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Abstract—Tensors are data structures indexed along three
or more dimensions. Tensors have found increasing use in
domains such as data mining and recommender systems where
dimensions can have enormous length and are resultingly
very sparse. The canonical polyadic decomposition (CPD) is
a popular tensor factorization for discovering latent features
and is most commonly found via the method of alternating
least squares (CPD-ALS). Factoring large, sparse tensors is
a computationally challenging task which can no longer be
done in the memory of a typical workstation. State of the
art methods for distributed memory systems have focused on
distributing the tensor in a one-dimensional (1D) fashion that
prohibitively requires the dense matrix factors to be fully
replicated on each node. To that effect, we present DMS, a novel
distributed CPD-ALS algorithm. DMS uses a 3D decomposition
that avoids complete factor replication and communication.
DMS has a hybrid MPI+OpenMP implementation that exploits
multi-core architectures with a low memory footprint. We
theoretically evaluate DMS against leading CPD-ALS methods
and experimentally compare them across a variety of datasets.
Our 3D decomposition reduces communication volume by 74%
on average and is over 35x faster than state of the art MPI
code on a tensor with 1.7 billion nonzeros.

I. INTRODUCTION

Multi-way data arises in many of today’s applications. A
natural representation of this data is via a tensor, which is
the extension of a matrix to three or more dimensions (called
modes). An example is a tensor of Amazon product reviews
modeled as user-item-word triplets [1]. Similarly, the Never
Ending Language Learning (NELL) project represents its
dataset as subject-verb-object triplets [2]. These tensors have
very long modes and are consequently very sparse (e.g.,
NELL has a density of 9×10−13).

The recent popularity of tensors has led to the increased
use of tensor factorization, a useful tool for discovering the
latent features in multi-dimensional data. The most popular
factorization is the canonical polyadic decomposition (CPD),
a rank decomposition that is a higher-dimensional interpreta-
tion of the singular value decomposition. The CPD outputs a
low-rank representation of the tensor via a matrix of latent
features for each mode. The columns of the factors often
represent some real-world interpretation of the dataset such
as film genre or word category. Observing factor entries with
large values reveals items with some importance to the latent
features. This technique has been used with great success

to perform tasks such as identifying word synonyms [3],
webpage queries [4], and top-N recommendation [5].

Finding the CPD is a non-convex optimization problem
that has only recently been studied in the context of high
performance computing. The most common method of com-
puting the CPD is using the method of alternating least
squares (CPD-ALS), which approximates the problem by
turning each iteration into a sequence of convex least squares
solutions.

Large tensors cannot easily be factored in the memory of a
typical workstation. We must turn to distributed computing
to factor the tensors of today and the future. Two recent
systems for distributed tensor factorization are DFACTO [6],
and SALS [7]. A drawback to both methods is their memory
scalability. While they are able to partition the input tensor
across a distributed system, they still prohibitively require
the dense matrix factors to be present on each node. Without
scalability in both the input tensor and the output factors,
larger tensors cannot be factored by simply increasing
computing nodes. The factors can consume more memory
than the original sparse tensor and each node will still need
enough memory to hold the entire problem output.

To address these limitations, we present a novel CPD-ALS
algorithm which allows memory and communication to scale
with process count. This is achieved through a 3D decompo-
sition detailed in Section IV. Our algorithm is realized by a
distributed memory extension of SPLATT [8], named DMS
(Distributed Memory SPLATT). Our contributions are:

1) DMS, a memory-scalable CPD-ALS algorithm for
distributed memory systems that uses a 3D decom-
position on the tensor.

2) We theoretically compare the parallel complexity
of DMS to the state of the art and show that
it reduces communication overhead from O(I) to
O
(
(I/ 3
√
p) log p

)
, where I is the longest dimension

and p is the number of processes.
3) We experimentally compare DMS to the state of the

art. Our 3D decomposition reduces communication
volume by 74% on average and DMS is over 35x
faster than state of the art MPI code on a tensor with
1.7 billion nonzeros.



II. TENSOR BACKGROUND

In this section we provide a brief background on tensors
and the CPD. For more information on tensors and their
factorizations, we direct the reader to the excellent survey
by Kolda and Bader [9].

