svmrank 7.35 (0.41) 0.525 (0.027) 22.08 (0.10) 598 542 (5) 0.906 0.766 (0.014) 0.988 (0.006)

20 37 glmnet 8.13 (0.82) 0.523 (0.029) 21.97 (0.08) 25,221 6916 (2833) 0.274 0.647 (0.027) 0.835 (0.049)
groups 38 svm 7.76 (0.97) 0.511 (0.047) 22.01 (0.10) 25,221 15530 (136) 0.616 0.671 (0.012) 0.873 (0.004)

39 svmrank 7.85 (0.99) 0.561 (0.017) 22.04 (0.12) 25,221 20511 (188) 0.813 0.731 (0.019) 0.936 (0.005)

The first series of columns are identical to Table II. The rightmost columns give statistics on the models learned. They are (Nonzero) the mean number of nonzero pa-

rameters in the row model, (Frac.) the fraction of nonzero parameters, (Correlation) the mean Pearson correlation coefficient between the parameter vectors of the four

models, and (Overlap) the mean fraction of parameters which are nonzero in pairs of models. Standard deviations are given in parentheses.
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The two rightmost columns of Table III give informa-

tion on the stability of the learned models by giving the

mean correlation of parameters and the fraction of over-

lap of selected features amongst the four models learned

during cross-validation. Both glmnet and SVM tend to

produce fairly stable models and despite glmnet selecting

a small fraction of features, there is a high degree of

overlap of those selected different data is left out. This

will be discussed further in the results of the cross-train-

ing experiment.

Binary classification and grouped separation

The learning paradigm exercised by binary classifiers

like SVMs and logistic regression is to distinguish all

native proteins from all decoys. This is done by assigning

model parameters that give a lower score to all native

proteins than any decoy protein. Technically, this formu-

lation is more restrictive than needed as in reality, we

should only require a native structure to be lower in

energy than its associated decoys, not the decoys of a dif-

ferent protein. For example, it may be difficult for a bi-

nary classifier to assign model parameters such that a

very large native structure has a lower energy than a

much smaller decoy that is close to its native structure.

We have used normalization on the sizes of proteins

which may mitigate this to some extent. However, it is

still interesting to examine what happens when we relax

the requirement that all natives are lower in energy than

all decoys. We will refer to these two formulations as the

binary classification formulation and the grouped separa-

tion formulation. The grouped separation approach has a

longer history with many recent examples 14,36–38

whereas the advent of machine learning in structural

biology has led to the classification approach receiving

some attention.15,27,39 Grouped separation is typically

solved using algorithms for linear programming, whereas

the binary classification problem is usually addressed

with one of a plethora of machine learning tools.

To investigate the merits of the grouped separation

model, we used a ranking SVM (svmrank) in the same

four-fold cross-validation framework as the svm and

glmnet (both binary classifiers). The ranking SVM learns

a model in which data are grouped and parameters are

sought to create a desired ranking within each group. In

our case, the groups were the 415 proteins and the mem-

bers of each group were a native along with all decoys

associated with that native. In each group, the native was

to be ranked lower in energy than the decoys, but there

was no penalty for ranking a native higher in energy

than a decoy in a different group. This was a relaxation

over the svm and glmnet methods which did penalize

ranking a native above a decoy in a different group.

The performance of the ranking SVM is reported in

Table III as svmrank along with the svm and glmnet. In

most cases, svmrank improves slightly over the perform-

ance of svm and approaches the accuracy of glmnet. On

the contact, exposure, and angle features svmrank pro-

duces a better mean native rank and top-1 fraction than

svm and glmnet. The comparison illustrates an important

point: standard binary classification restricts parameter

estimation unnecessarily for decoy discrimination. This is

important in situations where the protein is represented

using a limited number of structure features used as in

the case of contacts (204–222 features) where the addi-

tional flexibility of svmrank led to improvement in the

mean native rank statistic.

The svm method was out-performed by both glmnet, a

binary classification with regularization, and by svmrank, a

group separation method with no regularization. Estimat-

ing parameters using both regularization to induce sparsity

and the grouped separation formulation for flexibility

could result in robust estimates. To our knowledge, there

are no machine learning methods that specifically address

this formulation. We incorporated grouped discrimination
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Table IV
Overall Best Method for Each Representation and Feature

