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Abstract. In recent years the development of computational techniques that build
models to correctly assign chemical compounds to various classes or to retrieve po-
tential drug-like compounds has been an active area of research. Many of the best-
performing techniques for these tasks utilize a descriptor-based representation of the
compound that captures various aspects of the underlying molecular graph’s topology.
In this paper we compare five different set of descriptors that are currently used for
chemical compound classification. We also introduce four different descriptors derived
from all connected fragments present in the molecular graphs primarily for the purpose
of comparing them to the currently used descriptor spaces and analyzing what proper-
ties of descriptor spaces are helpful in providing effective representation for molecular
graphs. In addition, we introduce an extension to existing vector-based kernel func-
tions to take into account the length of the fragments present in the descriptors. We
experimentally evaluate the performance of the previously introduced and the new
descriptors in the context of SVM-based classification and ranked-retrieval on 28 clas-
sification and retrieval problems derived from 18 datasets. Our experiments show that
for both of these tasks, two of the four descriptors introduced in this paper along with



the extended connectivity fingerprint based descriptors consistently and statistically
outperform previously developed schemes based on the widely used fingerprint- and
Maccs keys-based descriptors, as well as recently introduced descriptors obtained by
mining and analyzing the structure of the molecular graphs.
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1. Introduction

Discovery, design and development of new drugs is an expensive and challenging
process. Any new drug should not only produce the desired response to the dis-
ease but should do so with minimal side effects. One of the key steps in the drug
design process is the identification of the chemical compounds (hit compounds
or just hits) that display the desired and reproducible behavior against the spe-
cific biomolecular target [33]. This represents a significant hurdle in the early
stages of drug discovery. Therefore, computational techniques that build models
to correctly assign chemical compounds to various classes or retrieve compounds
of desired class from a database have become popular in the pharmaceutical
industry.

Over the last twenty years extensive research has been carried out to identify
representations of molecular graphs that can build good classification models or
retrieve actives from a database in an effective way. Towards this goal, a number
of different approaches have been developed that represent each compound by a
set of descriptors that are based on frequency, physiochemical properties as well
as topological and geometric substructures (fragments) [3, 4, 18,25,38,42,49].

Historically, the best performing and most widely used descriptors have been
based on fingerprints, which represent each molecular graph by a fixed length
bit-vector derived by enumerating all bounded length paths in the graph (e.g.,
Daylight [3]), fingerprints that consists of fragments of increasing size around
atoms (Extended connectivity based descriptors [24,38]), and on sets of fragments
that have been identified a priori by domain experts (e.g., Maccs keys [4, 14]).
However, in recent years, research in the data mining community has generated
new classes of descriptors based on frequently occurring substructures [18] and
selected cycles & trees [25] that have been shown to achieve promising results.

In this paper, we try to understand which aspects of the molecular graph are
important in providing effective descriptor-based representations in the context
of SVM-based chemical compound classification and ranked-retrieval. We also
study the effectiveness of various descriptor-based similarity measures for both
deriving kernel functions for SVM-based classification and for ranked-retrieval.
The five previously developed descriptors that we study are fingerprints [10],
extended connectivity fingerprints [5, 38], Maccs keys [4], Cycles & trees [25]
and frequent subgraph-based descriptors [18]. Each of these descriptors repre-
sent certain inherent choices that are made in designing any substructure based
descriptor space. In order to better understand the strengths and weaknesses of
the design choices and their impact on classification and retrieval performance,
we also introduce a new set of fragment-based descriptors. These descriptors are
derived from the set of all connected fragments present in the molecular graphs
(graph fragments or GF) and three of its subsets.

We perform a detailed analysis of the design choices of these nine descriptors



and also conduct an experimental study on these descriptors using 28 differ-
ent classification and retrieval problems derived from 18 datasets. Our study
compares the performance achieved by the various descriptors and provides key
insights on how the topology, discovery method, exactness and completeness of
representation affects the performance. Our experiments also show that for both
the classification and the retrieval tasks the GF descriptors are equivalent to ex-
tended connectivity fingerprints and consistently and statistically outperformed
all the other methods studied in this paper. Moreover, a kernel function intro-
duced in this paper that takes into account the length (size) of the fragments
present in the set of descriptors lead to better overall results, especially when
used with the GF-based descriptors.

The rest of the paper is organized as follows. Section 2 provides some back-
ground on the molecular graph representation of chemical compounds. Section
3 describes the previously developed descriptors. Section 4 provides a detailed
description of the characteristics of various descriptor spaces. Section 5 describes
the various descriptor spaces introduced in this paper. Section 6 provides a de-
scription of the various kernel functions used. Section 7 contains experimental
evaluation techniques and results. Section 8 contains discussion of the various
descriptors in the light of the results and provides concluding remarks on this
work.

2. Representation of Compounds

In this paper we represent each compound by its corresponding molecular graph
[29]. The vertices of these graphs correspond to the various atoms (e.g., carbon,
nitrogen, oxygen, etc.), and the edges correspond to the bonds between the
atoms (e.g., single, double, etc.). Each of the vertices and edges has a label
associated with it. The labels on the vertices correspond to the type of atoms
and the labels on the edges correspond to the type of bonds. Specifically, we
use atomic numbers or a unique identifiers for each atomic number as the atom
typing for vertices. For the edge labels, we use separate integers or identifiers
for single, double and triple bonds. We also apply two commonly used structure
normalization transformations [33]. First, we label all bonds in aromatic rings as
aromatic (i.e., a different edge-label), and second, we remove the hydrogen atoms
that are connected to carbon atoms (i.e., hydrogen-suppressed chemical graphs).
To generate fingerprints and Maccs keys we use the Smiles [3] representation as
an input.

3. Overview of Existing Descriptor Spaces

3.1. Fingerprints (fp-n)

Fingerprints are used to encode structural characteristics of a chemical com-
pound into a fixed bit vector and are used extensively for various tasks in chem-
ical informatics. These fingerprints are typically generated by enumerating all
cycles and linear paths up to a given number of bonds and hashing each of these
cycles and paths into a fixed bit-string [3,10]. The specific bit-string that is gen-
erated depends on the number of bonds, the number of bits that are set, the
hashing function, and the length of the bit-string. The key property of these



fingerprint descriptors is that they encode a very large number of sub-structures
into a compact representation. Many variants of these fingerprints exist, some
use predefined structural fragments in conjunction with the fingerprints (Unity
fingerprints [6]), others count the number of times a bit position is set (holo-
gram [7]), etc. In [30], it is shown that the performance of most of these finger-
prints is comparable. We will refer to these descriptors as fp-n where n is the
number of bits that are used.

3.2. Extended Connectivity Fingerprints (ECFP)

Molecular descriptors and fingerprints based on the extended connectivity con-
cept have been described by several authors [24,38]. Recently, these fingerprints
have been popularized by their implementation within Pipeline Pilot [5]. These
fingerprints are generated by first assigning some initial label to each atom and
then applying a Morgan type algorithm [35] to generate the fingerprints. Mor-
gan’s algorithm consists of l iterations. In each iteration, a new label is generated
and assigned to each atom by combining the current labels of the neighboring
atoms (i.e, connected via a bond). The union of the labels assigned to all the
atoms over all the l iterations are used as the descriptors to represent each com-
pound.

The key idea behind this descriptor generation algorithm is to capture the
topology around each atom in the form of shells whose radius ranges from 1 to
l. Thus, these descriptors can capture rather complex topologies. The value for
l is a user supplied parameter and typically ranges from two to five.