A. Tensor Notation

In this work we focus on third-order tensors. However, we
stress that all of our methods are easily extended to work
with higher-order tensors. We discuss the extension of our
methods to higher modes in Section V-G.

We denote matrices as A and tensors as X . The element
in coordinate (i, j, k) of X is X (i, j, k). Unless specified,
the sparse tensor X is of dimension I×J×K and has
nnz(X ) nonzero elements. A colon in the place of an index
represents all members of that mode. For example, A(:, f)
is column f of the matrix A. Fibers are the generalization of
matrix rows and columns and are the result of holding two
indices constant. A slice of a tensor is the result of holding
one index constant and the result is a matrix.

A tensor can be unfolded, or matricized, into a matrix
along any of its modes. In the mode-n matricization, the
mode-n fibers form the columns of the resulting matrix.
The mode-n unfolding of X is denoted as X(n). If X is
of dimension I×J×K, then X(1) is of dimension I×JK.

Two essential matrix operations used in the CPD are
the Hadamard product and the Khatri-Rao product. The
Hadamard product, denoted A ∗ B, is the element-wise
multiplication of A and B. The Khatri-Rao product, denoted
A � B, is the column-wise Kronecker product. If A is I×J
and B is M×J , then A � B is IM×J .

B. Canonical Polyadic Decomposition

The CPD is an extension of the Singular Value Decompo-
sition (SVD) to tensors. In the SVD, a matrix M is decom-
posed into the summation of F rank-one matrices, where F
can either be the rank of M or some smaller integer if a low-
rank approximation is desired. CPD extends this concept to
factor a tensor into the summation of F rank-one tensors.
We are almost always interested in F � max{I, J,K} for
sparse tensors. In this work we treat F as a small constant
on the order of 10 or 100. A rank-F CPD produces factors
A ∈ RI×F , B ∈ RJ×F , and C ∈ RK×F . A, B, and C are
typically dense regardless of the sparsity of X . Unlike the
SVD, we do not require orthogonality in the columns of
the factors. We output the factors with normalized columns
and λ ∈ RF , a vector for scaling. Using this form we can
reconstruct X via

X (i, j, k) ≈
F∑

f=1

λfA(i, f)B(j, f)C(k, f).

Algorithm 1 CPD-ALS

1: while not converged do
2: A← X(1)(C � B)(CᵀC ∗ BᵀB)−1

3: Normalize columns of A
4: B← X(2)(C � A)(CᵀC ∗ AᵀA)−1

5: Normalize columns of B
6: C← X(3)(B � A)(BᵀB ∗ AᵀA)−1

7: Normalize columns of C and store in λ
8: Check convergence
9: end while

C. CPD with Alternating Least Squares

CPD-ALS is the most common algorithm for computing
the CPD. We transform the non-convex problem into a con-
vex one for each factor and iterate until convergence. During
each iteration we fix B and C and solve the unconstrained
least squares optimization problem

minimize
A

1

2
||X(1) − A(C � B)ᵀ||2F

with solution

A = X(1)(C � B) [(C � B)ᵀ(C � B)]−1

= X(1)(C � B)(CᵀC ∗ BᵀB)−1.

We first find Â = X(1)(C�B), followed by M = (CᵀC∗
BᵀB)−1. M is an F×F symmetric positive definite matrix
and so we use its Cholesky factorization to compute the
inverse. B and C are then solved for similarly. The factors
are normalized each iteration and λ stores the F column
norms. CPD-ALS is summarized in Algorithm 1.

We denote Â = X(1)(C�B) as the matricized tensor times
Khatri-Rao product (MTTKRP). Explicitly forming C � B
and performing the matrix multiplication requires orders of
magnitude more memory than the original sparse tensor.
Instead, we exploit the block structure of the Khatri-Rao
product to perform the multiplication in place. The fastest
MTTKRP algorithms can execute MTTKRP in c·F ·nnz(X )
FLOPs, with c between 2 and 3 and dependent on the
sparsity pattern of the tensor [6], [8], [10]. Entry Â(i, f)
is equal to

Â(i, f) =
∑

X (i,:,:)

X (i, j, k)B(j, f)C(k, f). (1)

Equation (1) shows us two important properties of MTTKRP.
First, nonzeros in slice X (i, :, :) will only contribute to
row Â(i, :). Second, the j and k indices in slice X (i, :, :)
precisely determine which rows of B and C must be accessed
during the multiplication. These properties are critical to
designing scalable CPD-ALS algorithms.