Feature Level Method Rank Top-1 Z-score Params Selected

1 Two - and three-body t32 glmnet 1.56 (0.45) 0.911 (0.021) 24.08 (0.19) 7567 2220 (125)
2 Two-body t32 glmnet 1.69 (0.50) 0.920 (0.017) 24.34 (0.16) 1584 845 (113)
3 Exposure t32 svmrank 2.32 (0.70) 0.807 (0.28) 23.26 (0.08) 1386 1370 (2)
4 Contacts t32 svmrank 2.95 (0.45) 0.769 (0.040) 23.14 (0.19) 204 204 (0)
5 Two-body mc1 glmnet 2.96 (0.53) 0.771 (0.027) 23.15 (0.08) 1189 650 (26)
6 Contacts mc1 svmrank 3.33 (0.61) 0.742 (0.054) 22.80 (0.28) 222 222 (0)
7 Two - and three-body mc1 glmnet 3.59 (0.17) 0.713 (0.032) 22.80 (0.11) 3075 1530 (328)
8 Exposure mc1 svmrank 4.12 (0.67) 0.641 (0.067) 22.63 (0.18) 1360 1352 (1)
9 Three groups angles svmrbf 6.12 (0.50) 0.492 (0.050) 21.86 (0.08) 598 —
10 Two-body res glmnet 6.45 (1.18) 0.532 (0.040) 22.19 (0.10) 1073 485 (95)
11 Contacts res svmrank 6.64 (0.87) 0.499 (0.054) 22.06 (0.19) 212 212 (0)
12 Exposure res glmnet 6.66 (1.03) 0.491 (0.063) 22.03 (0.16) 1266 148 (16)
13 Two - and three-body res glmnet 6.92 (1.48) 0.470 (0.035) 22.12 (0.11) 2682 774 (387)
14 Twenty groups angles svmrbf 7.35 (1.00) 0.518 (0.054) 22.06 (0.11) 25,221 —

Columns are identical to those given in Table III. The rows are ordered by the Rank performance statistic from best to worst.
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and regularization into our optimization method for

mixed representation selection which is discussed in Sec-

tion Mixed model model selection experiment.

Comparison of representation levels

A primary concern of this study is to examine how the

granularity of a protein representations affects the accu-

racy it can achieve on some task, in our case decoy iden-

tification. Table IV shows the best mean native rank

achieved by any method in four-fold cross-validation.

The table is sorted by the mean native rank (the top-1

fraction and z-score follow nearly the same ordering).

As expected, accuracy strongly correlates with the

granularity. The fine-grained t32 atomic features occupy

the highest accuracy slots, whereas the coarse-grained res

and angle features are at the bottom of the table. There

appears to be great promise in using the mc1 representa-

tion or coarse-grained models akin to it. The t32 repre-

sentation uses all atoms and at best identifies 92% of

natives using two-body interactions (line 2 of Table IV).

Alternatively, mc1 uses a maximum of two beads per res-

idue and gets 77% of natives correct using two-body

interactions (line 5). Between levels, this is a 1584�1189
1584

5

25% reduction in parameters for a 0:920�0:771
0:920

5 16%

decrease in performance. Using a single interaction point

per residue in res representation gives a larger drop,

down to a best top-1 fraction of 53% using two-body

interactions. This is a smaller step in parameter reduction

(1189�1073
1189

5 10%) for a larger drop in accuracy (0:771�0:532
0:771

5 31%). The best mean native rank approximately dou-

bles between representations: 1.56 at t32, 2.96 at mc1,

and 6.45 at res. These together indicate that the models

coarser than two beads per residue will be greatly handi-

capped in approximating the protein structure.

There appears to be little to no benefit from using

two- and three-body interactions over two-body interac-

tions. Only at the t32 level is a slight benefit observed,

while at coarser granularity no such benefit occurs. This

casts a dim picture on the utility of considering higher

body interactions despite their use in recent studies.21–

23 However, there are many ways to construct higher

body features and our method, grouping all three-body

interactions into a single distance bin, may not be opti-

mal for the task of decoy discrimination. Our choice was

based on a desire to prevent the feature space from

becoming intractably large while retaining informative

interactions but we may have lost some key three-body

information with our binning procedure. It is essential

that three-body interactions show significant generaliza-

tion in a test set. Table T5V shows the nonzero parameters

in the (two-and three-)-body model selected by glmnet.

At all three levels, three-body features are selected with

nonzero weights indicating that in the training set they

appeared discriminative. The (two-and three-)-body

models do badly on the test sets at the res and mc1 in

cross-validation, badly at least compared to their two-

body counterparts. This indicates that many three-body

features do not generalize well and the training set sizes

are not large enough to properly identify this fact. Fur-

ther development of higher body features will require

careful validation to ensure that they do not suffer from

over-fitting.

