Efficient Parallel Formulations for Some Dynamic Programming
Algorithms*

George Karypis and Vipin Kumar
karypis@cs.umn.edu and kumar@cs.umn.edu
Department of Computer Science
University of Minnesota

Minneapolis, MN 55414

TR 92-59, October 1992

Abstract

In this paper we are concerned with Dynamic Programming (DP) algorithms whose solu-
tion is given by a recurrence relation similar to that for the matrix parenthesization problem.
Guibas, Kung and Thompson presented a systolic array algorithm for this problem that uses
O(n?) processing cells and solves the problem in O(n) time. In this paper, we present three
different mappings of this systolic algorithm on a mesh connected parallel computer. The first
two mappings use commonly known techniques for mapping systolic arrays to mesh computers.
Both of them are able to obtain only a fraction of maximum possible performance. The pri-
mary reason for the poor performance of these formulations is that different nodes at different
levels in the multistage graph in the DP formulation require different amounts of computation.
Any adaptation has to take this into consideration and evenly distribute the work among the
processors. Our third mapping balances the work load among processors and thus is capable of
providing efficiency approximately equal to 1 (i.e. speedup approximately equal to the number
of processors) for any number of processors and sufficiently large problem. We present a theo-
retical analysis of these mappings and experimentally evaluate them on a mesh embedded onto
a 256 processor nCUBE/2*. It can be shown that our mapping can be used to efficiently map a
wide class of two dimension systolic array algorithms onto mesh connected parallel computers.

*This work was supported by IST/SDIO through the Army Research Office grant #28408-MA-SDI and by the
United States Army Research Office, Contract Number DAAL03-89-C-0038 at the University of Minnesota Army
High Performance Computing Research Center.

*nCUBE/2 is a registered trademark of nCUBE Corporation.

1 Introduction

Dynamic programming (DP) is a widely used problem solving paradigm for optimization problems
that is widely applied to a large number of areas including optimal control, industrial engineering,
economics and artificial intelligence [3, 4, 14, 18]. Many practical problems involving a sequence
of interrelated decisions can be efficiently solved by DP. The essence of many DP algorithms lies
in computing solutions of the smallest subproblems and storing the results for usage in computing
larger subproblems. Thus the solution to the original problem is constructed in a bottom-up fashion.
DP problems can be represented graphically as a multistage graph where each node represents a
subproblem. A node u is connected to an other node v with a directed arc if the subproblem wu is
used in solving the subproblem v. A natural method of parallelizing various DP algorithms is to
assign the task of of solving different subproblems to different processors.

A DP formulation is expressed as a recursive functional equation whose left-hand side is an
expression involving the maximization (or minimization) of values of some cost functions. Li and
Wah [11], have developed a classification of DP programming schemes according to the form of the
functional equations and the nature of the recursion. A DP formulation is called monadic if its cost
function involves only one recursive term, otherwise it is called polyadic. A DP formulation is serial
if the subproblems can be grouped in levels, and the solution to any subproblem in a certain level
can be found using subproblems that belong only in the immediately preceding levels, otherwise it
is non-serial. As it was shown in [11, 5] monadic-serial DP problems can be solved by a series of
matrix-vector multiplication which is easy to parallelize [5]. On the other hand there is no general
parallel formulation for polyadic-nonserial DP problems.

In this paper we are concerned with the polyadic-nonserial DP algorithms whose solution is given
by a recurrence relation similar to that for the matrix parenthesization problem [6]. Examples of
these problems are: optimal triangularization of polygons, optimal binary search trees [6], and the
CYK parser [1]. The serial complexity of these problems is O(n?). A number of parallel formulations
have been proposed in [9] that use O(n) processors on a hypercube and solves the problem in O(n?)
time. A systolic array algorithm has been proposed in [7] that uses O(n?) processing cells and solves
the problem in O(n) time. Finally, there are some non-cost-optimal parallel formulations for PRAM
machines that solve the problem in O(log® n) time using % processors [15, 16].

The systolic algorithm for two dimension systolic arrays can be directly mapped onto a mesh
connected parallel computer by assigning each cell to a different processor. This mapping leads to
poor utilization, because in general purpose parallel computers, the communication cost for sending
a unit message is much higher than unit computations. As shown in Ibara, Pong and Sohn [10], this
problem can be corrected by assigning a block of of cells to each processor. Now the computation
at each processor becomes proportional to the area of the block, and communication becomes
proportional to the periphery. By choosing big enough block sizes, the ratio of communication to
computation at each processor can be made arbitrarily small.

In this paper, we present three different formulations of the systolic algorithm [7] on a mesh
connected parallel computer. The first formulation is a mapping of the systolic algorithm on a two
dimension mesh computer along the lines proposed in [10]. This formulation results an upper bound
on the efficiency equal to % for sufficiently large number of processors. The second formulation is
a slightly modified version of the first scheme but also has an upper bound of % in efficiency. The
primary reason for the poor performance of these formulations is that different nodes at different
levels in the multistage graph require different amounts of computation. Any adaptation has to take
this into consideration and evenly distribute the work among the processors. The third formulation
uses a mapping that balances the work load among processors and thus is capable of providing

efficiency approximately equal to 1 for any number of processors and sufficiently large problem.
We present a theoretical analysis of these mappings and experimentally evaluate them on a mesh
embedded onto a 256 processor nCUBE/2.

This paper is organized as follows: Section 2 and 3 present an overview of the dynamic pro-
gramming algorithm and the available parallel formulations. Section 4 and 5 present and analyze
our various mappings of the systolic algorithm onto a mesh parallel computer. Section 6 presents
experimental results, and finally Section 7 provides some concluding remarks.