CPD-ALS iterates until convergence. The residual of a
tensor X and its CPD approximation Z is√

〈X ,X 〉+ 〈Z,Z〉 − 2〈X ,Z〉



〈X ,X 〉 = ||X ||2F is a direct extension of the matrix
Frobenius norm, i.e., the sum-of-squares of all nonzero
elements. X is also a constant input and thus its norm can
be pre-computed. The norm of a Kruskal tensor is

||Z||2F = λᵀ (CᵀC ∗ BᵀB ∗ AᵀA)λ.

Fortunately, each AᵀA product is computed during the CPD-
ALS iteration and the results can be cached and reused in
just O(F 2) space. The complexity of computing the residual
is bounded by the inner product 〈X ,Z〉 =

F∑
f=1

λf

 ∑
nnz(X )

X (i, j, k)A(i, f)B(j, f)C(k, f)

 . (2)

The cost of Equation (2) is 4F · nnz(X ) FLOPs, which
is more expensive than an entire MTTKRP operation. In
Section V-E we present a method of reusing MTTKRP
results to reduce the cost to 2FI .

III. RELATED WORK

Distributed algorithms for CPD typically fall into two
broad approaches. The first approach, and the one we explore
in this work, exploits the naturally parallel computations
in the traditional CPD-ALS algorithm. The second class
of algorithms instead utilize the uniqueness of the CPD to
compute separate factorizations on sub-tensors in parallel
which are then joined to form some global factorization.

Within the first class, distributed CPD algorithms such
as DFACTO [6] and SALS [7] use independent one-
dimensional (1D) decompositions for each tensor mode.
Processes own a set of contiguous slices for each mode and
are responsible for the corresponding factor rows. Figure 1 is
an illustration of this decomposition scheme. An advantage
of this scheme is the simplicity of MTTKRP. Each process
owns all of the nonzeros that contribute to its owned output
and thus no communication is required during the multipli-
cation. Independent 1D decompositions can be interpreted
as a task decomposition on the problem output, often called
the owner-computes rule.

A limitation of these 1D methods is that by owning
entire slices of the tensor, all processes own nonzeros that
collectively can span the complete modes of the input. From
Equation (1) we can see that every row of the factors will
contribute to the MTTKRP output. The memory footprint of
all factors can rival that of the entire tensor when the input
is very sparse. Thus, memory consumption is not scalable.

Adding constraints such as non-negativity or sparsity in
the latent factors is also an interest to the tensor commu-
nity. A distributed non-negative CPD algorithm for dense
tensors was introduced in [11]. A 1D decomposition was
used on the tensor and factors. Recently, [12] presented
a generalized framework for constrained CPD that uses
the Alternating Direction Method of Multipliers (ADMM).
Parallelism is extracted by performing a 2D decomposition

Figure 1: Independent 1D decompositions of X . Slices
owned by process pi are shaded.

on the matricized tensor and a row distribution of the factors.
Although [12] supports sparsity, neither of the two works
were explicitly designed for sparse tensors and thus the
storage and communication of full factors is not considered
a limitation.

Algorithms following the second approach [13], [14]
extract parallelism by distributing small tensors to each
process and doing independent factorizations in parallel. The
resulting factorizations are then carefully joined, resulting in
a factorization of the original input tensor. The convergence
of these methods varies from CPD-ALS methods, and so we
leave a comparison against these to future work.

IV. 3D TENSOR DECOMPOSITION

Assume that we have p = p1×p2×p3 processing elements
available. We begin with a 1D decomposition on the output
factors and divide the rows of A, B, and C into p1, p2,
and p3, chunks, respectively. Applying the owner-computes
rule to the chunks of A, each resulting task requires the
corresponding mode-1 slices of X and, consequently, the
entirety of B and C. The tasks for B and C similarly require
the corresponding mode-2 and mode-3 slices and factors.
We further decompose the tasks of A, B, and C using 2D
decompositions on the tensor slices of size p2×p3, p1×p3
and p1×p2, respectively. We refer to each set of processors
along which slices are distributed as a layer.