Coarse-grained, two-body potentials have long been

used in protein structure analysis but recent work by

Pokarowski et al. has shown that many published two-

body interaction potentials are essentially the sum of

one-body energies.10,11 Our use of contacts, which are

one-body potentials, serves as a performance validation

of that work. Note that when creating the feature vector

for a protein, observing beads for alanine and arginine

between 2.0 and 3.5Å; apart has the following effect: for

a two-body potential the count on feature A_R_2–3.5 is

increased by 1; for one-body potentials, the count on

feature A_2–3.5 is increase by 1 as is the count on feature

R_2–3.5. When the machine learner determines parame-

ters for the two-body potential, it assigns a single weight

to A_R_2–3.5 count which is multiplied by the count

and added to the total score. This weight is distinct from

other two-body features such as A_G_2–3.5. In the one-

body case, parameter weights are set for both the count

of A_2–3.5 and the count of R_2–3.5 separately and their

sum contributes to overall score. This additivity is like a

constraint that any A-R interactions are the sum of two

one-body paramters associated with A and R. For that

reason, the ‘‘contacts’’ feature is equivalent to the Pokar-

owski’s reduction of two-body terms to sums of one-

body terms. Their results indicate that one-body terms

should do equally well to two-body terms in prediction

tasks. Pokarowski et al. examined coarse-grained poten-

tials (our res level) and used only a single distance bin

for the potentials. Our results in Table III show at the res

level that contacts (one-body interactions) have nearly

the same performance (mean rank 6.64) as two-body fea-

tures (mean rank 6.45). This is in good agreement with

the notion that the coarse interaction of two residues is

essentially the sum of two one-body terms. Results at the

mc1 level are similar: two-body features achieved mean

rank 2.96, whereas one-body features were close at mean

rank 3.33. These findings expand on Pokarowski and co-

workers studies in that they are a true illustration of the

predictive power of one- versus two-body potentials and
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Table V
Average Number of Nonzero Parameters for two - and three-body

features Determined by glmnet During 4CV

Level Two-body Two - and three-body Total

res 239/1073 534/1609 773/2682
mc1 509/1189 1021/1886 1530/3075
t32 480/1584 1740/5983 2220/7567

Parameters are divided by type (two-body or three-body) and the possible non-

zero parameters is given.

Coarse-grained Models for Protein Decoys
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they are not restricted to a single distance bin (res and

mc1 models used five distance bins). However, at the

atomic level (t32), the reduction from two- to one-body

terms gave a larger drop in prediction performance

(mean rank 1.56 for two-body versus 2.95 for one-body).

For a fine-grained interactions and energy, the one-body

approximation apparently breaks down.

Both the contact features and exposure features did

surprisingly well at each level of representation. At the

coarse res level, they provided nearly the same amount of

information as two-body interactions. Contacts were

quite effective at the mc1 level, exposure was less so.

Both contacts and exposure were more distant from two-

body interactions at the t32 level, though they still pro-

vide a higher degree of discriminatory power than the

two coarse-grained representations. Along with the failure

of (two and three)-body features at the res and mc1 lev-

els, this suggests coarse-grained models may benefit from

pursuing simpler features such as solvent exposure and

the density of bead packing.

The angle representation was and oddity in that

svmrbf method proved most effective at fitting its param-

eters, though other methods came close in terms of the

top-1 fraction. The svmrbf model for angles clustered

into three groups surprising achieves a better mean

native rank than any res level features. For all methods,

clustering the angles into three groups provided better

performance than dividing into 20 groups based on the

amino acid type. This may be in part explained due to

model additivity. Interactions between beads can be con-

sidered somewhat independently in that two good con-

tacts are more energetically favorable than two bad con-

tacts with one good and one bad somewhere in between.

This property lends itself reasonable well to linear models

(svm, svmrank, and glmnet). Angle bending is not quite

so independent: a two locally favorable bends may be

globally unfavorable if they create clashes or near clashes

in the protein chain. The additivity property is no longer

a good approximation and linear estimation methods

will miss such relations. Nonlinear learning methods,

such as svmrbf, are better at deriving models which

incorporate nonadditivity.

Whole decoy set cross-validation experiment
(DCV)

In this experiment, a whole decoy set was left out dur-

ing training and then used to evaluate the learned model.