To control the length of the labels they are often represented by fixed-width
integers (e.g 32 bits), and the new label is generated by applying an arithmetic
or logical operation on the labels of the neighboring atoms. As a result, the same
label can potentially be assigned to multiple atoms, even when the topology of
their surrounding shells are different. However, detailed studies have shown that
such “collisions” are usually rare [5,38]. We will refer to this descriptor as ECFP.

3.3. Maccs Keys (MK)

Molecular Design Limited (MDL) created the key based fingerprints (Maccs
Keys) [4] based on pattern matching of a chemical compound structure to a
pre-defined set of structural fragments that have been identified by domain ex-
perts [19]. Each such structural fragment becomes a key and occupies a fixed
position in the descriptor space. This approach relies on pre-defined rules to en-
capsulate the essential molecular descriptors a-priori and does not learn them
from the chemical dataset. This descriptor space is notably different from fin-
gerprint based descriptor space. Unlike fingerprints, no folding (hashing) is per-
formed on the sub-structures. We will use the 166 structural keys by Molecular
Design Limited (MDL) and will refer to this descriptor space as MK.

3.4. Cyclic patterns and Trees (CT)

Horovath et al [25] developed a method that is based on representing every com-
pound as a set of cycles and certain kinds of trees. In particular, the idea is to



identify all the biconnected components (blocks) of a chemical graph. Once these
blocks are identified, the first set of features is generated by enumerating up to
a certain number of simple cycles (bounded cyclicity) for the blocks. Once the
cycles are identified, all the blocks of the chemical graph are deleted. The result-
ing graph is a collection of leftover trees forming a forest. Each such tree is used
as a descriptor. The final descriptor space is the union of the cycles and leftover
trees. The tree patterns used in this representation are of a specific topology and
size that depends on the position of blocks in the chemical graph. We will refer
to this descriptor space as CT.

3.5. Frequent Sub-structures (FS)

A number of methods have been proposed in recent years to find frequently
occurring sub-structures in a chemical graph database [26, 32, 36, 51]. Frequent
sub-structures of a chemical graph database D are defined as all sub-structures
that are present in at least σ (σ ≤ |D|) of compounds of the database, where σ
is the absolute minimum frequency requirement (also called absolute minimum
support constraint). These frequent sub-structures can be used as descriptors for
the compounds in that database. One of the important properties of the sub-
structures generated, like Maccs Keys, is that they can have arbitrary topology.
Moreover, every sub-structure generated is connected and frequent (as deter-
mined by the minimum support constraint σ).

Descriptor space formed out of frequently occurring sub-structures depends
on the value of σ. Therefore, unlike the Maccs keys, the descriptor space can
change for a particular problem instance if the value of σ is changed. Moreover,
unlike fingerprints, all frequent subgraphs irrespective of their size (number of
bonds) form the descriptor space. A potential disadvantage of this method is
that it is unclear how to select a suitable value of σ for a given problem. A very
high value will fail to discover important sub-structures whereas a very low value
will result in combinatorial explosion of frequent subgraphs. We will refer to this
descriptor space as FS.

4. Characteristics of Descriptor Spaces

A careful analysis of the five descriptor spaces described in Section 3 illustrate
four dimensions along which these schemes compare with each other and repre-
sent some of the choices that have been explored in designing fragment-based
(or fragment-derived) descriptors for chemical compounds. Table 1 summarizes
the characteristics of these descriptor spaces along the four dimensions. The first
dimension is associated with whether the fragments are determined directly from
the dataset at hand or they have been pre-identified by domain experts. Maccs
keys is an example of a descriptor space whose fragments have been determined
a priori whereas in all other schemes used in this study, the fragments are deter-
mined directly from the dataset. The advantage of an a priori approach is that
sub-structures of arbitrary topology can form a part of the descriptor space.
Moreover, the sub-structures selected encode domain knowledge in a compact
descriptor space. But it also has a disadvantage of potentially not being able to
adapt to the characteristics for a particular dataset and classification problem.

The second dimension is associated with the topological complexity of the ac-



tual fragments. On one end of the spectrum, schemes like fingerprints use rather
simple topologies consisting of paths and cycles, whereas on the other end, fre-
quent sub-structure-based descriptors allow topologies with arbitrary complex-
ity. Topologically complex fragments along with simple ones might enrich the
descriptor space.

The third dimension is associated with whether or not the fragments are being
precisely represented in the descriptor space. For example, most schemes gener-
ate descriptors that are precise in the sense that there is a one-to-one mapping
between the fragments and the dimensions of the descriptor space. In contrast,
due to the hashing approach that they use or the fixed-length of their representa-
tion, descriptors such as fingerprints and extended connectivity fingerprints lead
to imprecise representations (i.e., many fragments can map to the same dimen-
sion of the descriptor space). Depending on the number of these many-to-one
mappings, these descriptors can lead to representations with varying degree of
information loss.

Finally, the fourth dimension is associated with the ability of the descriptor
space to cover all (or nearly all) of the dataset. Descriptor spaces created from
fingerprints, extended connectivity fingerprints, and cycles & trees are guaran-
teed to contain fragments or hashed fragments from each one of the compounds.
On the other hand, descriptor spaces corresponding to Maccs keys and frequent
sub-structures may lead to a descriptor-based representation of the dataset in
which some of the compounds have no (or a very small number) of descriptors.
A descriptor space that covers all the compounds of a dataset has the advantage
of encoding some amount of information for every compound.

From the above discussion it seems that descriptor spaces that are determined
dynamically from the dataset, use fragments with simple and complex topologies,
lead to precise representations, and have a high degree of coverage may be ex-
pected to perform better in the context of chemical compound classification and
retrieval as they allow for a better representation of the underlying compounds.
The descriptors that come closest to satisfying all the desirable properties are
ECFP, CT and FS. ECFP virtually satisfies all of the properties except pre-
cise representation since there is the possibility of collisions [5,38]. On the other
hand, CT does not attempt to enumerate trees (only cycles are enumerated).
Furthermore, the tree topologies depend on the location of blocks in the molec-
ular graph. Lastly, FS suffers from potential incomplete coverage depending on
the support threshold.

5. Graph Fragment based Descriptor Spaces

To better study the impact of the above design choices, we introduce a new de-
scriptor space that we believe better captures the desired characteristics along the
above four dimensions. Like FS, this descriptor space is determined dynamically
from the dataset, the topology of the fragments that it consists of are arbitrary
connected fragments and leads to a precise representation. However, unlike FS,
which may suffer from partial coverage, the new descriptor is ensured to have
100% coverage by eliminating the minimum support criterion and generating all
fragments. In order to control the exponential number of fragments generated
we replace the minimum support criterion in FS with an upper bound. Thus,
this descriptor space consists of all connected fragments up to a given length l
(i.e., number of bonds) that exist in the dataset at hand. We will refer to this



Table 1. Design choices made by the descriptor
spaces.

Previously developed descriptors

Topological Complexity Generation Precise Complete Coverage
MK Low to High static Yes Maybe
fp Low dynamic No Yes
CT Medium dynamic Yes Yes
FS Low to High dynamic Yes Maybe
ECFP Low to High dynamic Maybe Yes

GF-based descriptors

Topological Complexity Generation Precise Complete Coverage
PF Low dynamic Yes Yes
TF Medium dynamic Yes Maybe
AF Medium dynamic Yes Yes
GF Low to High dynamic Yes Yes

descriptor space as Graph Fragments (GF). The algorithm to efficiently generate
this descriptor space is described in Appendix A.