Layers are used during the MTTKRP stage of CPD-
ALS. Consider the MTTKRP computations required to
compute Aq , the q-th chunk of A. The processes in layer
q further divide the rows of Aq into l = p2×p3 chunks,
Aq1 ,Aq2 , . . . ,Aql , and each chunk is assigned to a process.
Using a 2D decomposition on tensor layers allows us to
limit the number of rows of B and C accessed by any single
process to just the dimensions of the 2D chunk. Each set
of l processes work collectively to perform the MTTKRP
computations associated with Aq . This is done in two steps.
First, each process computes its own contribution to the Aq

entries for which it has portions of the tensor. Second, each
process aggregates the partial results computed by the other
processors for the rows of Aq that it is storing.

DMS uses a single 3D decomposition of X that is based
on applying 1D decompositions to each factor. Processes
are mapped to a 3D grid and given coordinates of the form



(q, r, s). The coordinate of a process identifies X q,r,s, the
3D sub-tensor owned by process (q, r, s). Figure 2 illustrates
the task decomposition over the factors and the resulting
3D decomposition over X . In subsequent discussions we
identify processes by two identities: a linear numbering
pi and a mapping to the 3D grid that our decomposition
operates on, pq,r,s.

The discussion so far has provided a high-level overview
of how the processes are organized and how the data is
distributed among them. We now provide details on the
specifics of the data distribution that DMS uses in order to
balance the computations and minimize the communication
overhead.

A. Tensor Partitioning

Our objective is to define a p1×p2×p3 grid over X . The
boundaries of each layer are chosen in order to minimize
load imbalance by balancing the number of tensor nonzeros
that each layer contains.

We begin with a random permutation of X . Uniformly
distributing nonzeros removes any ordering from the data
collection process that could result in load imbalance. Each
mode is partitioned separately. Assume we are splitting a
mode into p1 parts. We greedily assign partition boundaries
by adding consecutive indices until a partition has at least
nnz(X )/p1 nonzeros. Slices can vary in density and adding
a heavy slice can push a partition significantly over the
target size. Thus, after identifying the slice which pushes
a partition over the target size we compare it to the slice
immediately before and choose whichever is closer to the
target. After performing this process on all modes we
have chosen the p1×p2×p3 grid that defines the tensor
decomposition and we can now distribute X to p processes.

B. Factor Partitioning

We partition the factors after distributing the tensor. The
matrix partitioning directly affects the number of factor
rows which are exchanged during MTTKRP. Our objective
is to minimize the total number of communicated factor
rows, or the communication volume. We adapt a greedy
method developed for two-dimensional sparse matrix-vector
multiplication [15].

Chunks of A are partitioned independently. For each row
r in Aq , processes count the number of tensor partitions
(and thus, processes) that contain a nonzero value in slice
X (r, :, :). Any row that is found in only a single partition is
trivially claimed by the owner because it will not increase
communication volume. Next, the master process in the
layer coordinates the assignment of all remaining rows. At
each step it selects the processes with the two smallest
communication volumes, pj and pk, with pj having the
smaller volume. Process pj is instructed to claim rows until
its volume matches pk. Processes first claim indices which
are found in their local tensor and only claim non-local

ones when options are exhausted. The assignment procedure
sometimes reaches a situation in which all processes have
equal volumes but not all rows have been assigned. To
overcome this obstacle we instruct the next process to claim
a fraction of the remaining rows.

Following the partitioning of Aq , we reorder the indices
of X in order to make the rows owned by each process
contiguous. The partitioning step proceeds for the other
modes similarly.

V. DMS

We will now detail each step of a CPD-ALS iteration
using our 3D decomposition. For brevity we only discuss
the computations used for the first mode. The other tensor
modes are computed identically.