2 The Parenthesization Problem and the Dynamic Program-
ming Algorithm

The parenthesization and other isomorphic problems, can be efficiently solved using a dynamic
programming algorithm [6]. Consider the evaluation of the product of n matrices, Ay, Ay, ... A,,
where each A; is a matrix with 7,1 rows and r; columns. The order in which the matrices are
multiplied together can have a significant effect on the total number of operations required to
evaluate the product. Trying all possible orderings in which to evaluate the product of n matrices
so as to minimize the number of operations is an exponential process which is impractical when n
is moderately large. However, dynamic programming provides an O(n?) algorithm.

Let ¢(7,) be the cost of multiplying the matrices A;, Ai41,...4;. The dynamic programming
paradigm constructs the solution to this problem based on the solution of its subproblems. This
approach gives rise to the following recurrence relation for the parenthesization problem:

(i.f) = { Zgrggj{c(z,k) +e(k+1,7)4 ricargr;} 1 < z <j § n)
0 7=10<1<n
Given equation (1) the problem reduces to finding the value for ¢(1,n).

The solution to this recurrence relation, equation (1), is obtained by a bottom-up approach. An
auxiliary table C'[n][n] is used for storing the values of ¢(¢,7) and an other one S[n|[n] for storing
the optimal indices for k. The algorithm fills in the tables C' and S in a manner that corresponds
to solving the parenthesization problem on matrix chains of increasing length. We can graphically
visualize this if we think of filling in the tables in a diagonal order (see Figure 1). This concept
of diagonal oriented computations will be extensively used in the rest of this paper. For a more
detailed description refer to [6].

Computing entry ¢(%, j) requires computing the cost of (j—¢) possible parenthesizations and tak-
ing their minimum. This can be done in (j — ¢) operations. Hence, the exact sequential complexity
of the algorithm is: Z?:_ll(n—i)i = ”6—3 —&- For the rest of this paper, in order to simplify the compu-
tations, we will assume that elements of the k** diagonal require k& computations, where 1 < k < n.
For this case, the exact sequential complexity of the algorithm is: Y 7 ;(n — i+ 1)i = % + % + 3%,

which is approximately % for large enough n.

3 Parallel Formulations of the Dynamic Programming Algorithm

The dynamic programming algorithm for the parenthesization problem can be easily parallelized
using a linear array of p processors where 1 < p < n. This linear array formulation will compute
successive diagonals of matrix C' at successive steps. If there are I nodes in a diagonal, we assign I /p
nodes to each of the p processors. Each processor computes the cost of the entries ¢(¢, 7) assigned to

it. This is followed by an all-to-all broadcast [5] during which solution costs of the subproblems at
that diagonal are made known to all the processors. Since each processor has complete information
about subproblem costs at preceding diagonals, no communication is needed other than the all-
to-all broadcast. The cost of performing the all-to-all broadcast of O(%) information among p
processors is O(n) hence, The runtime of this formulation is O(%S) + O(n?), where O(”?f) is the
time spent in computation, and O(n?) communication time. If n is sufficiently larger than p,
then the communication time can be made to be an arbitrarily small fraction of the computation
time, and linear speedups can be obtained. An alternative mapping was proposed by Ibara , Pong
and Sohn in the context of the CYK parser [9]. Their formulation uses p = O(n) processors,
connected in a hypercube topology, and solves the problem in O(%S) time, which is cost optimal.
The formulation of Ibara et.al. has properties similar to the formulation for linear array mentioned
above. Both formulations are efficient only if p is sufficiently smaller than n.

@ processors on a PRAM machine. In this
mapping each processor computes an entry ¢(¢, 7) of the matrix C'. From equation 1, it can be shown
that having finished diagonal ¢, we can perform some computations on the subsequent {41 diagonals.
Thus, the work in diagonal n can start when diagonal 7 has been computed. Furthermore, we know

A faster formulation can be achieved using

that entries in diagonal n require n computations; hence, the runtime of this formulation is given
by the recurrence relation: T'(n) = T(%) 4+ n, whose solution for sufficiently large n is: T'(n) = 2n.
The exact processor-time product of the PRAM formulation is @ x 2n ~ n®; hence, even
though the PRAM algorithm is significantly faster, it does 6 times more work than the sequential
algorithm therefore its efficiency is only 0.167.

Guibas, Kung and Thomson [7] have developed a systolic algorithm for the parenthesization

problem. Their algorithm uses @

processing elements (cells) connected as a two dimension
systolic array (TSA) as shown in Figure 1, and solves the problem in in essentially the same time
as the PRAM algorithm outlined above. For the rest of this paper we will refer to this algorithm
as GKT. A brief description of the algorithm follows. For a more detailed description the reader
should refer to [7].

The inputs ¢(¢,¢) are applied in parallel to the cells with coordinates (7,7) and each cell (¢,)
computes ¢(¢,7). If a cell is computing an element of diagonal ¢, then its result is ready at time
2t. At that moment the cell starts transmitting its result upwards and to the right. The result
travels along both directions by moving by one cell per time unit for { additional units. From that
moment until eternity the result moves a cell every two time units. During a time unit a cell (7, 7)
will receive results for previous subproblems. If the new results improve the cost, they replace the
currently held values. At each time unit a cell receives at most two sets of results from smaller
subproblems, hence it has to perform at most two sets of computations.