We refer to this methodology as decoy set cross-validation

(DCV). DCV is more challenging than (4CV) as decoys

from different sets are generated using different method-

ologies. Decoys used for training may have different char-

acteristics than those that appear in testing. DCV identi-
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Table VI
Results of leaving whole decoy sets out (DCV)

Data

Rank Top-1 Z-score

N Mam

Corall

res mc1 t32 res mc1 t32 res mc1 t32 res mc1 t32

fisa 4.000 9.750 1.500 0.750 0.750 0.750 23.322 23.438 24.011 204 8.39 0.992 0.990 0.989
fisa3 3.000 2.600 1.000 0.600 0.800 1.000 22.375 23.633 27.021 255 7.86 0.996 0.997 0.994
4state 2.857 1.714 2.000 0.571 0.714 0.429 22.241 22.931 22.684 307 9.03 0.989 0.988 0.976
lattice 8.375 1.625 1.125 0.375 0.875 0.875 22.369 24.416 24.442 408 7.13 0.985 0.988 0.972
lmds 11.778 7.000 7.667 0.222 0.667 0.556 21.788 22.807 22.414 459 7.36 0.977 0.981 0.962
casp5 1.882 1.118 1.000 0.765 0.882 1.000 21.950 23.106 23.520 284 11.09 0.994 0.994 0.989
moulder 2.800 2.900 1.000 0.550 0.850 1.000 22.379 23.497 25.049 1020 10.96 0.978 0.989 0.996
casp6 3.083 1.250 1.042 0.458 0.833 0.958 21.577 22.753 23.560 471 9.19 0.990 0.991 0.986
tsai 19.900 8.233 4.867 0.067 0.333 0.433 20.353 21.678 22.421 1530 7.30 0.924 0.943 0.922
casp7 2.029 1.353 1.000 0.529 0.765 1.000 21.672 22.388 23.101 789 13.74 0.986 0.983 0.983
rose 8.262 2.905 2.119 0.357 0.619 0.929 21.743 23.371 25.654 2142 9.03 0.930 0.934 0.936
skol 13.809 7.787 5.128 0.213 0.426 0.447 21.103 21.825 22.358 2397 8.24 0.904 0.913 0.916
ro62 12.017 8.458 2.593 0.254 0.441 0.814 21.359 21.823 23.467 3009 8.77 0.914 0.898 0.929
casp8 1.559 1.088 1.000 0.647 0.941 1.000 22.097 22.965 23.896 1227 10.31 0.968 0.976 0.987
lkf 3.070 2.130 2.139 0.739 0.817 0.826 23.598 24.149 24.894 5433 8.50 0.884 0.843 0.804

CorN 0.205 0.127 0.148 20.076 20.300 20.086 20.133 0.027 20.081 1.000 20.118 20.919 20.979 20.933
CorMam 20.581 20.474 20.498 0.434 0.376 0.535 20.020 0.111 0.039 20.118 1.000 0.277 0.226 0.312

Mean DCV 6.561 3.994 2.345 0.473 0.714 0.801 21.995 22.985 23.899 0.961 0.961 0.956
Mean 4CV 6.450 2.960 1.690 0.532 0.771 0.920 22.190 23.150 24.340
SD DCV 5.558 3.210 1.994 0.218 0.184 0.225 0.807 0.815 1.330 0.038 0.045 0.050
SD 4CV 1.180 0.530 0.500 0.040 0.027 0.017 0.097 0.079 0.164

Only two-body interactions were used as structure features and only the glmnet method was used for parameter estimation. The decoy set left out during training and

used as the test is listed in the first column. Performance statistics by representation level are listed in subsequent columns. The N column gives the number of struc-

tures in each decoy set. The Mam column gives the average Mammoth structure alignment score between natives in the row decoy set the best structure in a different

decoy set. The Corall columns give the Pearson correlation coefficient of the row model with the model trained on all decoy sets. The middle row, CorN, gives the corre-

lation coefficient of each column with the N (decoy set size) column. The lower part of the table compares the overall mean and standard deviation of statistics when

leaving one decoy set out at a time (DCV, this table) versus leaving one balanced fold out as was done in the previous experiment (4CV, Table III).
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fies the difficult decoy sets and tests whether patterns

learned on decoy sets generalize to truly new data.

In the DCV experiment, we limited ourselves to two-

body interactions at the res, mc1, and t32 representation

levels. We used only the glmnet method for parameter

estimation. This combination (glmnet with two-body fea-

tures) was representative of the best performance accord-

ing to Section Four-for cross validation experiment and

should prove representative of varying structural features

and parameterization method.