In addition, we also derive three other sets of fragments from the set of all
graph fragments. The first, termed as Tree Fragments (TF), is the collection of all
fragments that have at least one node of degree greater than two and contains
no cycles. This set forms all the tree fragments. The second set, called Path
Fragments (PF), is just the set of linear paths where the degree of every node
in every fragment is less than or equal to two. The third set of fragments, called
Acyclic Fragments (AF) are derived such that AF = TF ∪ PF. Table 1 also
provides a description of their properties in terms of design choices. It should
be pointed out that TF descriptors may lead to incomplete coverage when a
compound is itself a linear path of atoms.

Note that Path Fragments are exactly the same patterns as the linear paths in
fingerprints [10] and the path-based generalized fingerprints in [42]. But [10] and
[42] also use cycles along with the linear paths. Also note that acyclic fragments
(AF) are also referred to as free trees. Another important observation is that any
frequent sub-structure based descriptor space is a superset of Graph-Fragments
when the minimum support threshold (σ) is one.

6. Descriptor-based Kernel Functions

Given the descriptor space, each chemical compound can be represented by a
vector X whose ith dimension will have a non-zero value if the compound con-
tains that descriptor and will have a value of zero otherwise. The value for each
descriptor that is present can be either one, leading to a vector representation
that captures presence or absence of the various descriptors (referred to as binary
vectors) or the number of times (number of embeddings) that each descriptor
occurs in the compound, leading to a representation that also captures the fre-
quency information (referred to as frequency vectors).

Given the above vector representation of the chemical compounds, the clas-
sification algorithms that we develop in this paper use support vector machines
(SVM) [44] as the underlying learning methodology, as they have been shown to
be highly effective, especially in high dimensional spaces. One of the key param-
eters that affects the performance of SVM is the choice of the kernel function
(K), that measures the similarity between pairs of compounds. Any function can



be used as a kernel as long as, for any number n and any possible set of distinct
compounds {X1, . . . , Xn}, the n × n Gram matrix defined by Ki,j = K(Xi, Xj)
is symmetric positive semidefinite. These functions are said to satisfy Mercer’s
conditions and are called Mercer kernels, or simply valid kernels.

In this paper we use the Min-Max kernel [42] as our choice of the kernel
function. This kernel was selected because it has been shown to be an effective
way to measure the similarity between chemical compound pairs and outper-
form Tanimoto coefficient [42] (which is the most widely used kernel function
in cheminformatics) in empirical evaluations. Given the vector representation of
two compounds X and Y , the Min-Max kernel function is given by

KMM (X, Y ) =

M∑
i=1

min(xi, yi)

M∑
i=1

max(xi, yi)
, (1)

where the terms xi and yi are the values along the ith dimension of the X and Y
vectors, respectively. Note that in the case of binary vectors, these will be either
zero or one, whereas in the case of frequency vectors these will be equal to the
number of times the ith descriptor exists in the two compounds. Moreover, note
that the Min-Max kernel is a valid kernel as it has been shown to satisfy Mercer’s
conditions [42] and reduces to Tanimoto kernel in the case of binary vectors.

One of the potential problems in using the above kernel with descriptor spaces
that contain fragments of different lengths is that they contain no mechanism to
ensure that descriptors of various lengths contribute in a non-trivial way to the
computed kernel function values. This is especially true for the GF descriptor
space and its subsets in which each compound tends to have a much larger
number of longer length fragments (e.g. length six and seven) than shorter length
(e.g. length two and three). To overcome this problem we modified the above
kernel function to give equal weight to the fragments of each length. Particularly,
for the Min-Max kernel function, this is obtained as follows. Let X l and Y l be
the feature vectors of X and Y with respect to only the features of length l,
and let L be the length of the largest feature. Then, the length-differentiated
Min-Max kernel function K∗MM (X, Y ) is given by

K∗MM (X, Y ) =
1
L

L∑
l=1

KMM (X l, Y l). (2)

We will refer to this as the length-differentiated kernel function, and we will refer
to the one that do not differentiate between different length fragments as pooled
kernel function.

In summary, we studied four different flavors for the Min-Max kernel func-
tion, one that is binary and pooled, frequency and pooled, binary and length-
differentiated and frequency and length-differentiated. We also studied these four
flavors of RBF kernel, but the results were worse than Min-Max [46] so we are
not including them here. We will follow the convention of using the symbols
Kb, Kf , K∗b , and K∗f to refer to binary and pooled, frequency and pooled, bi-
nary and length-differentiated and frequency and length-differentiated Min-Max
kernel functions, respectively.



Table 2. Properties of classification problems and Datasets.

D N N+ NA NA+ NA− NB NB+ NB−

NCI1 38311 1805 26 34 25 28 37 27
NCI109 37085 1613 26 34 25 28 37 27
NCI123 36477 2552 26 32 25 28 34 27
NCI145 36594 1512 26 34 25 28 37 27
NCI167 73464 8648 21 24 21 22 25 22
NCI220 723 232 24 24 25 26 25 26
NCI33 36617 1239 26 35 25 28 38 27
NCI330 37877 1913 22 28 21 23 30 23
NCI41 25049 1165 26 35 26 28 38 28
NCI47 36857 1561 26 34 25 28 37 27
NCI81 37124 1881 26 33 25 28 36 27
NCI83 25240 1805 26 33 25 28 35 28
H1 37913 1157 27 37 26 29 39 28
H2 37061 294 27 43 26 29 45 28
A1 34827 12374 25 25 25 25 25 25
H3 1158 293 37 43 34 39 45 37
D1 988 82 24 27 23 25 28 25
D2 990 84 24 25 23 25 27 25
D3 1101 191 26 36 23 28 38 25
D4 1264 360 26 32 23 28 34 25
P1 407 138 18 17 19 19 18 20
P2 415 110 19 17 19 19 18 20
P3 393 103 18 16 19 19 17 20
P4 410 119 18 17 19 19 17 20
C1 604 301 14 13 15 14 14 15
M1 1458 268 16 14 16 16 15 17
M2 1458 163 16 13 16 16 14 17
M3 1458 85 16 13 16 16 13 17

N is the total number of compounds in the dataset. N+ is the number
of positives in the dataset. NA and NB are the average number of atoms
and bonds in each compound. NA+ is the average number of atoms in
each compound belonging to the positive class and NA− is the average
number of atoms in each compound belonging to the negative class.
Similarly NB+ and NB− are the corresponding numbers for bonds. The
numbers are rounded off to the nearest integer.

7. Results

7.1. Datasets

The performance of the different descriptors and kernel functions was assessed
on 28 different classification problems from 18 different datasets. The size, distri-
bution and compound characteristics of the 28 classification problems are shown
in Table 2. Each of the 28 classification problems is unique in that it has different
distribution of positive class (ranging from 1% in H2 to 50% in C1), different
number of compounds (ranging from the smallest with 559 compounds to largest
with 78,995 compounds) and compounds of different average sizes (ranging from
the 14 atoms per compound to 37 atoms per compound on an average in C1 and
H3 respectively).