The purpose of this paper is to investigate a number of possible mappings of the GKT algorithm
onto a mesh connected parallel computer [2] with p processors. A mesh connected parallel computer
has a structure similar to that of the TSA hence, the mapping of the TSA algorithm onto a mesh
can be done in a natural way. Furthermore, we will assume that the mesh connected parallel
computer has wrap-around communication links. This is done merely to simplify the presentation
and is not required by any of our proposed mappings.

]
’

A

(3.3) (5,4) (3,8) Diagonal 7
.(435? (4',6.) (4,7) (4,8)
Xs)l (5§)II ('sJ)I (5,8
Diagonal 3
LN
Diagonal 2
LN
Diagonal 1

Figure 1: GKT algorithm for a TSA

4 Mapping the Systolic Algorithm onto a Mesh Parallel Com-
puter

In the GKT algorithm as described in Section 2, results are communicated at two different speeds
(either once every time unit or twice every time unit). This guarantees that results arrive at a cell
when this cell is ready to use them. This is important for systolic algorithms, as a systolic array
is supposed to have only a small amount of memory at each cell. General purpose processors have
substantial amounts of memory which can be used to store results arriving at earlier times. In our
mappings, messages are transmitted with no delays. When messages are received at a processor
they are stored in local memory until they are used.

Despite the above simplification, mapping the GKT algorithm onto a mesh connected parallel
computer poses a number of problems. Direct implementation of the systolic algorithm (i.e. use of
@ processors) will lead to an inefficient algorithm and underutilization of the parallel computer.
This is because in general purpose parallel computers, the cost of sending an element to another
processor is much higher than the cost of performing the computations associated with that element.
For example in nCUBE/2, the cost of sending one element is 180us while the cost of performing a
computation is 4us for the parenthesization problem.

A solution to this problem is to map more than one TSA cell onto a single mesh processor.
The computations associated with each processor, in a time step, is usually proportional to the
number of cells assigned to it, while the communication is proportional to the number of cells it has

at the boundary. For example if we map % X == cells on each processor then the computations

VP
n2

is proportional to = while the communication is proportional to %. By varying the number of

processors, we can adjust the cost of communication to computation and hence obtain an efficient
parallel formulation.

Furthermore, an efficient mapping has to keep as many processors doing useful work as possible.
Due to the nature of the GKT algorithm, the computations will move in a wavefront form within
the TSA. At any given time in the execution of the algorithm, just a band of diagonal cells will be
performing computations, while the remaining cells will either have finished their share of work or
will be waiting to receive results for subproblems currently being computed. This computational
pattern will lead to cells sitting idle at various points of the execution of the algorithm, and
depending on the mapping might lead to processors sitting idle as well.

Finally, different cells in the GKT algorithm will perform different amounts of computation.
Each TSA cell will compute an entry ¢(7, 7). The amount of computation required is proportional
to the diagonal that ¢(7,7) belongs to. The higher the diagonal (:.e. greater the value of (j — ¢)),
the higher the amount of required computation. Hence, even though we might be able to map the
same number of cells onto each processor, the computations required may vary significantly.

Given these criteria for efficient mappings of the GK'T algorithm onto a mesh connected parallel
computer, we present and analyze three different mappings that address these issues to different
degrees. We assume that the mesh has \/p X \/p processors, and n is a multiple of \/p. These
mappings are described in the following sections.

4.1 Checkerboarding Mapping (CM)

¥l

An intuitive and straight forward mapping is to group blocks of % X5 cells together and map

them onto the same processor. In particular, let P; ; be the processor of the it" row and j** column
of the mesh, where 1 <4 < j <,/p. Each P; ; processor will compute the entries ¢(y,z) such that:
(i — 1)% +1<z< i% and (5 — 1)% +1<y< j%. Because of the triangular shape of the
TSA, processors P; ; for 7+ > j will not be assigned any TSA cells while, the processors P;; will be
assigned only ﬁ(% + 1) cells. Figure 2 illustrates this mapping. This mapping scheme is often

called checkerboarding and it has been used in a number of applications [8, 5, 10]. Each processor
has to store at most % rows and % columns; hence, the memory requirements at each processor
. 2
is O(%).

The only TSA cells that need to communicate with the surrounding processors are those along

the periphery of the block where for every diagonal received or computed each processor can perform

n2

computations on a number of diagonals residing on it. Hence, the computation performed is 0(7)
while the communication is O(%).

VP(/Pt1)

However, checkerboarding mapping has a number of limitations. It maps cells only to ¥—%——=

/pG/p-1) ’

processors, and thus the remaining 5 processors are idle all the time. Also due to the nature
of the algorithm, the band of diagonal entries being computed will reside on a small number of
adjacent diagonals of mesh processors. For example, after computing diagonal { we can perform
computations on the following min(¢ + 1,n — t) diagonals. Hence, during that time processors on
these diagonals processors will be performing computations while the remaining processors will
either have finished their work or will be waiting to receive diagonals that are currently being
computed. Finally, because computations associated with a cell increases as the number of the
diagonal containing this cell increases, different processors will have different work loads even
though they have the same number of TSA cells.

Pll

Figure 2: Checkerboarding Mapping

4.2 Modified Checkerboarding Mapping (MCM)

One of the limitations of the checkerboarding mapping is that it maps no work to about half of the
processors. The modified checkerboarding solves this problem and at the same time it preserves
the communication properties of CM.