TableT6 VI presents numerical results for the cross-train-

ing evaluation whereas FigureF2 2 gives a visual summary

of the results. As the representation varies from coarse-

grained res to fine-grained t32, performance generally

improves on all decoy sets. A few exceptions are the

4state and lmds sets in which the atomic detail of t32

performs worse than the two-interaction point model of

mc1. The 4state decoy set was originally created using a

reduced representation18 which may explain why mc1

and res perform favorably on it compared to t32. Though

lmds decoys were created using an all-atom model,42

global functional forms were used to explicitly smooth

out local energy minima in the decoys. Without unfavor-

able atomic interactions, the t32 features are not as in-

formative explaining why the mc1 representation, which

does not rely on atomic clashes, transfers from other

decoy sets to lmds more readily.

Performance across decoy sets varied drastically. The

sets lmds, tsai, and skol proved very challenging for all

levels. When left out, the best representation for each

data set achieved 66% (lmds/mc1), 43% (tsai/t32), and

45% (skol/t32) Top-1 recognition of native proteins over

decoys. This is compared to rates in the 80–95% range

for most other large sets. Decoys in these sets were all

subjected to some energy minimization or structural

relaxation to remove many obvious atomic clashes, pro-

cedure that is known to substantially increase diffi-

culty.43,44 Future work on decoy should focus on mak-

ing improvements on this kind of decoy set. The ro62

set also provided a challenge for the coarse-grained rep-

resentations but was handled readily by the t32 level.

This set was produced using the ROSETTA software but

incorporated a feedback loop to increase the number of

decoys near the native structure (45,46 Rhiju Das perso-

nal communication). Studies of coarse-grained models

would benefit from analyzing this set.

The columns for Corall of Table VI indicates how

much a decoy set affects learned parameters. It gives the

Pearson correlation coefficient between the parameter

vector of the model learned when the row’s decoy set is

left and the model learned when all decoy sets are used.

An important point is that training on all decoy sets to-

gether leads to a perfect model with Rank and Top-1 of 1.0

on all sets at all levels of granularity. This is clearly an

over-fit of the data that will not generalize to new types

of decoys. However, analyzing the influence each decoy

set has on the all-decoy-set parameters paints an interest-

ing picture.
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Figure 1
Results of four-fold cross-validation (4CV). The model features vary horizontally and the performance metric vertically. Within each cell, bars are

grouped by the discrimination method used. Color indicates the representation level. The mean native rank statistic has been inverted to 1/Rank

and Z-score to 2Z so that larger bars indicate better performance.

C
O
L
O
R

Coarse-grained Models for Protein Decoys

PROTEINS 13



When correlation is low, it indicates the decoy set is

exerting influence on the all-set model as the left-out

model parameters differ from the all-set parameters.

Confounding this reasoning is the variance in size of

decoy sets. The center row of Table VI labeled CorN indi-

cates that the influence decoy sets exert on the overall

model correlates very well with their size. The perform-

ance statistics (Rank, Top-1, Z-score) do not correlate

well with the decoy set size (row CorN) but the model

stability measure Corall exhibits high-negative correlation

to decoy set size (rightmost columns of row CorN).

When larger decoy sets are left out, parameter estimates

drift farther from the estimates based on all decoy sets.

However, for a small but difficult decoy set like lmds,

parameters are similar whether the decoy set is used or

left out (Corall 5 0.962 for t32). Clearl some small

changes in the parameters have a big impact on per-

formance: training with all sets including lmds gives a

mean native rank of 1.0 on lmds, whereas training with

all sets except lmds gives a mean native rank of 11.8 on

lmds. A simple correlation coefficient between model pa-

rameters does not seem an adequate measure of the sta-

bility of those models nor how they will generalize to

new data.
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Figure 2
Summary of performance statistics when leaving whole decoy sets out during cross-validation (DCV). Only two-body interactions trained by

glmnet were used. The decoy set left out varies horizontally across the cells, performance metric varies vertically. Color indicates the representation

level. The mean native rank (Rank) and Z-score (Z) have been inverted to 1/Rank and 2Z so that larger bars indicate better performance.
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As an alternative to simple correlations, we examined

structural relations between proteins in different decoy

sets. We aligned all native structures in a decoy set

against all other natives using the Mammoth structure

alignment program.47 The best structure alignment score

for each native in a decoy set was recorded and the aver-

age over all natives in a decoy set is given in the Mam

column of Table VI. A low Mam value indicates the

natives in a decoy set share few structural characteristics

with representatives in other decoy sets. The row CorMam

gives the correlation Mam with performance statistics

and model stability. It has moderate correlation to Rank

and Top-1 and weak correlation to model stability

(Corall). The correlation adds to the explanation of why

decoy sets like lmds, skol, and tsai are difficult: they con-

tain so distinct structures with few similar structures in

other sets from which to learn. Counter examples are

fisa3 and lattice which have low Mam scores but good

performance in terms of Rank and Top-1. However, these

sets are small. The combination of structural distinctness

and aforementioned energy minimization is likely the full

reason why lmds, tsai, and skol are so difficult.

