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Abstract

Solving large sparse systems of linear equations is at the core of many problems in engineering
and scienti�c computing. It has long been a challenge to develop parallel formulations of
sparse direct solvers due to several di�erent complex steps involved in the process. In this
paper, we describe one of the �rst e�cient, practical, and robust parallel solvers for sparse
symmetric positive de�nite linear systems that we have developed and discuss the algorithmic
and implementation issues involved in its development.

1 Introduction

Solving large sparse systems of linear equations is at the heart of many engineering and scienti�c
computing applications. There are two methods to solve these systems - direct and iterative. Direct
methods are preferred for many applications because of various properties of the method and the
nature of the application. A wide class of sparse linear systems arising in practice have a symmetric
positive de�nite (SPD) coe�cient matrix. The problem is to compute the solution to the system
Ax = b; where A is a sparse and SPD matrix. Such a system is commonly solved using Cholesky
factorization. A direct method of solution consists of four consecutive phases viz. ordering, symbolic
factorization, numerical factorization and solution of triangular systems. During the ordering phase,
a permutation matrix P is computed so that the matrix PAP T will incur a minimal �ll during the
factorization phase. During the symbolic factorization phase, the non-zero structure of the triangular
Cholesky factor L is determined. The symbolic factorization phase exists in order to increase the
performance of the numerical factorization phase. The necessary operations to compute the values
in L that satisfy PAP T = LLT , are performed during the phase of numerical factorization. Finally,
the solution to Ax = b is computed by solving two triangular systems viz. Ly = b0 followed by
LTx0 = y, where b0 = Pb and x0 = Px. Solving the former system is called forward elimination
and the latter process of solution is called backward substitution. The �nal solution, x, is obtained
using x = P Tx0.

In this paper, we describe one of the �rst scalable and high performance parallel direct solvers
for sparse linear systems involving SPD matrices. Our parallel direct solver uses the MPI library
for communication, making it portable to a wide range of parallel computers. Furthermore, high
computational rates are achieved using serial BLAS routines to perform the computations at each
processor. At the heart of this solver is a highly parallel algorithm based on multifrontal Cholesky
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Institute. Related papers are available via WWW at URL: http://www.cs.umn.edu/~kumar.
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factorization we recently developed [1]. This algorithm is able to achieve high computational rates
(of over 20 GFlops on a 1024 processor Cray T3D) and it successfully parallelizes computationally
the most expensive phase of the sparse solver. Fill reducing ordering is obtained using a parallel
formulation of the multilevel nested dissection algorithm [2] that has been found to be e�ective in
producing orderings that are suited for parallel factorization. For symbolic factorization and solution
of triangular systems, we have developed parallel algorithms that utilize the same data distribution
as used by the numerical factorization algorithm. Both algorithms are able to e�ectively parallelize
the corresponding phases. In particular, our parallel forward elimination and parallel backward
substitution algorithms are able to achieve a high degree of concurrency and high computational
rates. In this paper we brie
y describe the parallel algorithms for numerical factorization, symbolic
factorization and solution of triangular systems, and present some preliminary experimental results
on an IBM SP2. Details about the parallel algorithm for the ordering phase can be found in [2].

2 Parallel Numerical Factorization

For the numerical factorization phase we use a highly scalable algorithm that we developed recently
[1] that is based on the multifrontal algorithm [5].

Given a sparse matrix and the associated elimination tree, the multifrontal algorithm can be
recursively formulated as follows. Consider an N�N matrix A. The algorithm performs a postorder
traversal of the elimination tree associated with A. There is a frontal matrix F k and an update
matrix Uk associated with any node k. The row and column indices of F k correspond to the indices
of row and column k of L, the lower triangular Cholesky factor, in increasing order. In the beginning,
F k is initialized to an (s+ 1)� (s+ 1) matrix, where s+ 1 is the number of non-zeros in the lower
triangular part of column k of A. The �rst row and column of this initial F k is simply the upper
triangular part of row k and the lower triangular part of column k of A. The remainder of F k is
initialized to all zeros.

After the algorithm has traversed all the subtrees rooted at a node k, it ends up with a
(t+1)� (t+1) frontal matrix F k, where t is the number of non-zeros in the strictly lower triangular
part of column k in L. The row and column indices of the �nal assembled F k correspond to t + 1
(possibly) noncontiguous indices of row and column k of L in increasing order. If k is a leaf in the
elimination tree of A, then the �nal F k is the same as the initial F k. Otherwise, the �nal F k for
eliminating node k is obtained by merging the initial F k with the update matrices obtained from
all the subtrees rooted at k via an extend-add operation. The extend-add is an associative and
commutative operator on two update matrices such the index set of the result is the union of the
index sets of the original update matrices. Each entry in the original update matrices is mapped
onto some location in the accumulated matrix. If entries from both matrices overlap on a location,
they are added. Empty entries are assigned a value of zero. After F k has been assembled, a single
step of the standard dense Cholesky factorization is performed with node k as the pivot. At the
end of the elimination step, the column with index k is removed from F k and forms the column k

of L. The remaining t� t matrix is called the update matrix Uk and is passed on to the parent of
k in the elimination tree.

