Efficient Parallel Mappings of a Dynamic Programming Algorithm: A
Summary of Results*

George Karypis and Vipin Kumar
karypis@cs.umn.edu and kumar@cs.umn.edu
Department of Computer Science
University of Minnesota
Minneapolis, MN 55414

Abstract

In this paper we are concerned with Dynamic Program-
ming (DP) algorithms whose solution is given by a recur-
rence relation similar to that for the matrix parenthesization
problem. Guibas, Kung and Thompson presented a systolic
array algorithm for this problem that uses O(n?) process-
ing cells and solves the problem in O(n) time. We present
three different mappings of this systolic algorithm on a
mesh connected parallel computer. The first two mappings
use commonly known techniques for mapping systolic ar-
rays to mesh computers. Both of them are able to obtain
only a fraction of maximum possible performance. The pri-
mary reason for the poor performance of these formulations
is that different nodes at different levels in the multistage
graph in the DP formulation require different amounts of
computation. Any adaptation has to take this into consid-
eration and evenly distribute the work among the proces-
sors. Our third mapping balances the work load among
processors and thus is capable of providing efficiency ap-
proximately equal to 1 (i.e., speedup approximately equal
to the number of processors) for any number of processors
and sufficiently large problem. We experimentally evaluate
these mappings on a mesh embedded onto a 256 processor
nCUBE/2*. It can be shown that our mapping can be used
to efficiently map a wide class of two dimension systolic
array algorithms onto mesh connected parallel computers.

1 Introduction

Dynamic programming (DP) is a widely used problem
solving paradigm for optimization problems that is widely
applied to a large number of areas including optimal con-
trol, industrial engineering, economics and artificial intel-
ligence [3, 4, 13, 17]. Many practical problems involv-
ing a sequence of interrelated decisions can be efficiently
solved by DP. The essence of many DP algorithms lies in
computing solutions of the smallest subproblems and stor-
ing the results for usage in computing larger subproblems.
Thus the solution to the original problem is constructed

*This work was supported by IST/SDIO through the Army Research
Office grant #28408-MA-SDI and by the United States Army Research
Office, Contract Number DAAL03-89-C-0038 at the University of Min-
nesota Army High Performance Computing Research Center.

*nCUBE;2 is a registered trademark of nCUBE Corporation.

1063-7133/93 $3.00 © 1993 IEEE

563

in a bottom-up fashion. A natural method of parallelizing
various DP algorithms is to assign the task of of solving
different subproblems to different processors.

A DP formulation is expressed as a recursive functional
equation whose left-hand side is an expression involving
the maximization (or minimization) of values of some cost
functions. Li and Wah [11], have developed a classification
of DP programming schemes according to the form of the
functional equations and the nature of the recursion. As it
was shown in {11, 5] monadic-serial DP problems can be
solved by a series of matrix-vector multiplication which is
easy to parallelize [S]. On the other hand there is no general
parallel formulation for polyadic-nonserial DP problems.

In this paper we are concerned with the polyadic-
nonserial DP algorithms whose solutionis given by a recur-
rence relation similar to that for the matrix parenthesization
problem [6]. Examples of these problems are: optimal tri-
angularization of polygons, optimal binary search trees [6],
and the CYK parser [1]. The serial complexity of these
problems is O(n3). A number of parallel formulations
have been proposed in [9] that use O(n) processors on a
hypercube and solves the problem in O(n?) time. A sys-
tolic array algorithm has been proposed in [7] that uses
O(n?) processing cells and solves the problem in O(n)
time. Finally, there are some non-cost-optimal parallel for-
mulations for PRAM machines that solve the problem in
O(log? n) time using n®/ log n processors [14, 15].