The modified checkerboarding mapping is achieved as follows: First we partition the TSA into
3 blocks Ly, Ly and Lz as illustrated in Figure 3. Block Lg is partitioned in a checkerboarding
fashion into blocks each having ﬁ]_? X QTLW cells, and is mapped onto the processor mesh. Blocks L,
and Lo are rotated 180° about their common boundary with block Lz and then are mapped onto
the processor mesh in a checkerboarding fashion. An alternative way of visualizing this mapping is
to think that first the TSA is being folded along the common boundaries Ly — Lz and Ly — Lz and
5 X 5 square obtained, is mapped onto the \/p x /p processor mesh in a checkerboarding
fashion. Similarly to checkerboarding, the memory requirements by each processor is O(%)'

then the

This mapping guarantees that all the processors will have the same number of cells %, with the
exception of the processors F; i1 for 1 <@ < /p that have ﬁ additional cells. Also, it can

be easily seen that the work mapped to processors on the same row is roughly the same (with the
exception of the diagonal processors). The same statement though, doesn’t hold for the processors
along the same column. The processors at the first row do more work than those at the second, and
so forth. For example, each cell of a processor at the first row belongs to a diagonal that is by %
higher than the corresponding cell of the processor at the second row. Thus, the processors at the

first row has to perform % more computations. Similarly, the processors at the second row has

to perform % more computations than the processors at the third row, and so forth. Hence, even

(1,5) (1,6) (1,4) (1,3)] (1,7) (1,8) (1,2) (1,1)

(25) (26) (24) (23)| (27) (28) (2.2)

o3

(8,8)

(7,7) (7,8)

|4

(3,5) (3,6) (3,4) (3,3)] (3,7) (3,8)

(4,5) (4,6) (4,4) (4,7) (4,8)
(6,6) (5,7) (5,8)
(5,5) (5,6) (6,7) (6,8)

Figure 3: Modified Checkerboarding Mapping

though modified checkerboarding utilizes p processors, it does not eliminate work load imbalances.

4.3 Shuffling Mapping

The two mappings proposed so far didn’t fully address the various issues involved in efliciently
mapping the TSA algorithm onto a mesh connected parallel computer. Even though communication
locality was a property of both the checkerboarding and the modified checkerboarding mappings,
work load was unevenly distributed among the processors. Here we present a different mapping
that preserves the communication characteristics of checkerboarding and at the same time evenly
distributes the work among the processors.

This new mapping maps successive rows and columns of cells onto successive rows and columns
of the mesh respectively. In particular, the ¢(7,j) cell of the TSA is mapped onto the (((¢ —
1) mod v/P)+1,((j—1) mod v/P)+1) processor of the mesh. The above definition requires a wrap
around mesh but there is an alternative way of mapping the TSA that eliminates this requirement.
We can think of the TSA as being partitioned into columns each containing ,/p consecutive cells.
Then these ‘fat’ columns are being folded along their common boundaries and a column containing
/P cells of depth % is obtained. This column is again being partitioned into rows each having ,/p
cells and these rows are being folded along their common boundaries. The resulting /p x ,/p block
is then mapped onto the processor mesh. This mapping maps either %(% +1)or %(% —1) TSA
cells onto a mesh processor. Even though adjacent rows and columns of the TSA are being mapped
onto adjacent rows and columns of the processor mesh, the amount of communication performed
is similar to the checkerboarding scheme. This is because when cell ¢(%, j) sends its results to cell
c(i,j+ 1) then the result is also received by cells ¢(z,5 + 1+ ky/p) for k = 1,2,3,.... This mapping
is illustrated in Figure 4. For the rest of this paper this mapping will be referred to as shuffling.
A variation of this mapping was used in the context of shortest path on sparse graphs in [17]. The
memory requirements by each processor is O(%)'

(1,1) (1,3) (1,5) (1,7
(3,3) (3,5) (3,7

(5,5) (5,7

)
)
(5,7)
(7.7)

7.7

Y

(2,3) (2,5) (2,7) [(2,2) (2,4) (2,6) (2,8)
(4,5) (4,7) (4,4) (4,6) (4,8)
(6,7) (6,6) (6,8)

(8,8)

Figure 4: Shuffling mapping of a 8 x 8 TSA onto a 2 X 2 mesh.

Note that both in CM and MCM mappings, each processor is assigned portions of consecutive
diagonals where in SM each processors is assigned portions of diagonals that are /p apart. As we
know, the amount of work required to compute a diagonal increases as the diagonal increases; thus,
in the CM and MCM mappings the processors having higher diagonals will do more work than
those having lower ones. On the other hand, in SM, each processor is assigned an equal number
of low and high diagonals, thus the work allocated to each processor doesn’t vary significantly.
Furthermore, because consecutive TSA rows and columns reside on consecutive mesh rows and
columns, the processors will start working at an earlier time compared with either checkerboarding
or modified checkerboarding mappings.

5 Analysis of the Various Mappings

5.1 Definitions and Assumptions

This section contains various definitions used in the presentation and the analysis of the various
mappings.

n3

e Problem size W: the amount of computation performed by the serial algorithm. W ~ .

e Input size n: the number of matrices that the optimal parenthesization needs to be found.

e Number of processors p: the number of identical processors in the mesh available to solve the
problem.

e Unit computation time ¢.: the time taken for one unit of work. A unit of work is defined
as the time to calculate the cost of combining two subproblems and comparing the results
against the current minimum.

o Unit message transfer time ¢,,: the time required to send one piece of data between to adjacent
processors. A piece of data is defined to be the solution ¢(i, j) of a subproblem. If m pieces
of data is sent then the transfer time is mi,,.

o Message startup time ¢5: the time required to setup a message transfer operation. The startup
time is independent of the size of the transmitted message.

e Communication time Tclz%m: is the time spent by processor F; ; in performing communication
and idling. This is the time spent in sending and waiting for messages, and for possible idling
at the beginning of local computations.

e Computation time Tclzil’é: is the time spent by processor F; ; in performing computations.