A. MTTKRP and Factor Inverse

After the tensor and matrix distribution, each process has
the tensor nonzeros and the necessary non-local matrix rows
residing in memory. Each process performs MTTKRP with
X q,r,s to compute Âpq,r,s . DMS uses the efficient fiber-
based data structure of SPLATT to parallelize MTTKRP with
OpenMP and to utilize the CPU cache hierarchy of modern
multi-core architectures [8]. The result of the multiplication
may have a combination of local and non-local rows. All
processes of layer q exchange non-local rows and add the
received partial products to their local Âpq,r,s . After this step
we have Â = X(1)(C � B) distributed row-wise among all
processes.

BᵀB and CᵀC are F×F matrices that comfortably fit
in the memory of each process. Assume BᵀB and CᵀC
are already resident in each process’ memory. Processes
redundantly compute M = (CᵀC ∗ BᵀB)−1 in O(F 3) time,
which is negligible for the very low-rank problems that we
are interested in. We compute the final matrix multiplication
in block form to exploit our distribution scheme

Ap1

Ap2

. . .
App

 =


Âp1

Âp2

. . .

Âpp

M =


Âp1M
Âp2M
. . .

ÂppM

 .
Node-level matrix multiplication is further parallelized with
OpenMP. We do a 1D decomposition on the rows of Api to
extract parallelism.

B. Column Normalization

After computing the new A, we normalize its columns
and store the norms in λ. Processes first compute the
column norms of Api

and collectively find the global λ with
a parallel reduction. Finally, each process normalizes the
columns of Api

with λ. Nodes parallelize the normalization
process by finding thread-local norms which are reduced in
parallel before the global λ is found.
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(a) X is distributed over a 2×3×2 grid.
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(b) Processes p2,:,: collectively own A2.
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(c) Process p7 owns X 2,3,1 and the
shaded factor rows. Shaded nonzeros
do not result in communication.

Figure 2: The 3D decomposition scheme used by DMS.

C. Exchanging the Updated Rows of A
All process layers must exchange the updated rows of A.

This communication is a dual of the MTTKRP exchange.
Any processes that sent partial MTTKRP products to process
i must now receive the updated rows of Api .

D. Forming the New AᵀA
Each process needs the updated AᵀA factor in order

to form M during the proceeding modes. We view the
block matrix form of the computation to derive a distributed
algorithm

AᵀA =
[

Aᵀ
p1

Aᵀ
p2

. . . Aᵀ
pp

] 
Ap1

Ap2

. . .
App

 =

p∑
i=1

Aᵀ
pi

Api .

Each process first forms its local Aᵀ
pi

Api
. A 1D decomposi-

tion on the rows of Api is used again to extract thread-level
parallelism. We then perform an All-to-All reduction to find
the final matrix and distribute it among all processes.

E. Residual Computation
Convergence is tested after every iteration. Residual com-

putation cost is bounded by 〈X ,Z〉, which uses 4F ·nnz(X )
FLOPs. We can instead cache Â and rewrite Equation (2)
as 〈X ,Z〉 =

1ᵀ


Âp1
∗ Ap1

Âp2
∗ Ap2

. . .

Âpp
∗ App

λ =

p∑
i=1

1ᵀ
(

Âpi
∗ Api

)
λ, (3)

where 1 is the vector of all ones. This reduces the com-
putation to 2IF FLOPs. Each process computes its own
local 1ᵀ

(
Âpi
∗ Api

)
λ. Thread-level parallelism is achieved

via 1D row decompositions on Âpi
and Api

. Finally, we
use a parallel reduction on each node’s local result and
form 〈X ,Z〉. DMS then iterates until the residual is below
some threshold or we have reached the maximum number
of iterations.

F. Complexity Analysis

The cost of CPD-ALS is bounded by MTTKRP and
its associated communication. Both 1D and 3D distributed
algorithms distribute work such that each process does
O(nnz(X )/p) work. They differ, however, in the overheads
associated with communication. In our discussion we will
use two collective communication operations: All-Reduce
and All-to-All. Derivation of their complexities can be found
in [16].