The systolic algorithm for two dimension systolic arrays
can be directly mapped onto amesh connected parallel com-
puter by assigning each cell to a different processor. This
mapping leads to poor utilization, because in general pur-
pose parallel computers, the communication cost for send-
ing a unit message is much higher than unit computations.
As shown in Ibara, Pong and Sohn [10], this problem can
be corrected by assigning a block of of cells to each pro-
cessor. Now the computation at each processor becomes
proportional to the area of the block, and communication
becomes proportional to the periphery. By choosing big
enough block sizes, the ratio of communication to compu-
tation at each processor can be made arbitrarily small.

In this paper, we present three different formulations
of the systolic algorithm [7] on a mesh connected parallel
computer. The first formulation is a mapping of the sys-
tolic algorithm on a two dimension mesh computer along
the lines proposed in [10]. This formulation results an upper

bound on the efficiency equal to 1/12 for sufficiently large
number of processors. The second formulation is a slightly
modified version of the first scheme but also has an upper
bound of 1/3 in efficiency. The primary reason for the poor
performance of these formulations is that different nodes
at different levels in the multistage graph require different
amounts of computation. Any adaptation has to take this
into consideration and evenly distribute the work among
the processors. The third formulation uses a mapping that
balances the work load among processors and thus is ca-
pable of providing efficiency approximately equal to 1 for
any number of processors and sufficiently large problem.
We present a theoretical analysis of these mappings and
experimentally evaluate them on a mesh embedded onto a
256 processor nCUBE/2.

This paper is organized as follows: Section 2 and 3
present an overview of the dynamic programming algorithm
and the available parallel formulations. Section 4 and 5
present and analyze our various mappings of the systolic
algorithm onto a mesh parallet computer. Section 6 presents
experimental results, and finally Section 7 provides some
concluding remarks.

2 The Parenthesization Problem and the Dy-
namic Programming Algorithm

The parenthesization and other isomorphic problems,
can be efficiently solved using a dynamic programming al-
gorithm [6]. Let (¢, 7) be the cost of multiplying the matri-
ces A;, Aiy1, - .. Aj. The dynamic programming paradigm
constructs the solution to this problem based on the solution
of its subproblems. This approach gives rise to the follow-
ing recurrence relation for the parenthesization problem:

1Sig}clgj5n{c(z, kY4 c(k+1,7) 4+ rimyrer;}

(54 =
.7) {o, 0<i=j<n

where matrix A; has r;_; rows and r; columns. Given
e?uati;)n (1) the problem reduces to finding the value for
¢(1,n).

The solution to this recurrence relation, equation (1),
is obtained by a bottom-up approach. An auxiliary table
C [ngn] is used for storing the values of c(z, j) and an other
one S[n][n] for storing the optimal indices for k. The algo-
rithm fills in the tables C'and S in a manner that corresponds
to solving the parenthesization problem on matrix chains
of increasing length. We can graphically visualize this if
we think of filling in the tables in a diagonal order (see
Figure 1). This concept of diagonal oriented computations
will be extensively used in the rest of this paper. For a more
detailed description refer to [6]. The complexity of this
algorithm is n®/6 for large enough n.

3 Parallel Formulations of the Dynamic Pro-
gramming Algorithm

The dynamic programming algorithm for the parenthe-
sization problem can be easily parallelized using a linear
array of p processors where 1 < p < n. This linear array
formulation will compute successive diagonals of matrix
C at successive steps. If there are I nodes in a diagonal,
we assign //p nodes to each of the p processors. Each
processor computes the cost of the entries ¢(7, j) assigned
to it. This is followed by an all-to-all broadcast [5] during
which solution costs of the subproblems at that diagonal

564

are made known to all the processors. Since each pro-
cessor has complete information about subproblem costs
at preceding diagonals, no communication is needed other
than the all-to-all broadcast. The cost of performing the
all-to-all broadcast of O(n/p) information among p pro-
cessors is O(n) hence, The runtime of this formulation is
O(n®/p) + O(n?), where O(n®/p) is the time spent in
computation, and O(n?) communication time. If n is suf-
ficiently larger than p, then the communication time can be
made to be an arbitrarily small fraction of the computation
time, and linear speedups can be obtained. An alterna-
tive mapping was proposed by Ibara , Pong and Sohn in
the context of the CYK parser [9]. Their formulation uses
p = O(n) processors, connected in a hypercube topology,
and solves the problem in O(n3/p) time, which is cost opti-
mal. The formulation of Ibara et.al. has properties similar
to the formulation for linear array mentioned above. Both
formulations are efficient only if p is sufficiently smaller
than n.