The difficulty of leaving whole decoy sets out is further

illustrated by comparing performance on this experiment

(Mean DCV) and the results obtained from 4-4CV Mean

in which decoy sets were balanced across the four folds.

Mean performance statistics are shown near the bottom

of Table VI. The 4CV experiment has generally better

performance statistics than DCV and the standard devia-

tion of DCV folds is much wider than in 4CV. This

underscores the fact that testing a model on a new decoy

set is a true out-of-sample estimate, where the decoys

may be drawn from an entirely different distribution

than the training data.

Predicting a completely new protein structure is much

more difficult than and predicting the structure of a pro-

tein with an identified structural template. Templates

influence decoy data sets in that the decoy generation

mechanism uses some knowledge of the native structure

or a related template. To assess how much this affects

our own study, we looked at the results on DCV aggre-

gated over decoy sets which used knowledge of the native

or a template to generate decoys versus those that did

not. Ostensibly, the use of a native or good template

should produce decoys with more native-like characteris-

tics which should conversely make decoy discrimination

harder: there are fewer differences between a native and

template-influenced decoys. Aggregated results are shown

in Table T7VII along with a listing of which decoy sets were

influenced in some way by a template. The reasons for a

decoy set qualifying as template-influenced (Templ 5

yes) are described in detail in Supporting Information;

use of a close structural relative or the native protein

itself or fixing native secondary structure confers tem-

plate influence. The means for template-free generation

(‘‘No’’ rows in Table VII) are indeed better indicating

that these decoys are easier to identify than those based

on templates. However, none of the performance meas-

ures exhibits a statistical difference between template-

based and template-free decoy generation sets. This is

due to the large variance of performance between the

datasets in each group.

Mixed model selection experiment

To date, efforts to derive reduced protein representa-

tions have primarily focused on choosing the model

according to physical intuition. After choosing a repre-

sentation and functional form, force field parameters a

determined to reproduce experimental results or discrim-

inate structural decoys. Representations such as t32, mc1,

and res, are derived from a priori knowledge of what

seems sensible for modeling purposes and other features

are discarded to avoid computational costs.

A pure data-mining viewpoint takes the opposite

approach of including all potentially useful features in an

unbiased way. The useful features are selected during

parameterization to maximize accuracy. It is not clear

whether this philosophy can be directly incorporated in

molecular dynamics. However, for the decoy discrimina-

tion setting, it is readily usable to select beads from dif-

ferent representations to create a mixed model.
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Table VII
Difficulty of discriminating decoys generated with and without templates

Templ? #Sets Stat

Rank Top-1 Z-score

res mc1 t32 res mc1 t32 res mc1 t32

No 6 Mean 4.763 2.927 2.442 0.522 0.766 0.802 22.045 22.936 23.497
Yes 9 Mean 9.259 5.595 2.201 0.401 0.636 0.800 21.920 23.060 24.503
No 6 SD 6.155 3.589 1.439 0.244 0.213 0.200 1.017 1.081 1.632
Yes 9 SD 4.613 2.604 2.374 0.198 0.153 0.252 0.697 0.652 0.988
Yes v. No p-value 0.163 0.154 0.811 0.337 0.232 0.989 0.800 0.808 0.216

Columns are (Templ?) whether templates influenced the decoy generation, (#Sets) the number of data sets in the group, (Stat) mean or standard deviation, and

(remaining columns) the aggregate statistic for each performance measure. The upper portion of the table shows the mean and standard deviation of performance meas-

ures on DCV (rows of V). Data sets which used templates in decoy generation are 4state, lmds, moulder, skol, casp5–8, lkf. Those that did not use tempaltes are fisa,

fisa3, lattice, rose, tsai, ro62. The bottom row shows p-values for a two-tailed T-test on whether the means of each stastistic are different from one another. High p-val-

ues indicate the means are not likely to be different.
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In this experiment, each protein was simultaneously

represented using res, mc1, and t32, and all two-body

interactions between beads were counted. This included

cross-level interactions such as those between the mc1

bead R.sc (arginine sidechain) and the t32 atom type

OX1. We developed an optimization procedure to do

decoy discrimination in this mixed representation. It is a

bead selection method thus we abbreviate it as BSM.