Assume that X is of dimension I×I×I and processes are
arranged in a 3

√
p× 3
√
p× 3
√
p grid. A 3D decomposition has

two communication overheads to consider: reducing non-
local rows during MTTKRP and sending updated rows of
Api after an iteration. In the worst case, every process has
nonzeros in all (I/ 3

√
p) slices of the layer. Processes must

send all but their owned rows, totaling

I
3
√
p
− I

p
=
I(p2/3 − 1)

p
.

The communication will involve all p2/3 processes in the
layer. Sending all (I/ 3

√
p) rows and adding to Âpi

is most
efficiently implemented as an All-Reduce communication
whose total complexity is

I(p2/3 − 1)

p
log p2/3 = O

(
I
3
√
p
log p

)
. (4)

The worst case of the update stage is sending (I/p) rows to
all p2/3 neighbors. The cost of this operation as an All-to-All
communication is

I

p

(
p2/3 − 1

)
= O

(
I
3
√
p

)
. (5)

Ultimately, the total overhead associated with our 3D de-
composition is the sum of Equations (4) and (5),

T 3D
o = O

(
I
3
√
p
log p

)
+O

(
I
3
√
p

)
= O

(
I
3
√
p
log p

)
. (6)



In comparison, a 1D decomposition will send up to (I/p)
rows to all p processes. The communication overhead due
to the 1D decomposition using an All-to-All communication
is

T 1D
o =

I

p
(p− 1) = O (I) . (7)

No partial MTTKRP results need to be communicated,
however, so Equation (7) is the only communication asso-
ciated with a 1D decomposition. Comparing Equations (6)
and (7) shows us that only the 3D decomposition has
scalable communication costs. We experimentally evaluate
this observation in Section VII-A.

G. Extensions to Higher Modes

Extending our distributed CPD-ALS algorithm to tensors
with an arbitrary number of modes is straightforward. Sup-
pose X is a tensor with n modes and we wish to compute
factors A(1),A(2), . . . ,A(n).

Our tensor distribution does an independent partitioning
of each mode to define process layers, resulting in an n-
dimensional tensor decomposition. During the partitioning
of a mode we do not use information from other modes.
Thus, there are no complications to consider when gener-
alizing to higher modes. Our factor partitioning is also not
dependent on the number of modes and is extended similarly.

An efficient MTTKRP algorithm for a general number of
modes is found in [8]. Adding partial products from neighbor
processes remains the same, with the only consideration
being that a layer is no longer a 2D group of processes,
but a group of dimension n−1.

Residual computation again is easily extended. General-
ized MTTKRP computes

Â
(1)

(i1, f) =
∑

X (i1, . . . , in)A(2)(i2, f) . . .A(n)(in, f)

and so we can directly use Equation (3) to complete the
residual calculation. Assuming Â

(1)
can be cached, our

algorithm does not increase in cost as more modes are added.

VI. EXPERIMENTAL METHODOLOGY

A. Experimental Setup

We implemented two versions of DMS. The first uses the
3D decomposition described in Section IV and is denoted
DMS-3D. Our second method, DMS-1D, uses a separate
1D decomposition for each mode. DMS-1D uses the same
computational kernels as DMS-3D but skips aggregation of
non-local MTTKRP products. Both DMS implementations
avoid storing unnecessary non-local factor rows. Only the
rows corresponding to non-empty tensor slices are stored
and communicated.

DMS is implemented in C with double-precision floating-
point numbers and 64-bit integers. DMS uses MPI for
distributed memory parallelism and OpenMP for shared

Table I: Summary of datasets.

Dataset I J K nnz density
Netflix 480K 18K 2K 100M 5.4e-06
Delicious 532K 17M 3M 140M 6.1e-12
NELL 3M 2M 25M 143M 9.0e-13
Amazon 5M 18M 2M 1.7B 1.1e-10
Random1 20M 20M 20M 1.0B 1.3e-13
Random2 50M 5M 5M 1.0B 8.0e-13

nnz is the number of nonzero entries in the dataset. K, M, and
B stand for thousand, million, and billion, respectively. density is
defined by nnz/(IJK).

memory parallelism. All source code is available for down-
load1. Source code was compiled with GCC 4.9.2 using
optimization level two.