A faster formulation can be achieved using n(n + 1)/2
processors on a PRAM machine. In this mapping each
processor computes an entry c(¢, j) of the matrix C. From
equation 1, it can be shown that having finished diagonal ¢,
we can perform some computations on the subsequent ¢ - 1
diagonals. Thus, the work in diagonal » can start when di-
agonal n/2 has been computed. Furthermore, we know
that entries in diagonal » require n computations; hence,
the runtime of this formulation s given by the recurrence re-
lation: T'(n) = T(n/2)+n, whose solution for sufficiently
large n is: T'(n) = 2n. The exact processor—time product
of the PRAM formulationis n(n + 1)/2 x 2n & n3; hence,
even though the PRAM algorithm is significantly faster,
it does 6 times more work than the sequential algorithm
therefore its efficiency is only 0.167.

Guibas, Kung and Thomson [7] have developed a sys-
tolic algorithm for the parenthesization problem. Their
algorithm uses n(n+ 1) }22 processing elements (cells) con-
nected as a two dimension systolic array (TSA) as shown
in Figure 1, and solves the problem in essentially the same
time as the PRAM algorithm outlined above. For the rest
of this paper we will refer to this algorithm as GKT. A brief
description of the algorithm follows. For a more detailed
description the reader should refer to [7].

The inputs ¢(3, 7) are applied in parallel to the cells with
coordinates (i, ¢) and each cell (i, j) computes c(3, j). If a
cell is computing an element of diagonal ¢, then its result is
ready at time 2¢. At that moment the cell starts transmitting
its result upwards and to the right. The result travels along
both directions by moving by one cell per time unit for
additional units. From that moment until eternity the result
moves a cell every two time units. During a time unit a
cell (3, §) will receive results for previous subproblems. If
the new results improve the cost, they replace the currently
held values. At each time unit a cell receives at most two
sets of results from smaller subproblems, hence it has to
perform at most two sets of computations.

The purpose of this paper is to investigate a number
of possible mappings of the GKT algorithm onto a mesh
connected parallel computer [2] with p processors. A mesh
connected parallel computer has a structure similar to that
of the TSA; hence, the mapping of the TSA algorithm onto
a mesh can be done in a natural way. Furthermore, we
will assume that the mesh connected parallel computer has

Disgonai 8

Diagonal 7

Disgonal 3

Diagonsl 2

Disgons! 1

Figure 1: GKT algorithm for a TSA
wrap-around communication links. This is done merely to
simplify the presentation and is not required by any of our
proposed mappings.

4 Mapping the Systolic Algorithm onto a Mesh
Parallel Computer

In the GKT algorithm results are communicated at two
different speeds (either once every time unit or twice every
time unit). This guarantees that results arrive at a cell when
this cell is ready to use them. This is important for systolic
algorithms, as a systolic array is supposed to have only a
small amount of memory at each cell. General purpose
processors have substantial amounts of memory which can
be used to store results arriving at earlier times. In our
mappings, messages are transmitted with no delays. When
messages are received at a processor they are stored in local
memory until they are used.

Despite the above simplification, mapping the GKT al-
gorithm onto a mesh connected parallel computer poses a
number of problems. Direct implementation of the systolic
algorithm (i.e., use of n(n + 1)/2 processors) will lead to
an inefficient algorithm and underutilization of the parallel
computer. This is because in general purpose parallel com-
puters, the cost of sending an element to another processor is
much higher than the cost of performing the computations
associated with that element. For example in nCUBE/2,
the cost of sending one element is 1805 while the cost of
performing a computation is 4us for the parenthesization
problem.