The first data set that was used is a part of the Predictive Toxicology Evalu-
ation Challenge [11,40]. It contains data published by the US National Institute
for Environmental Health Sciences and consists of bio-assays of different chemical
compounds on rodents to study the carcinogenicity properties of the compounds.
Each compound is evaluated on male rats, female rats, male mice, and female
mice, and is assigned class labels indicating the toxicity or non-toxicity of the



Table 3. Description of NCI cancer screen datasets.
Name (Bioassay-ID or AID) Description
NCI-H23 (NCI1) Human tumor (Non-Small Cell Lung)

cell line growth inhibition assay
OVCAR-8 (NCI109) Human tumor (Ovarian) cell line

growth inhibition assay
MOLT-4 (NCI123) Human tumor (Leukemia) cell line

growth inhibition assay
SN12C (NCI145) SN12C Renal cell line
Yeast anti-cancer (NCI167) Yeast anti-cancer screen bub3 strain
CD8F1 (NCI220) In Vivo Anticancer Screen Tumor model

Mammary Adenocarcinoma
UACC257 (NCI33) Human tumor (Melanoma) cell line

growth inhibition assay
P388 in CD2F1 (NCI330) In Vivo Anticancer Screen tumor model

P388 Leukemia (intraperitoneal)
PC-3 (NCI41) Human tumor (Prostate) cell line growth

inhibition assay
SF-295 (NCI47) Human tumor (Central Nervous System)

cell line growth inhibition assay
SW-620 (NCI81) Human tumor (Colon) cell line growth

inhibition assay
MCF-7 (NCI83) Human tumor (Breast) cell line growth

inhibition assay

compound for that animal. We derive four problem sets out of this dataset, one
corresponding to each of the rodents mentioned above. These will be referred to
as P1, P2, P3, and P4.

The second dataset used in this paper is mutagenicity data from [11,22]. The
mutagenicity data set was extracted from the carcinogenic potency database
(CPDB) [20] and provides mutagenicity classes (mutagens and nonmutagens) as
determined by the Salmonella/microsome assay (Ames test [13]). The problem
for this dataset is to distinguish between these two classes. We will refer this
dataset as C1.

The third data set is obtained from the National Cancer Institutes DTP
AIDS Antiviral Screen program [1, 31]. Each compound in the data set is eval-
uated for evidence of anti-HIV activity. Compounds that provided at least 50
percent protection were listed as confirmed moderately active (CM). Compounds
that reproducibly provided 100 percent protection were listed as confirmed active
(CA). Compounds neither active nor moderately active were listed as confirmed
inactive (CI). We formulated three problems out of this dataset. The first prob-
lem is designed to distinguish between CM+CA and CI; the second between CA
and CI, and the third between CA and CM. We will refer to these problems as
H1, H2, and H3, respectively.

The fourth data set was obtained from the Center of Computational Drug
Discoverys anthrax project at the University of Oxford [37]. The goal of this
project was to discover small molecules that would bind with the heptameric
protective antigen component of the anthrax toxin, and prevent it from spreading
its toxic effects. The screen identified a set of 12,376 compounds that could
potentially bind to the anthrax toxin and a set of 22,460 compounds that were
unlikely to bind to the toxin. The task for this data set was to identify if a given
a chemical compound will bind the anthrax toxin (active) or not (inactive). This
dataset problem is referred as A1.

A fifth dataset used in this paper consists of 1728 currently marketed drugs
and each drug compound in this dataset is marked either as Oral (O), Topical
(T), Absorbent (A) or Injectable (I) depending on the mode of administration of



that drug. This dataset was compiled mostly from the FDA’s Orange book [12]
and the MDL database [8]. A detailed description of this dataset can be found
in [45]. Four tasks are defined from this dataset: to distinguish between Oral and
Absorbent D1, between Oral and Topical D2, between Oral and Injectable D3
and between Oral and everything else (Topical + Absorbent + Injectable) as
D3.

Another dataset used in this study is the MAO (Monoamine Oxidase) dataset
[17]. Monoamine Oxidase are enzymes that catalyze the oxidation of neurotrans-
mitters and neuromodulator called monoamines. This dataset consists of com-
pounds that are Mono amine Oxidase inhibitors. The compounds of this dataset
have been categorized into four different classes (0, 1, 2 and 3) based on the
levels of activity, with the lowest labeled as 0 (inactive) and the highest labeled
as 3 (highest potency), all based on the IC50 values of each compound in a MAO
assay. We derive three problems from this dataset: M1 with positive class com-
pounds as labels 1, 2 and 3 and negative class as compounds with label 0, M2
with positive class as labels 2 and 3 and negative class compounds as labels 0
and 1, and finally the last problem M3 with positive class compounds as label 3
and rest of the compounds in negative class.

The rest of the datasets are derived from the PubChem website that pertain
to cancer cell lines [9]. Twelve datasets are selected from the bioassay records for
twelve different types of cancer cell lines. Each of the NCI anti-cancer screens
forms a classification problem. Since there is more than one screen available for
any particular type of cancer (for example colon cancer, breast cancer etc.), we
decided to use the screen that had the most number of compounds tested on it.
Each of these bioassay records have information on the assay type, compound
identifier, activity score, outcome etc. as submitted by the depositor of the bioas-
say screen. The class labels on these datasets is decided by the ”outcome” field of
the bioassay which is either active or inactive. We used the original class labels
associated with each compound for this study. Table 3 proves details of the 12
different bioassays used for this study.

All the datasets required some data cleaning. For some of the compounds we
were unable to generate the fingerprints due to the use of third party software for
fingerprint generation and impossible kekule forms and serious valence errors in
raw data. Furthermore, many compounds in these datasets were non drug-like, in
that, they contained elements such as arsenic, lead etc. All such compounds were
removed from their respective datasets. The dataset cleaning made the sets of
compounds used for different descriptors exactly the same and allowed objective
comparison of the descriptor spaces. Another important observation is that the
active compounds in almost all the datasets used in this study do not fall into
a particular target activity class. In most assays, the target is either unknown
(for example NCI cancer and HIV assays, anthrax and toxicity datasets etc.)
or the classification and retrieval problems are defined to be target non-specific
(for example Drug dataset). The only exception to this is the MAO dataset that
consists of Monoamine Oxidase inhibitors.



7.2. Experimental Methodology

7.2.1. Classification Task

The classification results were obtained by performing a 5-way cross validation
on the dataset, ensuring that the class distribution in each fold is identical to
the original dataset. In each one of the cross validation experiments, the test-set
was never considered and the algorithm used only the training-set to generate
the descriptor space representation and to build the classification model. The
exact same training and test sets were used in descriptor generation and cross
validation experiments for all the different schemes. The SVM classifier exper-
iments were run on Dual Core AMD Opterons with 4 GB of memory. For the
SVM classifier we used the SVMLight library [27] with all the default parameter
settings except the kernel.

7.2.2. Retrieval Task

We also compare the effectiveness of the different descriptor spaces for the task
that is commonly referred to as a ranked-retrieval or database screening [48]. The
goal of this task is, given a compound that has been experimentally determined
to be active, to find other compounds from a database that are active as well.
Since the activity of a chemical compound depends on its molecular structure,
and compounds with similar molecular structure tend to have similar chemical
function, this task essentially maps to ranking the compounds in the database
based on how similar they are to the query compound. In our experiments, for
each dataset we used each of its active compounds as a query and evaluated the
extent to which the various descriptor spaces along with the kernel functions
studied in this paper lead to similarity measures that can successfully retrieve
the other active compounds. Notice that all the kernel functions described in
Section 6 are valid similarity measures.