We compare against DFACTO, which to our knowledge
is the fastest tensor factorization software available today.
DFACTO is implemented in C++ and uses MPI for dis-
tributed memory parallelism. DFACTO uses the same 1D
decomposition as DMS-1D, but each process explicitly
stores entire factors. All processes perform a local MTTKRP
and results are gathered so that all processes then have the
complete MTTKRP output. Factors are updated redundantly
on all processes and the iteration proceeds.

We used F = 16 for all experiments. Experiments were
carried out on HP ProLiant BL280c G6 blade servers on
a 40-gigabit InfiniBand interconnect. Each server had dual-
socket, quad-core Xeon X5560 processors running at 2.8
GHz and 22 gigabytes of available memory.

B. Datasets

Table I is a summary of the datasets we used for
evaluation. The Netflix dataset is taken from the Netflix
Prize competition [17] and forms a user-item-time ratings
tensor. NELL [2] is comprised of noun-verb-noun triplets.
Amazon [1] is a user-item-word tensor parsed from product
reviews. We used Porter stemming [18] on review text
and removed all users, items, and words that appeared
less than five times. Delicious is a user-item-tag dataset
originally crawled by Görlitz et al. [19] and is also available
for download. Random1 and Random2 are both synthetic
datasets with nonzeros uniformly distributed. They have the
same number of nonzeros and total mode length (i.e., output
size), but differ in the length of individual modes.

VII. RESULTS

A. Effects of Distribution on Communication Volume

Table II presents results for communication volume. We
define the communication volume as the total number of
factor rows sent and received per iteration, per MPI rank.
We only count communication that is a consequence of
the tensor decomposition, i.e., MTTKRP aggregation and
exchanging updated rows. The worst case communication

1http://cs.umn.edu/˜shaden/software/



Table II: Communication volume with eight MPI ranks.

Dataset Naive 1D 8x1x1 4x2x1 2x2x2
Netflix 937K 0.92 0.08 0.29 0.73
Delicious 38.5M 0.41 0.08 0.18 0.21
NELL 56.3M 0.41 0.13 0.17 0.23
Amazon 46.9M no-mem 0.19 0.16 0.19
Random1 112.5M no-mem 1.24 0.98 0.80
Random2 112.5M no-mem 0.31 0.44 0.79

Table values are the ratio of communication volume to Naive. The volume
is averaged over all MPI ranks. no-mem indicates the configuration required
more memory than available on eight nodes. Naive is the volume sent
using a pessimistic approach, Vmax. 1D is a separate one-dimensional
decomposition for each mode. 8x1x1, 4x2x1, and 2x2x2 are various 3D
configurations. Longer modes received more ranks in the non-symmetric
configurations.

volume for a mode results from sending (I/p) rows to p
processes and receiving I − (I/p) rows for a total volume
of 2I − (I/p). The maximum volume over all modes is

Vmax = 2I + 2J + 2K − I + J +K

p
.

Note that for 3D decompositions it is possible to communi-
cate Vmax during both MTTKRP aggregation and also row
updates. In practice, we found that Vmax was never reached.

DFACTO always has a communication volume of Vmax.
DMS-1D uses the same decomposition as DFACTO but
instead utilizes an optimistic approach in which only the
necessary factor rows are stored and communicated. Result-
ingly, DMS-1D has a smaller communication volume than
Vmax on all datasets that we were able to collect results for.

Despite the added communication step due to aggregation
of MTTKRP partial results, 3D configurations exhibited
lower communication volumes than 1D on all datasets. 3D
decompositions averaged 74% lower communication volume
than Vmax. Among the 3D configurations there is no clear
winner; the best configuration is closely tied to the lengths
of each tensor mode. Tensors with one mode significantly
longer than the rest (e.g., Netflix and Delicious) achieved the
best results when all ranks were used to partition the long
mode. In contrast, Random1, with its equal mode lengths,
performed best with a symmetric configuration.