A solution to this problem is to map more than one
TSA cell onto a single mesh processor. The computations
associated with each processor, in a time step, is usually
proportional to the number of cells assigned to it, while the
communication is proportional to the number of cells it has
at the boundary. By varying the number of processors, we
can adjust the cost of communication to computation and
hence obtain an efficient parallel formulation.

Furthermore, an efficient mapping has to keep as many
processors doing useful work as possible. Due to the nature
of the GKT algorithm, the computations will move in a
wavefront form within the TSA. At any given time in the
execution of the algorithm, just a band of diagonal cells will
be performing computations, while the remaining cells will
either have finished their share of work or will be waiting to

565

receive results for subproblems currently being computed.
This computational pattern will lead to cells sitting idle
at various points of the execution of the algorithm, and
depending on the mapping might lead to processors sitting
idle as well.

Finally, different cells in the GKT algorithm will per-
form different amounts of computation. Each TSA cell will
compute an entry c(z, 7). The amount of computation re-
quired is proportional to the diagonal that ¢(3, j) belongs to.
The higher the diagonal (i.e., greater the value of (j — 1)),
the higher the amount of required computation. Hence,
even though we might be able to map the same number of
cells onto each processor, the computations required may
vary significantly.

Given these criteria for efficient mappings of the GKT
algorithm onto a mesh connected parallel computer, we
present and analyze three different mappings that address
these issues to different degrees. We assume that the mesh
has \/p x ,/p processors, n is a multiple of /p, and P; ;

is the processor of the i** row and j** column. These
mappings are described in the following sections.

4.1 Checkerboarding Mapping (CM)

Anintuitive and straight forward mapping is to group blocks
of % X T/nT? cells together and map them onto the same
processor. Because of the triangular shape of the TSA,
processors P; ; fori > j will not be assigned any TSA cells

while, the processors P; ; will be assigned only 5&;(—\’/‘5 +

1) cells. Figure 2 illustrates this mapping. This mapping
scheme is often called checkerboarding and it has been
used in a number of applications [8, 5, 10]. the memory

requirements at each processor is O(\"‘/—;).

Py

Py Py,

Figure 2: Checkerboarding Mapping
The only TSA cells that need to communicate with the
surrounding processors are those along the periphery of
the block where for every diagonal received or computed
each processor can perform computations on a number of
diagonals residing on it. Hence, during each step, the com-
putation performed is O(n?/p) while the communication

is O(n/\/p).

However, checkerboardinf mapping has a number of
limitations. It maps cells only to |/5(/p + 1)/2 proces-
sors, and thus the remaining ,/p(./p — 1)/2 processors are
idle all the time. Also due to the nature of the algorithm,
the band of diagonal entries being computed will reside on
a small number of adjacent diagonals of mesh processors.
For example, after computing diagonal ¢ we can perform
computations on the following min(¢ + 1,n — t) diago-
nals. Hence, during that time processors on these diagonals
processors will be performing computations while the re-
maining processors will either have finished their work or
will be waiting to receive diagonals that are currently being
computed. Finally, because computations associated with
a cell increases as the number of the diagonal containing
this cell increases, different processors will have different
work loads even though they have the same number of TSA
cells.

4.2 Modified Checkerboarding Mapping
(MCM)

One of the limitations of the checkerboarding mapping is

that it maps no work to about half of the processors. The

modified checkerboarding solves this problem and at the

sCame time it preserves the communication properties of
M.

The modified checkerboarding mapping is achieved as
follows: First we partitionthe TSA into 3 blocks L, ,Laand
Ls as illustrated in Figure 3. Block Lj is partitioned in a
checkerboarding fashion into blocks each having ﬁ X ﬁﬁ
cells, and is mapped onto the processor mesh. Blocks L
and L, are rotated 180° about their common boundary with
block L3 and then are mapped onto the processor mesh in a
checkerboarding fashion. An alternative way of visualizin g
this mapping is to think that first the TSA is being folded
along the common boundaries L; — L3 and L, — L and
then the § x 2 square obtained, is mapped onto the N/231
processor mesh in a checkerboarding fashion.