P,

o Parallel Tun time 7},,: the execution time on a P processor mesh. Note that T),, =1’

P
Teopm for any processor P; ;.
e Speedup S: the ratio ~—
: Toar "

o Efficiency F: is the speedup divided by the number of processors. F denotes the effective
utilization of computing resources.

We assume that every time a message is send, the sending processor pays only the cost of setting
up the various parameters involved (i.e. message startup time ¢,) and it doesn’t pay the cost of the
message transition time. Also, the receiving processor can proceed working while the message is
being transmitted. These assumptions hold for most current generation parallel computers such as

nCUBE/2.

5.2 Scalability Analysis Using the Isoefficiency Function

If a parallel algorithm is used to solve a problem instance of a fixed size, then the efliciency decreases
as the number of processors P increases. The reason is that the total overhead increases with P.
For many parallel algorithms, for a fixed P, if the problem size W is increased, then the efliciency
becomes higher because the total overhead grows slower than W. For these parallel algorithms, the
efficiency can be maintained at a desired level with increasing number of processors, provided the
problem size is also increased. We call such algorithms scalable parallel algorithms.

For a given parallel algorithm, for different parallel architectures, the problem size may have to
increase as a different function of P in order to maintain a fixed efficiency. The rate that W has
to increase as a function P to keep the efliciency fixed is essentially what determines the degree
of scalability of the algorithm architecture combination. If W has to increase as an exponential
function of P, then the algorithm-architecture combination is poorly scalable. The reason for this is
that in this case it would be difficult to obtain good speedup on the architecture for a large number
of processors, unless the problem size being solved is enormously large. On the other hand if W
needs to grow linearly as a function of P then the algorithm-architecture combination is highly
scalable and can easily deliver linearly increasing speedup with increasing number of processors for
reasonable increments of problem sizes. If W needs to grow as fz(P) to maintain an efficiency F,
then fg(P) is defined to be the isoefficiency function for efficiency £ and the plot of fg(P) with
respect to P is defined to be the isoefficiency curve for efficiency £.

A lower bound on any isoefficiency function is that asymptotically, it should be at least linear.
This follows from the fact that all problems have a sequential (i.e. non decomposable) component.

10

Hence any algorithm which shows a linear isoefficiency on some architecture is optimally scalable on
that architecture. For the parenthesization problem, the lower bound on the isoefficiency is O(p!-%).
This is because the TSA algorithm requires O(n?) processors (i.e n* ~ p = n~ /p=> W ~ p'?).
For a more rigorous discussion on the isoefficiency metric and scalability analysis, the reader is
referred to [13, 12].

5.3 Analysis of Checkerboarding Mapping

In analyzing the performance of the checkerboarding mapping we will concentrate on the amount
P s
T)

of computation T

erformed by processor P; because this processor performs more com-
, P y p P p p
. P . .
utation than any other processor. Clearly, 7" V7 is a lower bound of the runtime of the parallel
P y p Y alc p
formulation.

Processor P 5 will compute elements {rom the last (2% — 1) diagonals. Note that each cell
along the (\/p — 1)% + 1 diagonal requires (,/p — 1)% + 1 computations where cells below this

diagonal require less work, and vice-versa. It is easily seen that the sum of the work of any two cells
that are symmetrically located across this diagonal is equal to twice the work of a cell on diagonal

(VP — 1)% + 1. Because there are %2 cells in processor Py /5, the total amount of computation

performed by this processor is:

P, 2 3 3 2
1,/P n n n n n n n
caic p c = n— — c = — c— ——l, _I_ —t.
/ ! 5 ((\/—)\/__ + 1)t (\/_ + 1)t t \/_t 1 (2)

From this equation we can see that the computations performed by processor Py s is %Stc

(ignoring lower order terms!). The sum of the work done by all the processors is at least n3t.,
which is six times more than the computations performed by the serial algorithm. Due to this
excess computations the efficiency of the parallel formulation is bounded by:
3
g 1
6 “C

= - =0.167 3
n3t., 6 (3)

E<

In practice, the parallel runtime of the algorithm will be much higher than TC]ZJI’C\/’7 due to a) com-
munication costs and b) idling during the beginning of the algorithm. It is shown in Appendix B
that assuming there are no communication costs (7.e. considering only the overheads due to idling),
the parallel runtime of the checkerboarding mapping is:

nd [UosyD)=1 log \/p n3
(? ((; y) v 3p\/ﬁ((10g\/]_)) -1) |t

Hence, for sufficiently large p, this expression reduces to %tc, and thus the upper bound in

efficiency is only % We have computed the upper bound in the efficiency for different number of
processors using this equation, and the results are shown in Table 1.

5.4 Analysis of Modified Checkerboarding Mapping

P
Similarly to the CM case, we will concentrate our analysis on the amount of computation T’ call;ﬁ7

performed by processor P 5, as this will be a lower bound of the runtime of this parallel formu-
lation.

!Because O(nQ) processors are being used, % = O(1) and "72 = O(1) where "73 = O(n)

11

p| 4 16 64 | 256 | 1024 | 4096
£ 10331017]0.13 | 0.10 | 0.09 | 0.083

Table 1: Efficiency upper bounds for the checkerboarding mapping.