B. Scaling

Table III compares the runtime and scalability of our
methods and DFACTO. We scale from two to sixty-four
nodes and measure the time to perform one iteration of CPD-
ALS. Each node has eight processors available which we
utilize. DMS is a hybrid MPI+OpenMP code and so we use
one MPI rank and eight OpenMP threads per node. We use
3D configurations that assign ranks proportional to mode
length. DFACTO is a pure MPI code and so we use eight
MPI ranks per node.

DMS is faster than DFACTO on all datasets. DMS-3D is
37× faster on Amazon and 67× faster on Delicious when
both methods use 64 nodes. Our success is due to several

key optimizations. DMS begins faster on small node counts
due to an MTTKRP algorithm which on average is over
5× faster [8]. As we add nodes, DMS out-scales DFACTO
due to its ability to exploit parallelism in the dense matrix
operations that take place after MTTKRP. DMS also uses
significantly less memory than DFACTO, which is unable to
factor some of our large datasets even with 64 nodes. This is
due to a combination of our optimistic factor storage and our
MPI+OpenMP hybrid code. DFACTO must replicate factors
on every core to exploit multi-core architectures. Even in
the worst case, DMS-1D only needs one copy of each (and
in practice, almost always less than one copy).

We see that a 3D decomposition is faster than 1D in all
cases and also has a smaller memory footprint, resulting
in the ability to compute on a smaller number of nodes
than 1D. The improvement in runtime can be attributed
to two details. First, DMS-3D consistently has a smaller
communication volume than DMS-1D and thus spends less
time communicating. Second, limiting the number of factor
rows which are accessed during MTTKRP results in better
utilization of the CPU cache hierarchy. Processes do the
same amount of work in both decompositions, but DMS-3D
accesses a smaller amount of memory during computation.

VIII. CONCLUSIONS AND FUTURE WORK

We introduced DMS, a CPD-ALS algorithm for dis-
tributed memory systems that uses a novel 3D tensor decom-
position. The decomposition reduced memory consumption,
communication volume, and resultingly, runtime. DMS was
implemented as a lightweight MPI+OpenMP hybrid that
further reduced memory footprint. We compared against a
state of the art distributed CPD-ALS tool and found DMS
to be over 35× faster on a tensor with 1.7 billion nonzeros
and over 65× faster on a tensor with 140 million nonzeros.

As tensor factorization continues to grow in popularity,
there exist several items of future work. Adding constraints
such as non-negativity is of serious interest to the commu-
nity. Distributed optimization algorithms such as ADMM
have been applied to tensor factorization with promising
results [12]. Likewise, methods which combine independent
factorizations show strong potential for large-scale parallel
architectures. We need more research on these algorithms
for the parallel architectures of today and tomorrow.
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Netflix Delicious NELL
Nodes DFACTO DMS-1D DMS-3D DFACTO DMS-1D DMS-3D DFACTO DMS-1D DMS-3D

2 6.07 0.99 0.88 no-mem 4.78 4.08 no-mem 6.71 6.57
4 3.24 0.56 0.39 no-mem 2.87 2.18 no-mem 3.98 3.51
8 1.90 0.46 0.19 28.01 1.93 1.30 no-mem 2.46 1.99

16 1.34 0.32 0.12 25.54 1.27 0.72 no-mem 1.57 1.37
32 0.95 0.17 0.07 24.93 0.77 0.68 no-mem 1.13 0.84
64 0.82 0.15 0.06 25.15 0.59 0.37 no-mem 0.65 0.53

(a)

Amazon Random1 Random2
Nodes DFACTO DMS-1D DMS-3D DFACTO DMS-1D DMS-3D DFACTO DMS-1D DMS-3D

4 no-mem no-mem no-mem no-mem no-mem no-mem no-mem no-mem no-mem
8 no-mem no-mem 6.06 no-mem no-mem 20.17 no-mem no-mem 15.91

16 64.14 10.60 3.25 no-mem 12.41 12.05 no-mem no-mem 7.43
32 50.91 7.22 1.88 no-mem 10.07 8.06 no-mem 8.96 5.84
64 45.29 6.83 1.21 no-mem 7.71 5.78 no-mem 5.16 3.64

(b)

Table III: Scaling Results. Table values are seconds per iteration of CPD-ALS. no-mem indicates the configuration required
more memory than available. Each node has eight cores.
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