This mapping guarantees that all the processors will
have the same number of cells '2‘—;, with the exception of
the processors P; 54q1-; for 1 < i < /P that have ﬁi

additional cells. Also, it can be easily seen that the work
mapped to processors on the same row is roughly the same
(with the exception of the diagonal processors). The same
statement though, doesn’t hold for the processors along the
same column. The processors at the first row do more work
than those at the second, and so forth. For example, each
cell of a processor at the first row belongs to a diagonal
that is by ﬁ; higher than the corresponding cell of the

processor at the second row. Thus, the processors at the
3 . P
first row has to perform ;2= more computations. Simi-
pe 4p\/p

larly, the processors at the second row has to perform %

more computations than the processors at the third row,
and so forth. Hence, even though modified checkerboard-
ing utilizes p processors, it does not eliminate work load
imbalances.

566

1518 a4H3) |aHay 12D
@50 EHR3) |eney @2

(88)
anas)
35066 (4063 |6.nes
43546 49 [CUTCR)
©.5) 5.7 (5.8)
(55)(5.6) (6,7)(6.8)

Figure 3: Modified Checkerboarding Mapping
4.3 Shuffling Mapping (SM)

The two mappings proposed so far didn’t fully address the
various issues involved in efficiently mapping the TSA al-
gorithm onto a mesh connected parallel computer. Even
though communication locality was a property of both the
checkerboarding and the modified checkerboarding map-
pings, work load was unevenly distributed among the pro-
cessors. Here we present a different mapping that preserves
the communication characteristics of checkerboarding and
at the same time evenly distributes the work among the
Processors.

This new mapping maps successive rows and columns of
cells onto successive rows and columns of the mesh respec-
tively. In particular, the c(, 5) cell of the TSA is mapped
onto the (((i — 1) mod v'P) +1,((j — 1) mod v/P) +1)
processor of the mesh. The above definition requires a wrap
around mesh but there is an alternative way of mapping the
TSA that eliminates this requirement. We can think of
the TSA as being partitioned into columns each containing
/P consecutive cells. Then these ‘fat’ columns are being
folded along their common boundaries and a column con-
taining /p cells of depth % is obtained. This column

is again being partitioned into rows each having , /p cells
and these rows are being folded along their common bound-
aries. The resulting , /p x /P block is then mapped onto the

processor mesh. This mapping maps either %(—\}5 +1)
or 7";(55 — 1) TSA cells onto a mesh processor. Even

though adjacent rows and columns of the TSA are being
mapped onto adjacent rows and columns of the processor
mesh, the amount of communication performed is similar
to the checkerboarding scheme. This is because when cell
c(4, j) sends its results to cell ¢(i, j + 1) then the result is
also received by cells e(i, j + 1+ ky/p) fork = 1,2,3,
This mapping is illustrated in Figure 4. For the rest of this
paper this mapping will be referred to as shuffling. A vari-
ation of this mapping was used in the context of shortest
path on sparse graphs in [16].

a.n)AL AN (1.2) (1,4) (1.6) (1.8)

G36E5HE 3436 (38)

G9HED (.6 (5.8)

an a®

@HE@HEn 2.2 (24 (26 28)
4547 (4,4) (46) (4.8) .