7.2.3. Descriptor Generation

All descriptors were generated on a Pentium 2.6 GHz machine with 1 GB mem-
ory. For fingerprints, we used Chemaxon’s fingerprint program called Screen [10].
We experimented using 256-, 512-, 1024-, 2048-, 4196- and 8192-bit length fin-
gerprints. We used default settings of the two parameters: number of bonds or
maximum length of the pattern generated (up to seven) and number of bits
set by a pattern (three). We found that 8192-bits produced better results (even
though their performance advantage was not statistically significant compared
to 2048- and 4196-bit fingerprints). For this reason, we use 8192-bit fingerprints
(fp-n where n = 8192) in all the comparisons against other descriptors.

ECFP’s were generated using a multiplicative form of Morgan’s algorithm.
The type of descriptor space generated by this algorithm is calibrated by two
variables: (i) the initial atom label used to describe each atom and (ii) the max-
imum shell radius (i.e, the farthest atom considered in terms of bond distance).
For our study we used the atomic number as the initial label for each atom and
a maximum shell radius of three. Thus the fragments that form the ECFP de-
scriptor space are a union of all the fragments formed by taking all atoms one,
two and three bond distance away from every atom.

To generate MDL Maccs keys (166 keys) we use the MOE suite by Chemical



Table 4. Support values for FS.
Datasets σ−% σ+% Datasets σ−% σ+%
NCI1 5.0 7.0 A1 5.0 3.0
NCI109 4.0 4.0 H3 8.0 8.0
NCI123 4.0 5.0 D1 5.0 10.0
NCI145 4.0 6.0 D2 5.0 32.0
NCI167 2.0 2.0 D3 5.0 10.0
NCI220 5.0 8.0 D4 5.0 12.0
NCI33 4.0 4.0 P1 3.0 3.0
NCI330 4.0 8.0 P2 3.0 3.0
NCI41 4.0 6.0 P3 3.0 3.0
NCI47 4.0 5.0 P4 3.0 3.0
NCI81 5.0 6.0 C1 2.0 2.0
NCI83 4.0 4.0 M1 1.5 1.75
H1 8.0 5.0 M2 1.45 1.5
H2 8.0 8.0 M3 1.25 3.0

Computing Group [2]. For Cyclic patterns and Trees, we use 1000 as the upper
bound on the number of cycles to be enumerated as described in [25] in our
own implementation of the algorithm. To generate frequent sub-structures, we
use the FSG algorithm described in [32], although any other frequent subgraph
discovery algorithm could be used. Table 4 contains the values of σ used for
positive and negative classes in each dataset. Most of the support values are the
same or lower than in [18] for the common datasets and are derived in the same
fashion as described in [18]. The lowest support value was selected that could
allow FSG to use a reasonable amount of time and memory.

7.2.4. Kernel Functions

In the context of fp-n the only kernel applicable is the binary and pooled (Kb)
kernel. This is because these hashed fingerprints are inherently binary and do
not provide frequency information. In the context of ECFP and MK, only two
kernels (Kb and Kf ) are applied as the length information for ECFP and Maccs
keys were not available. For the rest of the descriptor spaces (GF, AF, TF, PF,
CT and FSG), we applied all the four kernels described in Section 6.

7.3. Performance Assessment Measures

The classification performance was assessed by computing the ROC50 values [21],
which is the area under the ROC curve up to the first 50 false positives. This
is a much more appropriate performance assessment measure than traditional
ROC value for datasets with very small positive classes. This is because for
such problem settings, a user will most likely stop examining the highest scor-
ing predictions as soon as he/she starts encountering a certain number of false
positives [21].

We assess the ability of a particular descriptor set to identify positive com-
pounds in the context of ranked-retrieval task by looking at the fraction of pos-
itive compounds that were recovered in the top k retrieved compounds. Specif-
ically, we report the fraction of positives recovered in the top k retrieved com-
pounds in a ranked-retrieval task in which every positive compound is used as
query. We call this metric normalized hit rate (NHR) and it is computed as fol-
lows. Suppose N is the number of compounds in a dataset, N+ is the number of
positive (active) compounds in that dataset and hitsk is the number of positives



found in the top k retrieved compounds over all queries. Then, the normalized
hit rate is given by

NHR =
hitsk

(kN+)
· (3)

To compare the performance of a set of schemes across the different datasets,
we compute a summary statistic that we refer to as the Average Relative Quality
to the Best (ARQB) as follows: Let ri,j be the ROC50 (NHR) value achieved by
the scheme j on the dataset i, and let r∗i be the maximum (i.e. the best) ROC50
(NHR) value achieved for this dataset over all the schemes. Then the ARQB for
scheme j is equal to (1/T ) (

∑
i (ri,j/r∗i )), where T is the number of datasets. An

ARQB value of one indicates that the scheme achieved the best results for all
the datasets compared to the other schemes, and a low ARQB value indicates a
poorly performing scheme.

We used the Wilcoxon’s paired signed-rank test [15] to compare the statistical
significance of any two descriptors based on the performance measures described
above. A p-value of 0.01 is used as threshold for all comparisons.

7.4. Evaluation of GF Descriptors

7.4.1. Complexity of GF Descriptors Generation

Table 5 shows the number of graph fragments (GF) of various lengths that were
generated for each dataset as well as the time required to generate the fragments
of length seven. These results show that the number of fragments does increase
considerably with l, which essentially puts a practical upper bound on the length
of the fragments that can be used for classification. In fact, for l = 8 (not shown
here), the number of fragments were about three to five times more than that for
l = 7, which made it impractical to build SVM-based classifier for many of the
datasets. However, on the positive side, the amount of time required to generate
these fragments is reasonable, and is significantly lower than that required for
learning the SVM models.

7.4.2. Sensitivity on the Length of GF Descriptors

To evaluate the impact of the fragment length on the performance achieved by
the GF descriptors for classification and retrieval, we performed a study in which
we varied the maximum fragment length l from two to seven bonds. The results
of this study are shown in Table 6 and 7. These results were obtained using the
K∗f kernel, which as will be shown later, is one of the best performing kernels for
GF descriptors.

From the results in Table 6 we can see that the classification performance
tends to improve as l increases, and the scheme that use up to length seven
fragments achieve the best overall performance (in terms of ARQB). Moreover,
all of these differences are statistically significant. On the other hand the retrieval
performance in terms of ARQB, as shown in Table 7, saturates as l increases from
six to seven. Also, results with l equal to five, six and seven are not statistically
different from each other for ranked-retrieval. This indicates that, for ranked-
retrieval task, larger fragments do not improve performance in the context of
GF fragments.



Table 5. Numbers of GF for different lengths l.

# of fragments runtime (in sec)
D l = 3 l = 5 l = 7 for l = 7

NCI1 6277 97040 1068091 1181
NCI109 6305 97322 1069998 1183
NCI123 6196 95886 1055260 1173
NCI145 6277 96600 1061262 1173
NCI167 8564 12472 1292111 1567
NCI220 1575 13272 86000 27
NCI33 6222 96280 1060702 1180
NCI330 7400 10252 987743 891
NCI41 5329 81112 862559 830
NCI47 6255 96725 1064385 1190
NCI81 6297 97095 1070018 1201
NCI83 5367 81632 867034 823
H1 14387 17143 1420543 1529
H2 14266 16968 1402533 1494
A1 3233 66639 733125 504
H3 2760 23781 140901 74
D1 2129 19068 105886 31
D2 2120 18719 103495 32
D3 2246 20780 120560 42
D4 2339 21849 127194 48
P1 1220 8017 37973 10
P2 1241 8146 38742 10
P3 1242 8053 38051 10
P4 1242 8009 37586 9
C1 1137 6575 30081 7
M1 1306 9661 40186 11
M2 1306 9661 40186 11
M3 1306 9661 40186 11

We have omitted the results for l equal to 2, 4 and 6 as they fit into
a similar trend.