For the modified checkerboarding mapping processor Py s is assigned work from all three
blocks L1, Ly and L3z. Due to symmetry the work from block L; and L5 is the same and is:

22‘/_ (57 NI 1 —¢)t.. The work from block L3 from a similar analysis to that for the checker-
boarding mapping is: Zp(n — \/— + 1)t.. Hence, the work assigned to processor Py 5 is:

2

2p
P 5 N . n
T, = 2 7 . | + —(n ———}—1
, 3 3 5 2 , 2
= et bt Tl (4)

16p,/p 6vp "

. . . c w3, g
From this equation we can see that the computations performed by processor Py g is: Iple (ig-
noring lower order terms); hence, the modified checkerboarding mapping performs 1.5 times more
computations than the optimal formulation. Due to this excess computations the efficiency of this
parallel formulation is bounded by:

9
E= 5 =3 =066 (5)

4:-|30,|c:|30,

Similarly to the checkerboarding mapping, equation (4) is just a lower bound and the actual
runtime will be higher due to communication costs and idling. It is shown in Appendix C that
assuming there are no communication costs (7.e. considering only the overheads due to idling), the
parallel runtime of the modified checkerboarding mapping is:

nd [logv? 0 n3
(_ (<) g;f) : <1ogﬁ>) 5

P\ iD 24p\/p

Hence, for sufficiently large p, this expression reduces to %tc, and thus the upper bound in ef-
ficiency is only % We have computed the upper bound on the efficiency for different number of
processors using this equation, and the results are shown in Table 2. Even though, the modified
checkerboarding mapping is an improvement over the checkerboarding mapping, it is unable to
provide efficiency close 1 even for arbitrary large n. As mentioned in Section 4.2, this is due to
work imbalances among successive rows of mesh processors.

5.5 Analysis of Shuffling Mapping

As we did in the analysis of the previous two mappings in analyzing the performance of shuffling
we will again concentrate on processor Py /. Processor P will calculate cells that belong in the

12

p| 4 16 64 | 256 | 1024 | 4096
£ 10721053043]0.39] 0.36 | 0.33

Table 2: Efficiency upper bounds for the modified checkerboarding mapping.

diagonals \/p,2,/p,...,n. The computation performed by this processor Tcalcf is:
%
Pl,\/ﬁ n
T = 1 —+1—2)p
calc ¢ P \/ﬁ f
3 2
n n n
= —let 5=l t+ Sl (6)

6p° 2y 3

It can be similarly shown, that the computations performed by any processor F;; is: Tj:il’i =

P
Tcall’cﬁ — (=14 p- j)”?f. Thus, in the worst case the computations performed by any other

processor will be smaller only by O(\T}—;). This imbalance becomes insignificant compared with the
work done by each processor as n increases. Nevertheless, in order to prove that shuffling yields
a parallel formulation capable of achieving efliciency of 1, we must compute the amount of time
spent by processor P JP in performing communications.

P
Computing Teony? is more complicated than computing T V? hecause the algorithm overlaps

calc
computations with communication. From Appendix A, we have that:

T < (Pt + (P 4)t + 20t (7)
comm —)y — n)te Tits
VP VP
From equation (6) and equation (7) we have that an upper bound on the the parallel runtime of
the algorithm is:
Tpar < Tc]z%m\{; + TPL\/F

calc

(nS + 3\7} A+ (\/; + n)ty, + 2nt, (8)
The efficiency of the algorithm is:
n?
E = ———5—— ?tcﬁ
(& + 3% + FIpte + (Zz + n)ipw + 2npl,
- 9P : 12p ¢ (9)

1+ (22 4+ 8y 4 (B2 4 Syte 4 1pLe

From equation (9) we can see that as n increases, the efficiency of the algorithm increases approach-
ing 1; hence, shuffling yields a cost optimal parallel formulation. Also, from this equation it can be
shown that the isoefficiency function is: O(p'®). This isoefliciency function is the same for both
the overheads due to extra work and also the overheads due to communication. Hence, shuffling
mapping can effectively utilize O(n?) processors.

13

6 Experimental Results

We implemented all three mappings of the GKT algorithm presented in Section 4 on an nCUBE/2
parallel computer. nCUBE/2 is a hypercube connected parallel computer and a well known mapping
[2] was used to embed a wrap around mesh on it.

A large number of experiments were made with different values of p and n. Some of these results
are shown in Table 3. In calculating these efficiencies, we used the runtime of the serial algorithm
on one processor, as the amount of work W.

From the results shown in Table 3, we can clearly see how the various mappings perform.
The shuffling mapping does significantly better than either the checkerboarding or the modified
checkerboarding mappings. For all schemes, the efficiencies increase with higher n, as the overheads
due to communication and idling become a smaller fraction of the actual work. For SM, the
efficiency goes all the way upto 1 (with increasing problem size), but for CM and MCM, it saturates
at a smaller value than 1 as predicted by the analysis presented in Section 5.3 and 5.4. The
saturation points for CM and MCM become smaller for larger number of processors as predicted
by the analysis. Comparing the points where the efficiency saturates at Table 3 with the theoretical
upper bounds in the efficiencies Tables 1 and 2 we see that they are very close. In particular, for
p = 16, the predicted upper bound for CM and MCM are .17 and .53 respectively, which are quite
close to the observed values .15 and .52. Similar statements are true for p = 64 and p = 256.

pl|n— 120 | 200 | 280 | 360 | 440 | 520 | 600 | 2000
CM A4) 15 | 15 15 15 15 15 15
16 | MCM | 35 | 45 | 47 49 5l .52 .52 .52
SM 44 | 63 | .74 .80 .84 .86 .89 97

n— 240 | 400 | 560 | 720 | 880 | 1040 | 1200 | 4000
CM A0 | 11) 11 A1 A1 A1 A1 A1
64 | MCM | 28 | 34 | .37 .39 41 42 42 42
SM 38 | BT | .69 75 .80 .82 .86 .96

n— 480 | 800 | 1120 | 1440 | 1760 | 2080 | 2400 | 8000
CM 08 | .09 | .09 .09 .09 .09 .09 .09
256 | MCM | 22 | .28 | .31 .33 37 .38 38 .38
SM 31 .50 | .64 .69 75 78 .83 95

Table 3: Efficiencies of the various mappings.