(G (66) (68)

@8

Figure 4: Shuffling mapping of a8 x 8 TSA ontoa 2 x 2

mesh.

eilote that both in CM and MCM mappings, each proces-
sor is assigned portions of consecutive diagonals where in
SM each processors is assigned portions of diagonals that
are ,/p apart. As we know, the amount of work required
to compute a diagonal increases as the diagonal increases;
thus, in the CM and MCM mappings the processors hav-
ing higher diagonals will do more work than those having
lower ones. On the other hand, in SM, each processor is
assigned an equal number of low and high diagonals, thus
the work allocated to each processor doesn’t vary signif-
icantly. Furthermore, because consecutive TSA rows and
columns reside on consecutive mesh rows and columns, the

567

processors will start working at an earlier time compared
with either checkerboarding or modified checkerboarding
mappings.
5 Analysis of the Various Mappings

We analyzed the performance of all the three different
mappings. Due to space limitations, in this section, we
will only present a summary of our analytical results. The
reader should refer to [12] for a detailed analysis. For rea-
sons, discussed in the previous section, checkerboarding
mapping does not manage to evenly distribute the work
among the processors. As a result of that, the maximum
obtained efficiency of CM is smaller than 1. The attain-
able efficiency depends on the number of processors, and
as p increases it approaches 1/12. Thus, the efficiency of
the checkerboarding mapping is bounded by 1/12 for suf-
ficiently large p. For similar reasons, the efficieny of the
modified checkerboarding mapping is bouned by 1/3 for
sufficiently large p. Clearly, MCM provides a significant
improvement over CM, but still it only utilizes 1/3 of the
processors efficiently. The dependence on the number of
processors and the upper bound on the efficiency of CM
and MCM is illustrated in Table 1. On the other hand, as »
increases, the efficiency of the shuffling mapping increases
approaching 1; hence, shuffling yields a cost optimal paral-
lel formulation. As pointed out in the previous section, the
upper bounds on the efficiency of CM and MCM is due to
poor work load balancing while, shuffling mapping man-
ages to evenly distribute the work among the processors.

P 4 16 64 256 | 1024 [4096
CM E 1033017 [013] 0.10 | 0.09 | 0.083
MCM | £ 1072 [053]| 043 | 039 | 036 | 033

Table 1: Analytical efficiency upper bounds for CM and
MCM formulations.

6 Experimental Results

We implemented all three mappings of the GKT algo-
rithm presented in Section 4 on an nCUBE/2 parallel com-
puter. nCUBE/2 is a hypercube connected parallel com-
puter and a well known mapping [2] was used to embed a
wrap around mesh on it.

A large number of experiments were made with different
values of p and n. Some of these results are shown in Ta-
ble 2. In calculating these efficiencies, we used the runtime
of the serial algorithm on one processor, as the amount of
work W.

From the results shown in Table 2, we can clearly see
how the various mappings perform. The shuffling mapping
does significantly better than either the checkerboarding or
the modified checkerboarding mappings. For all schemes,
the efficiencies increase with higher n, as the overheads due
to communication and idling become a smaller fraction of
the actual work. For SM, the efficiency goes all the way
upto 1 (with increasing problem size), but for CM and
MCM, it saturates at a smaller value than 1 as predicted by
the analysis presented in Section 5. The saturation points
for CM and MCM become smaller for larger number of
processors as predicted by the analysis. Comparing the
points where the efficiency saturates at Table 2 with the
theoretical upper bounds in the efficiencies Table 1 we see
that they are very close. In particular, for p = 16, the
predicted upper bound for CM and MCM are .17 and .53

respectively, which are quite close to the observed values
.15 and .52. Similar statements are true for p = 64 and
p = 256.

pl | n— 200 | 280 360 | 520 | 600 [2000
CM 15 .15 .15 15 .15 .15
16 { MCM | 45 47 .49 52 52 52
SM .63 .74 .80 .86 .89 .97

n— 400 [560 720 | 1040 [1200 | 4000
CM .11 11 11 .11 11 .11
64 | MCM | .34 37 .39 42 42 42
SM .57 .69 5 82 .86 .96

n— 800 | 1120 | 1440 | 2080 [2400 | 8000
CM .09 .09 .09 .09 .09 09
256 | MCM | .28 .31 33 .38 .38 38
SM .50 .64 .69 .78 .83 95

Table 2: Efficiencies of the various mappings.