7.4.3. Effectiveness of Different Kernels for GF Descriptor

Table 8 and 9 shows the classification and ranked-retrieval performance of the
different kernel functions described in Section 6 for the GF descriptors. These
results were obtained for GF descriptors containing fragments of length up to
seven.

These results show that the best performing kernel function is the K∗f (length-
differentiated frequency vectors). Thus, giving equal weights to the fragments
of various lengths leads to better results. Note that for classification results
in Table 8, based on the Wilcoxon statistical test of p = 0.01, the differences
between K∗b and K∗f are not significant, but K∗f is statistically better than Kb.
Also, K∗f is statistically better than Kf at p = 0.05. Moreover, the table shows
that including frequency information leads to better results. For ranked-retrieval
results in Table 9, K∗f is statistically better than Kb at p = 0.05. But all the
other pairwise comparisons of the different kernels show statistically equivalent
performance to each other.



Table 6. ROC50 results for the K∗f kernel for

different lengths using GF descriptors.
D up to up to up to up to up to up to

l = 2 l = 3 l = 4 l = 5 l = 6 l = 7
NCI1 0.294 0.298 0.306 0.313 0.321 0.329
NCI109 0.255 0.277 0.292 0.305 0.312 0.317
NCI123 0.230 0.245 0.247 0.253 0.262 0.269
NCI145 0.302 0.316 0.332 0.346 0.358 0.369
NCI167 0.047 0.056 0.058 0.061 0.064 0.065
NCI220 0.295 0.288 0.286 0.291 0.288 0.287
NCI33 0.254 0.274 0.293 0.310 0.320 0.328
NCI330 0.311 0.339 0.351 0.358 0.361 0.363
NCI41 0.286 0.312 0.329 0.339 0.348 0.358
NCI47 0.249 0.270 0.283 0.296 0.307 0.314
NCI81 0.237 0.256 0.265 0.270 0.272 0.276
NCI83 0.255 0.280 0.293 0.300 0.302 0.311
H1 0.236 0.246 0.250 0.253 0.255 0.259
H2 0.561 0.572 0.584 0.592 0.601 0.609
A1 0.138 0.138 0.154 0.170 0.200 0.207
H3 0.630 0.638 0.646 0.651 0.657 0.660
D1 0.252 0.247 0.239 0.253 0.263 0.278
D2 0.575 0.584 0.595 0.600 0.605 0.601
D3 0.485 0.489 0.493 0.492 0.498 0.501
D4 0.446 0.463 0.477 0.481 0.484 0.487
P1 0.676 0.687 0.694 0.693 0.687 0.686
P2 0.634 0.646 0.651 0.651 0.656 0.659
P3 0.632 0.643 0.642 0.644 0.643 0.648
P4 0.654 0.660 0.666 0.668 0.667 0.669
C1 0.780 0.789 0.802 0.811 0.823 0.830
M1 0.484 0.490 0.487 0.476 0.472 0.472
M2 0.635 0.654 0.658 0.659 0.659 0.663
M3 0.777 0.784 0.784 0.781 0.784 0.787
ARQB 0.891 0.925 0.946 0.965 0.983 0.997

Table 7. NHR (k = 50) results for the K∗f kernel for

different lengths using GF descriptors.
D up to up to up to up to up to up to

l = 2 l = 3 l = 4 l = 5 l = 6 l = 7
NCI1 0.313 0.327 0.335 0.340 0.341 0.342
NCI109 0.280 0.296 0.306 0.309 0.309 0.310
NCI123 0.295 0.308 0.314 0.315 0.315 0.315
NCI145 0.295 0.314 0.324 0.327 0.328 0.329
NCI167 0.216 0.221 0.223 0.224 0.225 0.225
NCI220 0.303 0.305 0.303 0.303 0.302 0.304
NCI33 0.243 0.252 0.257 0.259 0.259 0.260
NCI330 0.334 0.345 0.351 0.356 0.360 0.363
NCI41 0.263 0.279 0.289 0.293 0.295 0.296
NCI47 0.291 0.307 0.316 0.319 0.320 0.321
NCI81 0.288 0.304 0.312 0.314 0.315 0.314
NCI83 0.285 0.297 0.304 0.309 0.312 0.313
H1 0.201 0.205 0.209 0.213 0.214 0.215
H2 0.265 0.278 0.290 0.296 0.299 0.298
A1 0.568 0.580 0.588 0.592 0.593 0.593
H3 0.524 0.533 0.535 0.540 0.541 0.541
D1 0.109 0.110 0.113 0.115 0.118 0.119
D2 0.243 0.249 0.251 0.250 0.252 0.251
D3 0.224 0.228 0.232 0.236 0.237 0.237
D4 0.355 0.360 0.366 0.369 0.370 0.371
P1 0.381 0.387 0.390 0.391 0.389 0.389
P2 0.297 0.301 0.303 0.302 0.302 0.300
P3 0.312 0.313 0.314 0.317 0.315 0.313
P4 0.318 0.326 0.328 0.327 0.327 0.327
C1 0.517 0.519 0.520 0.522 0.525 0.531
M1 0.333 0.332 0.329 0.335 0.331 0.327
M2 0.312 0.326 0.319 0.310 0.319 0.310
M3 0.339 0.337 0.340 0.340 0.337 0.337
ARQB 0.944 0.971 0.985 0.992 0.996 0.996



Table 8. ROC50 values for the GF descriptors using
the different kernel functions.

Datasets (Kb) (Kf ) (K∗b ) (K∗f )
NCI1 0.326 0.326 0.321 0.329
NCI109 0.313 0.310 0.305 0.317
NCI123 0.255 0.263 0.258 0.269
NCI145 0.362 0.365 0.363 0.369
NCI167 0.059 0.061 0.060 0.065
NCI220 0.259 0.279 0.286 0.287
NCI33 0.317 0.335 0.313 0.328
NCI330 0.352 0.353 0.356 0.363
NCI41 0.356 0.372 0.348 0.358
NCI47 0.308 0.322 0.306 0.314
NCI81 0.267 0.274 0.266 0.276
NCI83 0.293 0.308 0.297 0.311
H1 0.247 0.258 0.249 0.259
H2 0.607 0.616 0.602 0.609
A1 0.194 0.202 0.198 0.207
H3 0.670 0.666 0.659 0.660
D1 0.330 0.293 0.299 0.278
D2 0.577 0.580 0.591 0.601
D3 0.472 0.486 0.482 0.501
D4 0.492 0.485 0.497 0.487
P1 0.698 0.681 0.703 0.686
P2 0.644 0.662 0.645 0.659
P3 0.671 0.648 0.675 0.648
P4 0.651 0.656 0.656 0.669
C1 0.811 0.823 0.815 0.830
M1 0.458 0.465 0.469 0.472
M2 0.634 0.641 0.654 0.663
M3 0.791 0.785 0.788 0.787
ARQB 0.966 0.978 0.971 0.987

Table 9. NHR (k = 50) values for the GF descriptors
using the different kernel functions.