Details of BSM are given in Section Decoy separation

with bead selection. Briefly, it uses a regularization path

approach similar to glmnet while doing grouped decoy

separation as svmrank does. At high-regularization levels,
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Figure 3
Results of mixed bead selection by BSM. The x-axis shows the mean native rank of the model generated. Rank improves from left to right. The y-

axis shows the coefficient associated with each bead type. A zero coefficient means a bead type may be eliminated from the model. Color indicates

the approximate rank at which beads enter the model as the regularization penalty varies.
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few beads are in the model while progressively lowering

regularization allows more beads to enter the model and

lets us observe the trade-off between model complexity

and performance. Beads are selected from any of the

three granularity levels giving us insight into which parts

of the protein may be approximated using coarse-grained

beads. Parameters were fit using all proteins in the 15

decoy sets so there is no cross-validation in this experi-

ment.

Analysis of selected beads

The main results of this experiment are shown in

FigureF3 3. Our BSM procedure varies a regularization

penalty which gradually allows more bead types to enter

the model. Allowing more beads into the model tends to

give better performance so that each regularization point

corresponds to a performance statistic. The plot in Figure

3 contrasts the mean native rank statistic against the

coefficients associated with each type of bead in the three

representation levels. Color indicates when the bead types

enter the model by going from a zero to a nonzero coef-

ficient. The bead types are listed on the right side in

positions roughly corresponding to their weight when

the mean native rank reaches 1 (e.g., all native structures

have rank 1 for perfect performance).

The first beads to enter the model were related to the

protein backbone. From t32 the types NH, CAH, CO,

and OC are backbone atoms as is the mc1 bead mc1 (the

bead type and representation level are both named mc1).

These types overlap in that they represent the same parts

of the protein, but according to the model’s behavior,

including both is beneficial. Additional t32 atom types

that entered immediately are CH2, CH3, and CFH, the

beta and gamma carbons of most residues. Using only

these eight bead types, a mean native rank of 4.6 was

achieved. This is interesting in that it indicates a large

number of decoys must contain obvious backbone

defects.

Next to enter was the t32 atom OX1: it represents the

charged oxygens in the side chain of aspartic and glu-

tamic acid. It was followed shortly afterward by t32

atoms SH and CH2C, the sulfur and beta carbon in cys-

teine, and OH, the oxygen in serine, threonine, and tyro-

sine. Additionally, the mc1 beads L.sc (leucine sidechain)

and C.sc (cysteine sidechain) entered around this rank. It

is interesting to again see overlapping elements, cysteine

sidechain beads from both t32 and mc1, enter at approx-

imately the same time. At this regularization level, 14

bead types were used which gave 3.9 mean native rank.

The bead types then entered in larger groups with a

variety of t32 and mc1 beads activating. Beads from the

res representation also entered. Several coherent groups

representing charged side chains entered at approximately

the same rank including lysine (K.res, K.sc, CH2K, NZ),

aspartic/glutamic acid (CH2B, CX1, D.sc), and arginine

(NR2). The cysteine res bead, C.res, also entered at this

regularization level, well after the t32 and mc1 represen-

tations.

The remaining beads entered in large groups except

for six outliers which entered very late. These were

related to histitdine (H.res, H.sc, CHEP) and tryptophan

(W.res, W.sc, NDHS). Their late inclusion indicates they

do not factor into decoy discrimination heavily.

It seems a great deal of discriminatory power resides

in only a few bead types. Modeling the backbone prop-

erly gives the initial and largest performance boost to

achieve a mean native rank of 4.6. Adding a few select

bead types that model charged groups and cysteine

brings the rank down to 3.9. After that, a wider variety

of bead types is required to get better rank.

Behavior of bead selection

The behavior shown in Figure 3 illustrates several defi-

ciencies of BSM. Bead types representing the same part

of the protein at different granularities seem to enter at

the same time. Ideally, we would like BSM to prevent

such redundancies. Figure 3 does not illustrate the maxi-

mum performance achievable by models using a subset

of bead types. It may be that using only the first 14 bead

types selected, a lower rank can be achieved, but this

would require parameterizing only on these types. The

BSM allows other bead types to enter as the regulariza-

tion level changes giving only a rough idea of how effec-

tive each group of beads will be in isolation.

While it is tempting to compare the ranks achieved by

the mixed selection of BSM to those presented in Sec-

tions Four-fold cross-validation experiment and whole

decoy set cross-validation experiment, those experiments

used a cross-validation framework that give more robust

estimates of performance on future data. BSM was eval-

uated on all data and may over-estimate the achievable

rank by the selected models. Our purpose was to explore

the potential of automated model selection. Testing the

mixed models produced by BSM will be the subject of

future work.