7 Conclusions

This paper presents a mapping of a two dimension sys-
tolic array on a mesh connected parallel computer that bal-
ances work among processors and minimizes communica-
tion costs for a class of systolic algorithms. In mapping of
systolic algorithms similar to the parenthesization problem,
it is particularly important that work be evenly distributed.
For example, checkerboarding and modified checkerboard-
ing mappings yield poor performance even if we assume
that idling and communication time is zero. On the other
hand shuffling evenly distributes the work among the mesh
processors and yields efficiency approaching 1 for large
enough problems. It can be shown that the shuffling map-
ping can be used to efficiently map a wide class of TSA
algorithms onto mesh connected parallel computers. In
particular, any TSA algorithm where the inputs to a cell are
forwarded with no changes can be mapped efficiently onto
a mesh parallel computer using this mapping.

References
(1] A.V. Aho and J.D. Ullman. The Theory of Parsing,
Translation and Compiling, Vol. 1, Parsing. Engle-
wood Cliffs, NJ Prentice Hall, 1972.

[2] S.G. AKl. The Design and Analysis of Parallel Algo-
- rithms. Prentice-Hall, 1989.

[3] R. Bellman and S. Dreyfus. Applied Dynamic Pro-
gramming. Princeton University Press, Princeton, NJ,
1962.

[4] U. Bertele and F. Brioschi. Nonserial Dynamic Pro-
gramming. Academic Press, NY, 1972,

[5] D.P. Bertsekas and J.N. Tsitsiklis. Parallel and Dis-
tributed Computation: Numerical Methods. Prentice-
Hall, 1989.

[6] Thomas H. Cormen, Charles E. Leiserson, and
Ronald L. Rivest. Introduction to Algorithms. MIT
Press, McGraw-Hill, 1990.

[7] L.J. Guibas, H. T. Kung, and C. D. Thompson. Direct
VLSI Implementation of Combinatorial Algorithms.

568

In Proceedings of Conference on Very Large Scale
Integration, California Institute of Technology, pages
509-525, 1979.

Anshul Gupta and Vipin Kumar. On the scalabil-
ity of Matrix Multiplication Algorithms on Parallel
Computers. Technical Report 91-54, Computer
Science Department, University of Minnesota, Min-
neapolis, MN 55455, 1991.

Oscar H. Ibara, Ting-Chuen Pong, and Stephen M.
Sohn. Parallel Recognition and Parsing on the Hyper-
cube. IEEE Transactions on Computers, 40(6):764—
770, June 1991.

Oscar H. Ibara and Stephen M. Sohn. On Mapping
Systolic Algorithms onto the Hypercube. IEEE Trans-
action on Farallel and Distributed Systems, 1(1):48~
63, January 1990.

Guo jie Li and Benjamin W. Wah. Parallel Processing
of Serial Dynamic Programming Problems. In Proc.
COMPSAC 85, pages 81-89, 1985.

George Karypis and Vipin Kumar. Efficient Paral-
lel Mappings of a Dynamic Programming Algorithm.
Technical Report 92-59, University of Minnesota,
Computer Science Departement, October 1992.

8

i

9

(10]

(11]

(12]

[13] H. Ney. Dynamic programming as a technique for
FPattern Recognition. In Proc. 6th Intl. Conf. Pattern

Recognition, pages 1119 — 1125, Oct. 1982.

[14] WojciechRytter. On Efficienct Parallel Computations
for Some Dynamic Programming Problems. Theoret-
ical Computer Science, 59:297-307, 1988.

[15] L. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff.
Fast Farallel Computation of Polynomials Using Few
Processors. SIAM J. Computing, 12(4), 1983.

[16] Kumiko Wada and Nobuyuki Ichiyoshi. A Distributed
Shortest Path Algorithm and Its Mapping on the Multi-
PSI. In Proceedings of Distributed Massively Con-
curent Computers., 1989.

{17] D. White, Dynamic Programming. Oliver and Boyd,
Edinburgh, England, 1969.