Finally, we constructed experimental isoefliciency graphs for the shuffling mapping. These
graphs were obtained by performing a large number of experiments for a range of » and p, and
then collecting the points with equal efficiency. These graphs are shown in Figure 5, where the
z — azis shows the number of processors in p'-® scale and the y — axis shows the work size W
in linear scale. Because the equal efficiency points are roughly on straight lines, we have that
W ~ p'? thus the isoefficiency of the shuffling mapping is O(p'®). The isoefficiency function
can be also seen in Table 3. Entries in the same column for different values of p, are for problem
sizes that increase at the same rate as /p. In the SM mapping, for O(plog p) isoefliciency, the
efficiencies for different number of processors should be the same in each column. As we can see
from this table, for small problems these efficiencies are not the same but decrease as the number
of processors increases. This is because the constant of proportionality in the isoefficiency term is

14

quite high. As the problem size increases though, the difference in the efliciencies decrease and for
suffliciently large problems they are almost the same.

3

W= 2
3e+4+09]
E=.82 ©—
E=.75 +—
2.5e+09- "6
E = .56 »%—
2e+4+09] B =46
1.5¢409
le+09-]
5e-4+08]
. T‘?
41.5161.5 641.5 2561.5
1.5
P

Figure 5: Isoefficiency graphs for the Shuffling Mapping

7 Conclusions

This paper presents a mapping of a two dimension systolic array on a mesh connected parallel
computer that balances work among processors and minimizes communication costs for a class of
systolic algorithms. In mapping of systolic algorithms similar to the parenthesization problem,
it is particularly important that work be evenly distributed. For example, checkerboarding and
modified checkerboarding mappings yield poor performance even if we assume that idling and
communication time is zero. On the other hand shuffling evenly distributes the work among the
mesh processors and yields efficiency approaching 1 for large enough problems. It can be shown
that the shuffling mapping can be used to efficiently map a wide class of TSA algorithms onto
mesh connected parallel computers. In particular, any TSA algorithm where the inputs to a cell
are forwarded with no changes can be mapped efficiently onto a mesh parallel computer using this

mapping.

Appendix A Upper Bound on the Communication Performed
by the Shuffling Mapping

. P, . . . P,
Computing TCOJT}L{E is more complicated than computing 7T Call’cﬁ

computations with communication. A precise analysis will complicate the presentation without

because the algorithm overlaps

15

further enhancing the qualitative and quantitative comparison of the different mappings. Instead
we compute an upper bound on the amount of communication performed. In order for processor
Py s to finish working on diagonal ky/p it has to receive the results from the previous /p — 1
diagonals. The diagonals before (k — 1),/p are already known because processor P,/ used them
to compute diagonal (k —1),/p. The time spent receiving the ,/p— 1 diagonals can be broken down
to the time spent receiving the diagonal (k¥ — 1),/p 4+ 1 from processor P ; and the time spent to
receive the subsequent /p— 2 diagonals. The former is: ((% +1—Fk)ty+15)(y/p—1) and the later

is: (2(% +1—Fk)t.+ (% + 1 —k)ty +t5)(/P — 2). Hence, an upper bound on Tfji,;{ﬁ is:

S

l+1—i)tc+(l

N, \/ﬁ‘}'l_i)tw‘l'ts)(\/—_Q)

TEE < ((% + 1 —)ty + ts) (Vvp—1)+ (2(

Il
—

7

n n

A
INgRE

2 ((ﬁ‘l‘l—’i)tw‘l'ts)\/ﬁ-l-(Q(ﬁ—l-1—i)tc+(\/ﬁ—|—1—i)tw—|—t5)\/]_)
< (n2 —I—n)tw—l—(ﬁ—l—n)tc—l—Qnts

S

VP

This equation is an upper bound because while the diagonals needed by processor P; s are being
transmitted, Py s will be performing computations thus, it will not be sitting idle waiting for
results.

Appendix B Tighter Efficiency Bound for Checkerboarding Map-
ping

In this section we are going to calculate a tighter upper bound on the efficiency of the checker-
boarding mapping. This upper bound is obtained by considering the costs due to computation and
idling. The overheads due to communication are ignored. For reasons, discussed in Section 5.3, we
are going to concentrate on processor Pl,\/z_?'

Let T} be the time from the point where processor Py ; for 1 <1 < ,/p, starts working on the
first diagonal assigned to it until it computes the %th diagonal. Note, that 7% also includes some
time spent on work done on the subsequent % diagonals.