DISCUSSION AND
CONCLUSIONS

Two over-arching observations emerged from our com-

parison of three granularities of protein representation

and variety of energy terms in them. First, the atomic-

level detail (t32 model) gives the best performance defini-

tively, but great improvement over single bead per resi-

due (res model) can be gained by differentiating side-and

main-chain interactions (mc1 model). The best mean

native rank over 415 native proteins in 4CV are 6.45 for

res and 2.96 for mc1. This improvement comes at a very

low cost in terms of the number of parameters associated

with the mc1 model: for two-body interactions there are
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1073 parameters to learn in res versus 1189 in mc1,

an increase of only 116 parameters. Going to atomic

detail in t32 requires 1584 parameters for two-body

interactions.

The second broad message is that low-resolution features

(contact counts and solvent accessible surface area), pro-

vide a surprisingly large amount of discriminatory power

regardless of their representation level. This is compared to

two-body and (two- and three-)-body interactions. The

decrease in performance for using contact counts or solvent

exposure rather than two-body interactions at the t32 level

gives a drop in mean native rank about 1.1; the average

drop is only 0.77 at mc1 level and 0.20 at the res level. This

is a sign that using lower resolution energy terms when

low-resolution models are used does not compromise ac-

curacy. At least, the exclusive use of contacts or exposure

does not compromise accuracy much more than the initial

choice of a coarse-grained representation.

In terms of parameter estimation methodology, three

additional technical results come from our analysis.

There is little benefit from using nonlinear parameter

estimation techniques for the protein representations and

features examined. The nonlinear svm models performed

little better than linear versions and have several draw-

backs (two hyper-parameters vs. one for linear, longer

training times, and a lack of explicit parameter represen-

tations, Section Linear versus nonlinear classified). It also

seems that training models through grouped separation

rather than binary classification, as was done with

svmrank, deserves additional exploration. Combining this

training approach with the sparsity-inducing regulariza-

tion of glmnet could produce more robust parameters.

We are currently testing methods to do this. Finally, per-

formance on a single decoy set, even within cross-valida-

tion, is not indicative how well a model will generalize to

new decoy sets. It is difficult to assess how stable any of

these models might be as small changes in parameter can

drastically alter performance on difficult decoy sets.

Our intention with this study is not to suggest a par-

ticular scheme by which to do structure prediction, but

instead to get at whether coarse-grained models limit the

accuracy of prediction methods. An oft-employed protein

prediction strategy is the following. We want to formu-

late the best structure prediction within time T. The first

step is to search for a structural template using one of

many good methods. Should a template or templates be

found, the amount of conformational sampling required

is reduced by many orders of magnitude by searching

near the template. The remaining time up to T is prob-

ably best spent using a fine-grained model like t32 as the

representation does not limit the accuracy of predictions

much. If no template is found, then we must do a large-

scale sampling of the protein’s conformational space to

get a sense of low-energy shapes. Certainly using a

coarse-grained model will limit the accuracy of predic-

tions, but much more conformational ground can be

covered using a coarse-grained model due to the smaller

number of beads in the model. Our results indicate

coarse-grained models provide enough fidelity to guide

sampling to reasonably close approximations of native

structures. So lacking a good template, most of the pre-

diction time up to T should be spent on coarse-grained

sampling, perhaps with some subsequent fine-grained

refinement. To our knowledge, most successful prediction

schemes work roughly in this way with possible iteration

between coarse and fine modes. From the stand-point of

template utilization, our work confirms that this strategy

is quite reasonable. Further inquiry is required to deter-

mine whether analysis of template-based or template-free

decoys can yield insight into specific prediction tasks. For

example, restricting parameter estimation to template-

based decoys only may increase our understanding model

refinement while the template-free setting may be more

useful to derive parameters for new fold predictions.

Our data-driven approach to selecting mixed represen-

tations (BSM) led to modest insight into mixing beads

from different granularities (see Section Behavior of bead

selection). Rather than select one coarse representations

for low performance and gradually shift to a finer-resolu-

tion as regularization is eased, BSM seemed to select sim-

ilar beads from multiple representation levels at the same

regularization points. Backbone beads are selected ini-

tially, then a few important side chain beads, particularly

cysteine, then equivalent res/mc1/t32 beads at similar lev-

els of regularization. While this gives some indication of

the relative importance of different bead types, in most

modeling situations we would not use redundant repre-

sentations such as the mc1 backbone bead along with t32

backbone atoms like CAH, NH, and CO. In general,

enforcing mutual exclusion in training would destroy the

convexity of the optimization problem making it much

less tractable to solve numerically. While difficult, it is

worth additional work to determine if alternative formu-

lations exist which produce less redundant models as this

would have much greater impact in the modeling com-

munity.
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