In this paper, a collection of consecutive nodes in the elimination tree, each with only one child,
is called a supernode. The nodes in a supernode are collapsed together to form the supernodal

elimination tree. The serial multifrontal algorithm can be extended to operate on this supernodal
tree by extending the single node operations performed while forming and factoring the frontal
matrix. The frontal matrix corresponding to a supernode with l nodes is obtained by merging the
frontal matrices of the individual nodes, and the �rst l columns of this frontal matrix are factored
during the factorization of this supernode.

In our parallel formulation of the multifrontal algorithm, we assume that the supernodal tree is
binary in the top log p levels 1. The portions of this binary supernodal tree are assigned to processors
using a subtree-to-subcube strategy illustrated in Figure 1(b), where eight processors are used to
factor the example matrix of Figure 1(a). The subcubes of processors working on various subtrees

1The separator tree obtained from the recursive nested dissection parallel ordering algorithm used in our
solver yields such a binary tree.
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Fig. 1. (a). An example symmetric sparse matrix. The non-zeros of A are shown with symbol

\�" in the upper triangular part and non-zeros of L are shown in the lower triangular part with �ll-ins

denoted by the symbol \�". (b). The process of parallel multifrontal factorization using 8 processors. At

each supernode, the factored frontal matrix, consisting of columns of L (thick columns) and update matrix

(remaining columns), is shown.
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Fig. 2. Parallel Symbolic Factorization

are shown in the form of a logical mesh labeled with P. The frontal matrix of each supernode is
distributed among this logical mesh using a bitmask based block-cyclic scheme [1]. Figure 1(b)
shows such a distribution for unit blocksize. This distribution ensures that the extend-add operations
required by the multifrontal algorithm can be performed in parallel with each processor exchanging
roughly half of its data only with its partner from the other subcube. Figure 1(b) shows the
parallel extend-add process by showing the pairs of processors that communicate with each other.
Each processor sends out the shaded portions of the update matrix to its partner. The parallel
factor operation at each supernode is a pipelined implementation of the dense column Cholesky
factorization algorithm.

3 Parallel Symbolic Factorization

During the symbolic factorization phase the non-zero structure of the factor matrix L is determined.
The serial algorithm to generate the structure of L performs a postorder traversal of the elimination
tree. At each node k, the L indices of all its children node (excluding the children nodes themselves)
and the A indices of k are merged together to form the L indices of node k.

This algorithm can be e�ectively parallelized using the same subtree-to-subcube mapping used
by the numerical factorization algorithm. The basic structure of the algorithm is illustrated in
Figure 2. Initially, matrix A is distributed such that the columns of A of each supernode are
distributed using the same bitmask based block-cyclic distribution required by the numerical
factorization phase 2. Now, the non-zero structure of L is determined in a bottom-up fashion.
First the non-zero structure of the leaf nodes is determined and it is sent upwards in the tree,

2This distribution is performed by the ordering algorithm
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Fig. 3. Parallel Triangular Solve. (a). Entire process of parallel forward elimination for the example

matrix. (b). Processing within a hypothetical supernodal matrix for forward elimination.

to the processors that store the next level supernode. These processors determine the non-zero
structure of their supernode and merge it with the non-zero structure received from their children
nodes. For example, consider the computation involved in determining the structure of L for the
supernode consisting of the nodes f6,7,8g which are distributed among a 2�2 processor grid. First,
the processors determine the non-zero structure of L by performing a union along the rows of the
grid to collect the distinct row indices of the columns of A corresponding to the nodes f6,7,8g. The
result is f6,8g and f7g at the �rst and second row of processors, respectively. Now the non-zero
structure of the children nodes are received (excluding the nodes themselves). Since these non-zero
structures are stored in the two 1�2 sub-grids of the 2�2 grid, this information is sent using a similar
communication pattern described in Section 2, however only the processors in the �rst column of the
subgrids need to communicate. In particular, processor 0 splits the list f6,7,8g into two parts f6,8g
and f7g, retains f6,8g and sends f7g to processor 2. Similarly processor 2 splits the list f6,7,8,18g
into two parts f6,8,18g and f7g, retains f7g and sends f6,8,18g to processor 0. Now processors 0
and 2 merge these lists. In particular, processor 0 merges f6,8g, f6,8g and f6,8,18g and processor
2 merges f7g, f7g and f7g.

4 Parallel Triangular Solve

During the phase of solving triangular systems, a forward elimination Ly = b0, where b0 = Pb, is
performed followed by a backward substitution LTx0 = y to determine the solution x = P Tx0. Our
parallel algorithms for this phase are guided by the supernodal elimination tree. They use the same
subtree-to-subcube mapping and the same two-dimensional distribution of the factor matrix L as
used in the numerical factorization.