Datasets (Kb) (Kf ) (K∗b ) (K∗f )
NCI1 0.334 0.333 0.333 0.342
NCI109 0.304 0.306 0.305 0.310
NCI123 0.306 0.309 0.311 0.315
NCI145 0.323 0.324 0.323 0.329
NCI167 0.222 0.214 0.215 0.225
NCI220 0.314 0.315 0.314 0.304
NCI33 0.252 0.251 0.251 0.260
NCI330 0.358 0.349 0.346 0.363
NCI41 0.291 0.290 0.289 0.296
NCI47 0.314 0.313 0.310 0.321
NCI81 0.306 0.307 0.307 0.314
NCI83 0.308 0.308 0.309 0.313
H1 0.217 0.226 0.222 0.215
H2 0.292 0.304 0.309 0.298
A1 0.592 0.584 0.586 0.593
H3 0.546 0.536 0.538 0.541
D1 0.117 0.124 0.130 0.119
D2 0.250 0.237 0.243 0.251
D3 0.242 0.251 0.250 0.237
D4 0.376 0.374 0.372 0.371
P1 0.385 0.384 0.383 0.389
P2 0.286 0.288 0.293 0.300
P3 0.311 0.302 0.302 0.313
P4 0.326 0.327 0.330 0.327
C1 0.540 0.531 0.532 0.531
M1 0.329 0.331 0.328 0.327
M2 0.310 0.323 0.326 0.310
M3 0.336 0.368 0.380 0.337
ARQB 0.974 0.979 0.982 0.983



7.5. Comparison of Descriptor Spaces

7.5.1. Classification Performance

To compare the classification performance of the various descriptor spaces we
performed a series of experiments in which all the kernels described in Section
6 that can be used in conjunction with the nine descriptor spaces (fp-n, MK,
CT, FS, ECFP, GF, AF, TF, and PF) are employed to classify the various
datasets. In order to objectively compare these nine schemes, in Table 10 we
only compare the ROC50 results achieved by the two kernels (binary and pooled
Kb and frequency and pooled Kf ) that are applicable to most of the descriptor
spaces. In addition, Table 11 shows whether or not these schemes in combination
with the kernels used achieve ROC50 results that are statistically different from
each other. The results for GF, AF, TF, and PF were obtained for fragments up
to length seven.

Comparing between the different descriptors, these results show that the GF,
AF and ECFP descriptors lead to ROC50 results that are statistically better than
that achieved by all other previously developed schemes. From a statistical point,
GF, AF and ECFP descriptors is equivalent to each other for the same kernel
function. In addition, the performance achieved by both TF and PF is also good
and in general better than that achieved by the earlier approaches.

Comparing between fp-n, CT, MK, and FS, we can see that the fingerprint
descriptors achieve the best overall results, whereas MK tend to perform the
worst. However, from a statistical significance standpoint CT, MK, and FS are
equivalent.

Another interesting observation is that the PF scheme (Kb) achieves better
results than fp-n (the difference is significant at p = 0.05). Since the fp-n descrip-
tors were also generated by enumerating paths of length up to seven (and also
cycles), the performance difference suggests that the folding that takes place due
to the fingerprint’s hashing approach negatively impacts the classification perfor-
mance. This result is in agreement with [42] albeit we perform this comparison
on a much higher number of datasets.

Comparing the performance between the two kernels (Kb and Kf ) for differ-
ent descriptors it can be observed that Kf generally performs better than Kb

in terms of ARQB. The differences between the two kernels is generally statis-
tically significant at p = 0.05 for most descriptors, although it is not significant
p = 0.01. Thus, adding frequency information helps in improving classification
performance.

7.5.2. Retrieval Performance

For the task of ranked-retrieval we experimented using all possible combinations
of the nine descriptor spaces and four kernel functions. Again, due to the reason
mentioned in the section Section 7.5.1, in Table 12 we only show the NHR results
for (Kb and Kf ) for each descriptor space. Table 13 shows the extent to which
the relative performance of various schemes are statistically significant.

Comparing these results with those for the classification task shows similar
trends with respect to the relative performance of the various descriptor spaces.
In the case of ranked-retrieval, the ECFP descriptor with Kf is the best scheme
in terms of ARQB outperforming most of the other schemes. Also, GF-based
descriptors (GF, AF and TF) and ECFP are statistically equivalent and out-
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Table 14. ROC values for the nine methods for chemical compound
classification.
Datasets GF AF TF PF CT RWK WDK FSG
CA+CM vs CI 0.828 0.822 0.815 0.803 0.809 0.817 0.765
CA vs CI 0.949 0.950 0.943 0.934 0.925 0.940 0.839
CA vs CM 0.834 0.833 0.830 0.822 0.826 0.842 0.810
MaleRats 0.709 0.708 0.705 0.708 0.632 0.697 0.626
FemaleRats 0.675 0.670 0.674 0.688 0.664 0.649 0.634
MaleMice 0.698 0.695 0.685 0.716 0.656 0.705 0.655
FemaleMice 0.756 0.753 0.736 0.733 0.645 0.691 0.673

Best performing scheme(s) for each classification problem is shown in bold.

perform other descriptors. Moreover, using frequency information in the kernel
function (Kf ) leads to better results than just the binary presence/absence. An
interesting observation is that although CT, FS and MK form the set of schemes
that perform the worst among all the nine descriptors, fp-n is only slightly better
than CT, MK or FS in terms of ARQB and statistically all the four are equiv-
alent. This is not the case in classification where fp-n does significantly better
than CT, MK and FS. Also the average performance of the AF, TF, and PF
descriptors (as measured by AQRB) is higher than fp-n, CT, MK and FS as
well.

7.6. Comparison with Published Results

In recent years many new descriptors and graph kernels have been introduced
in the datamining literature and their classification performance has been suc-
cessfully assessed. The performance assessment measure used in those studies is
primarily area under the ROC curve. In Table 14 we compare the ROC results
of GF, AF, TF, and PF with the results of recently introduced Cycles & Trees
(CT) [25] , random-walk based graph kernels (RWK) [28], weighted decomposi-
tion kernels (WDK) [34] and Frequent subgraph based descriptors [18]. We use
the length-differentiated Min-Max kernel (K∗f ) for GF-based descriptors and its
subsets. The results could only be compared for the common datasets with those
used in these studies. We use the default misclassification cost factor (1.0) and
do not optimize for regularization parameter in GF-based descriptors and its
subsets. We compare our results with the best results (Gaussian version of inter-
section kernel described in [25]) of Cycles & Trees using misclassification cost of
1.0. In the case of WDK, the authors only report numbers with misclassification
cost set to match the positive to negative compound ratio. They also optimize
the regularization parameter. Hence we had to use best results from those num-
bers. For RWK, the code was provided to us by Mr. Kashima. We report RWK
numbers for PTC dataset only as it was not possible to generate results for RWK
for large aids dataset owing to the high computational complexity of the scheme.
It can be observed from Table 14 that the GF descriptor outperforms CT, RWK,
WDK and FSG for the majority of the datasets. Moreover, the best performing
method consistently fall into one of the GF, AF, TF, or PF descriptors (except
CA vs CM) despite the fact that no optimization performed on the SVM param-
eters. The average improvement of GF over the ROC values of WDK, CT, RWK,
and FSG for the common datasets is 1.5%, 1.66%, 6% and 6.4% respectively.