Processor Py s starts working when it starts computing diagonal n — QLp + 1. For that to

happen, the % — % diagonal has to be computed. Note that this diagonal is the middle diagonal
assigned to processor P1 vi- We can compute the time required for this diagonal to be computed

5
NG
as the time required by processor P1 7 to start plus 73 2% .
T2
Hence, the time T'(n) required to compute diagonal n at processor Py s is given by the recur-

rence relation: v
n 1 VP
Tn)=T(=—-——)+T T 10
(=15~)+ BT+ 1, (10)
where 15 is the time required by processor P 5 to finish the last % diagonals. Also, we use N to
denote the problem size and differentiate it from the recurrence parameter n.
We can easily calculate the value of 77, if we make a simple assumption. We assume that when

a processors starts working on its first diagonal, it can also do some work on the other diagonals

16

assigned to it. It can be easily seen that this holds for all the processors but the first two. Given
this assumption, 77 is:

i n? n n 7 n
T = (i= -) =2) (—= - k)&
P VP P = VP
’Ilz n n n

X

N N? N N3 N3
T(n)=T(5 -)+ —(7 - =)~ 3,7+
2 L /P 3py/p - 3p\/P

Solving this equation with repeated substitution we get that:

log/p—1
712 \/_ (TL

T(n) = " ; E—%)—gpﬁ(bg\/ﬁ—l)

n? s VBl log\/p n?
= ;((; g)— Vi _3p\/ﬁ(10g\/]_)_1)

For sufficient large p, this equation simplifies to:

.
T(n)~ P
p

Thus, the efliciency of the checkerboarding mapping is bounded by:

3
2 1
E< %=

Appendix C Tighter Efficiency Bound for Modified Checkerboard-
ing Mapping

In this section we are going to calculate a tighter upper bound on the efficiency of the modified
checkerboarding mapping. This upper bound is obtained by considering the costs due to computa-
tion and idling. The analysis presented here is an extension of the analysis presented in Appendix B.

In order to simplify the analysis, we can consider that modified checkerboarding treats the
/P X /P mesh computer as a 2,/p x 2,/p mesh. Because of this, 7'(n) for modified checkerboarding

is:
3 log/p 3
T(n) = n” Z ll 3 1092\/]7 _n log /7
4p 2 2\/p 24p./p

1=0

17

Which for sufficiently large p it simplifies to:

T(n)= %

Thus, the effliciency of the checkerboarding mapping is bounded by:

3

n- 1
E< S =

P 3

References

[1]

[2]
3]

[4]
[5]

[6]

[7]

[10]

[11]

[12]

A.V. Aho and J.D. Ullman. The Theory of Parsing, Translation and Compiling, Vol. 1,
Parsing. Englewood Cliffs, NJ Prentice Hall, 1972.

S. G. Akl. The Design and Analysis of Parallel Algorithms. Prentice-Hall, 1989.

R. Bellman and S. Dreyfus. Applied Dynamic Programming. Princeton University Press,
Princeton, NJ, 1962.

U. Bertele and F. Brioschi. Nonserial Dynamic Programming. Academic Press, NY, 1972.

D. P. Bertsekas and J.N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods.
Prentice-Hall, 1989.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms.
MIT Press, McGraw-Hill, 1990.

L. J. Guibas, H. T. Kung, and C. D. Thompson. Direct VLSI Implementation of Combinalorial
Algorithms. In Proceedings of Conference on Very Large Scale Integration, California Institute
of Technology, pages 509-525, 1979.

Anshul Gupta and Vipin Kumar. On the scalability of Matriz Multiplication Algorithms on
Parallel Computers. Technical Report TR 91-54, Computer Science Department, University
of Minnesota, Minneapolis, MN 55455, 1991.

Oscar H. Ibara, Ting-Chuen Pong, and Stephen M. Sohn. Parallel Recognition and Parsing
on the Hypercube. IEEE Transactions on Computers, 40(6):764-770, June 1991.

Oscar H. Ibara and Stephen M. Sohn. On Mapping Systolic Algorithms onto the Hypercube.
IEEE Transaction on Parallel and Distributed Systems, 1(1):48-63, January 1990.

Guo jie Li and Benjamin W. Wah. Parallel Processing of Serial Dynamic Programming Prob-
lems. In Proc. COMPSAC 85, pages 81-89, 1985.

Vipin Kumar and Anshul Gupta. Analyzing Scalability of Parallel Algorithms and Architec-
tures. Technical report, TR-91-18, Computer Science Department, University of Minnesota,
June 1991. A short version of the paper appears in the Proceedings of the 1991 International
Conference on Supercomputing, Germany, and as an invited paper in the Proc. of 29th Annual
Allerton Conference on Communuication, Control and Computing, Urbana,IL, October 1991.

18

[13] Vipin Kumar and V. Nageshwara Rao. Parallel Depth-First Search, Part 11: Analysis. Inter-
national Journal of Parallel Programming, 16 (6):501-519, 1987.

[14] H. Ney. Dynamic programming as a technique for Pattern Recognition. In Proc. 6th Intl. Conf.
Pattern Recognition, pages 1119 — 1125, Oct. 1982.

[15] Wojciech Rytter. On Efficienct Parallel Computations for Some Dynamic Programming Prob-
lems. Theoretical Computer Science, 59:297-307, 1988.

[16] L. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff. Fast Parallel Computation of Polynomials
Using Few Processors. SIAM J. Computing, 12(4), 1983.

[17] Kumiko Wada and Nobuyuki Ichiyoshi. A Distributed Shortest Path Algorithm and Its Mapping
on the Multi-PSI. In Proceedings of Distribulted Massively Concurent Compulers., 1989.

[18] D. White. Dynamic Programming. Oliver and Boyd, Edinburgh, England, 1969.

19