Figure 3(a) illustrates the parallel formulation of the forward elimination process. The right
hand side vector b0, is distributed to the processors that own the corresponding diagonal blocks
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Table 1

Complexity Analysis of various phases of our parallel solver for N-vertex constant node-degree graphs.

of the L matrix as shown in the shaded blocks in Figure 3(a). The computation proceeds in a
bottom-up fashion. Initially, for each leaf node k, the solution yk is computed and is used to form
the update vector flikykg (denoted by "U" in Figure 3(a)). The elements of this update vector
need to be subtracted from the corresponding elements of b0, in particular likyk will need to be
subtracted from b0

i
. However, our algorithm uses the structure of the supernodal tree to accumulate

these updates upwards in the tree and subtract them only when the appropriate node is being
processed. For example consider the computation involved while processing the supernode f6,7,8g.
First the algorithm merges the update vectors from the children supernodes to obtain the combined
update vector for indices f6,7,8,18g. Note that the updates to the same b0 entries are added up.
Then it performs forward elimination to compute y6, y7 and y8. This computation is done using
a two dimensional pipelined dense forward elimination algorithm. At the end of the computation,
the update vector on processor 0 contains the updates for for b0

18 due to y6, y7 and y8 as well as the
updates received from supernode f5g. In general, at the end of the computation at each supernode,
the accumulated update vector resides on the column of processors that store the last column of the
L matrix of that supernode. This update vector needs to be sent to the processors that store the
�rst column of the L matrix of the parent supernode. Because of the bitmask based block-cyclic
distribution, this can be done by using at most two communication steps [3].

The details of the two-dimensional pipelined dense forward elimination algorithm are illustrated
in Figure 3(b) for a hypothetical supernode. The solutions are computed by the processors owning
diagonal elements of L matrix and 
ow down along a column. The accumulated updates 
ow
along the row starting from the �rst column and ending at the last column of the supernode. The
processing is pipelined in the shaded regions and in other regions the updates are accumulated using
a reduction operation along the direction of the 
ow of update vector.

Our algorithm for parallel backward substitution is similar except for two di�erences. First, the
computation proceeds from the top supernode of the tree down to the leaf. Second, the computed
solution that gets communicated across the levels of the supernodal tree instead of accumulated
updates and this is achieved with at most one communication per processor. Refer to [3] for details.

5 Analysis and Preliminary Experimental Results

Table 1 shows the serial and parallel time complexities of the various phases of our parallel direct
solver for matrices corresponding to 2-D and 3-D �nite element meshes [2, 1, 3]. From this table
we see that the overall time complexity is dominated by the numerical factorization phase. The
isoe�ciency function of the parallel solver is determined by the numerical factorization phase and
it is O(p1:5) for both 2-D and 3-D �nite element problems. As discussed in [4], the isoe�ciency
function of the dense Cholesky factorization algorithm is also O(p1:5). Thus our sparse direct solver
is as scalable as the dense factorization algorithm.
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(N=2003,blocksize=32,factor mflop=53.4,solve mflop=1.08*nr)

Backward Solve MFLOPSForward Solve MFLOPS
1 12 4 8 2

(N=16152,blocksize=32,factor mflop=660.3,solve mflop=10.5*nr)

4 8
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nr = nr =

hsct16152

hsct1

bcsstk15.snd6

bcsstk13

(N=3948,blocksize=32,factor mflop=96.9,solve mflop=2.04*nr)

(N=16146,blocksize=32,factor mflop=791.2,solve mflop=10.8*nr)

Table 2

Performance for factorization and solve phases (np: number of processors, m
op: million 
oating point

operations, nr: number of right-hand sides)

We have implemented our parallel direct solver using the MPI library for communication and
the BLAS library for computation within a processor. Use of MPI makes our solver portable to
a wide range of parallel computers, and by using BLAS, it is able to achieve high computational
performance especially on the platforms with vendor-tuned BLAS libraries. We tested the solver
on the IBM SP2 using IBM's BLAS and MPI libraries. Some preliminary performance results on
up to 32 processors are shown in Table 2 for four test matrices. The table shows the performance
of the numerical factorization phase and the performance of forward and backward solution phases
for di�erent number of right-hand sides. These results are obtained using a blocksize of 32 that
has been found to produce good results on SP2 for the numerical factorization phase. However,
this blocksize may not be the best for the forward and backward solution phases because of the
di�erence in the amount of computation and communication performed.

From the table, we see that the overall MFLOPS achieved for the numerical factorization as
well as the forward and backward solution increases with the number of processors. In particular
for hsct1, the numerical factorization algorithm achieves a speedup of 10 on 32 processors, despite
the fact that the problem is quite small (it takes 0.74 seconds to factor on 32 processors). High
performance is also achieved by both forward and backward solution algorithms. In particular for
hsct1, the entire triangular solution takes 0.05 seconds on 32 processors for a single right-hand side.
Note that the MFLOPS performance of the triangular solutions improves as the number of right-
hand sides increases. This is because the algorithms are able to achieve level 3 BLAS performance.

We have made our parallel solver library and the detailed experimental results available via
WWW at URL: http://www.cs.umn.edu/~kumar.
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