62% overlap 76% overlap 80% overlap

Top 100 hits Hits until the first
50 false positives

Top 50 hits

Fig. 1a. Overlap between sets of active compounds retrieved using GF descriptor (Kf kernel)
and ECFP descriptor (Kf kernel) for classification.

8. Discussion and Conclusion

The work in this paper was primarily motivated by our desire to understand
which aspects of the molecular graph are important in providing effective descriptor-
based representations for the classification and retrieval tasks given the four
design choices described in Section 4 (dataset specificity, fragment complexity,
preciseness, and coverage) and the fact that no scheme leads to a descriptor
space that is strictly superior (in terms of what it captures) to the rest of the
schemes. Most of the descriptor spaces make some compromises along at least
one of these dimensions. We believe that the experimental results presented in
Section 7.5 provide some answers on the relative importance and impact of these
design choices.

Specifically, the results comparing PF and fp-n, suggest that a precise rep-
resentation is a key property and helps PF outperform fp-n even though the
former utilizes only path-based fragments, whereas fp-n also uses fragments cor-
responding to cycles. Similarly, the results comparing GF against FS suggest
that the 100% coverage of GF is a critical property as it helps outperform the
FS approach. To ascertain this fact we decided to eliminate infrequent fragments
of GF by applying support threshold similar to FS scheme on all datasets (data
not shown). We found that the performance of the resulting classifier degrades
as compared to GF. Thus, arbitrary support thresholds used to limit the number
of fragments generated in graph mining deteriorates classification performance.
Generating all fragments with support greater than or equal to one but having
an upper limit on the size of fragments (GF) is a much better approach to clas-
sify chemical compounds. Also, the results comparing the schemes that utilize
dataset specific fragment discovery approaches against the MK scheme show that
relying on pre-identified fragments will lead to lower performance. Finally, the
results comparing GF against AF, TF and PF show that everything else being
the same, more complex fragments do lead to better results; however, these gains
are not substantial.

Our results show that the GF and ECFP descriptor spaces that (nearly)
satisfy all four of the desirable design choices, achieve the best results for both
the classification and retrieval tasks. Moreover, these two descriptor-based repre-
sentations are generally better than the state-of-the-art graph kernel approaches
(RWK and WDK in Section 7.6) that operate directly on the compound’s molec-
ular graph. Furthermore, the advantage of the descriptor-based representation
over the graph kernel approach is that the process of determining the simi-
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61% overlap 59% overlap

Fig. 1b. Overlap between sets of active compounds retrieved using GF descriptor (Kf kernel)
and ECFP descriptor (Kf kernel) for ranked-retrieval.

larity between two compounds is decoupled from the actual descriptor space
generation. To a large extent, this make the process of designing better descrip-
tor spaces and similarity (kernel) functions independent of each other and thus
much easier. However, a potential drawback is that it requires careful selection
of the descriptor-based representation as well as the similarity function for the
particular dataset and descriptor space, respectively.

In analyzing the compounds that were predicted to be positive or ranked
higher in the classification or retrieval tasks, we found that there are consider-
able differences as to the true positives or hits that were identified by the GF and
ECFP descriptor spaces. For example, Figure 1a shows how the true positives
overlap1 between the two schemes on three different subsets: (i) top 50 predic-
tions, (ii) top 100 predictions, and (iii) all compounds until encountering the first
50 false positives. In the first subset, the overlap is only 62%, whereas for the
third subset (which is usually contains more compounds than the other two), the
overlap increases to 80%. A similar analysis is shown in Figure 1b for the retrieval
task, and this time the overlap percentages are somewhat smaller, ranging from
39% to 61%. These overlap results show that there are considerable differences
between the predictions and rankings produced by the two descriptor spaces.
Thus, even though the overall performance of the GF and ECFP descriptors (as
measured by ARQB) is quite similar, they tend to produce qualitative different
results. This suggests that applying Fusion based techniques (that combine rank-
ings obtained from different descriptor spaces) [48] to the rankings produced by
GF and ECFP might lead to improvement in the performance over just the GF
or ECFP ranked-retrieval results.
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Appendix A: Generation of GF Descriptors

Any frequent subgraph mining algorithm with a support threshold of one can
be used to derive a set of bounded size GF descriptors. We tried to generate
bounded size GF using existing frequent subgraph mining algorithms like FSG
[32], Gaston [36] and gSpan [51]. But we faced considerable runtime and memory
problems in the case of FSG and Gaston for large datasets with support threshold
of one. Also, the current implementation of gSpan that we downloaded does not
support an upper bound on the length of fragments. Moreover, frequent subgraph
mining algorithms are not designed for this particular task at hand. Specifically,
these algorithms spend a significant amount of time in support computation or
calculation of embedding lists to speed up support computation [50]. But since
all the possible bounded size subgraphs are generated in GF, every subgraph
discovered is frequent and hence there is no need for support computations. For
these reasons, in order to generate all connected graph fragments, we developed
an algorithm that was inspired by the recursive technique for generating all the
spanning trees of a graph G [47].

Consider an arbitrary edge e of G, and let Se(G) be the set of spanning trees
of G that contain e and S¬e(G) be the set of all spanning trees of G that do not
contain e. It is easy to see that (i) Se(G) ∩ S¬e(G) = ∅ and (ii) Se(G) ∪ S¬e(G)
is equal to the set of all spanning trees of G, denoted by S(G). Now, if S(G/e)
denotes an edge contraction operation (i.e., the vertices incident on e are collapsed
together) then Se(G) can be obtained from S(G/e) by adding e. If G\e denotes
an edge deletion operation, then S¬e(G) is nothing more than S(G\e). From the
above observations we can come up with the following recurrence relation for
generating S(G)

S(G) =
{
∅, if G does not have any edge
eS(G/e) ∪ S(G\e), otherwise,

(4)

where e is an arbitrary edge of G, and eS(G/e) denotes the set of all spanning
trees obtained by adding e to each spanning tree in S(G/e).

The recurrence relation of Equation 4 can be used to generate all the con-
nected graph fragments of a certain length l by modifying it in three different
ways. These modifications are needed to ensure that (i) arbitrary graph fragments
and cyclic fragments are generated (ii) the graph fragments that are returned are
connected, and (iii) only all the fragments of length l are returned. The first ob-
jective can be achieved by simply changing the edge contraction operation to an
edge deletion operation. The second can be achieved by imposing the constraint
that the edge e must be incident on a vertex of G that was obtained via an edge
deletion operation, if such a vertex exist. If G does not have any such vertex (i.e.,
it corresponds to the original graph), then e is selected in an arbitrary fashion.
The length requirement can be ensured by terminating the recurrence relation
when exactly l edges have been selected. In light of these modifications, the new
recurrence relation that generates all the connected graph fragments of length l,



denoted by F (G, l) is given by

F (G, l) =
{
∅, if G has fewer than l edges or l = 0
eF (G\e, l − 1) ∪ F (G\e, l), otherwise,

(5)

where e is satisfies the above constraints.
In order to identify isomorphic fragments in the same graph, we use canonical

labelling [32] for every fragment generated from a molecular graph. The canonical
labelling of every fragment can also be used to count the number of embeddings
of a fragment in a molecular graph. Note that the recurrence relation above
generates each fragment only once. Thus two isomorphic fragments in the same
molecular graph differ by at least one edge. Also note that since the primary
goal of this paper is compare different descriptor spaces, we did not compare the
performance of our algorithm to the various frequent mining algorithms.


