
Parallel Tree Projection Algorithm for Sequence Mining �

Valerie Guralnik, Nivea Garg, George Karypis
fguralnik, garg, karypisg@cs.umn.edu

Department of Computer Science and Engineering/Army HPCC Research Center
University of Minnesota

February 13, 2001

Abstract

Discovery of sequential patterns is becoming increasingly useful and essential in many scienti�c and
commercial domains. Enormous sizes of available datasets and possibly large number of mined patterns
demand e�cient and scalable algorithms. In this paper we present two parallel formulations of a se-
rial sequential pattern discovery algorithm based on tree projection that are well suited for distributed
memory parallel computers. Our experimental evaluation on a 32 processor IBM SP show that these
algorithms are capable of achieving good speedups, substantially reducing the amount of the required
work to �nd sequential patterns in large databases.

1 Introduction

Sequence data arises naturally in many applications. For example, marketing and sales data collected over
a period of time provide sequences that can be analyzed and used for projections and forecasting. In the
past several years there has been an increased interest in using data mining techniques to extract interesting
sequential patterns from temporal sequences. The most time consuming operation in the discovery process
of such patterns is the computation of the frequency of the occurrences of interesting sub-sequences of set of
events (called candidate patterns) in the database of sequences. However, the number of sequential patterns
grows exponentially and various formulations have been developed [AS96, MTV95, SA96, JKK99] that try
to contain the complexity by imposing various temporal constraints, and by consider only those candidates
that have a user speci�ed minimum support. Even with these constraints, the task of �nding all sequential
patterns requires a lot of computational resources (i.e., time and memory), making it an ideal candidate for
parallel processing.

The algorithms that discover sequential associations are mainly motivated by those developed for non-
sequential associations. In particular, there are two main classes of sequential association rule discovery
algorithms. The �rst class of algorithms [SA96, JKK99] was developed by extending the Apriori [AS96,
SA96] algorithm, and the second class [Zak98, HPMA+00] was developed by extending the tree-projection
algorithm [AAP00]. Even though, sequential association rule discovery algorithms based on tree-projection
have be shown to substantially outperform those based on Apriori, they still require substantial amounts
of computational resources. This was recognized by Zaki [Zak99] which developed a parallel formulation
of the SPADE algorithm [Zak98] for shared-memory parallel computers. However, there has been no work
in developing scalable and e�cient parallel formulations for this class of algorithms that are suitable for
distributed memory parallel computers.

In this paper we present two di�erent parallel algorithms for �nding sequential association rules on
distributed-memory parallel computers. The �rst algorithm decomposes the computation by exploiting data
parallelism, whereas the other utilizes task parallelism. One of the key contributions of this paper is the
development of a static task decomposition scheme that uses a bipartite graph partitioning algorithm to

�This work was supported by NSF CCR-9972519, EIA-9986042, ACI-9982274, by Army Research O�ce contract
DA/DAAG55-98-1-0441, by the DOE ASCI program, and by Army High Performance Computing Research Center contract
number DAAH04-95-C-0008. Access to computing facilities was provided by the Minnesota Supercomputing Institute.

simultaneously balance the computations and at the same time reduce the data sharing overheads, by min-
imizing the portions of the database that needs to be shared by di�erent processors. We experimentally
evaluate the performance of our proposed algorithms on di�erent datasets on a 32-processor IBM SP2 par-
allel computer. Our experiments show that the proposed algorithms incur small communication overheads,
achieve good speedups, and can e�ective utilize the di�erent processors.

The rest of this paper is organized as follows. Section 2 provides some de�nitions about sequence mining.
Section 3 describes the serial tree projection algorithm for sequential association rule discovery. Section 4
describes our di�erent parallel algorithms, and they are experimentally evaluated in Section 5. Finally,
Section 6 provide some concluding remarks.

2 Sequence Mining

The problem of mining for sequential patterns was �rst introduced by Agrawal et al [AS96]. The authors
showed how their association rule algorithm for unordered data [AS94] could be adapted to mine for frequent
sequential patterns in sequence data. The class of episodes being mined was generalized, and the performance
enhancements were presented in [SA96].In this section we will summarize the terminology �rst introduced
by Agrawal [AS96] and being used throughout the paper.

We are given a database D of sequences called data-sequences. Each data-sequence consists of the list
of transactions, ordered by increasing transaction-time. A transaction has the following �elds: sequence-id,
transaction-id, transaction-time, and the items present in the transaction. We assume that the set of items
I = fi1; i2; : : : ; img, is the set of literals that can be sorted in lexicographical order. The items in the
transaction are sorted in lexicographical order.

An itemset i is a non-empty set of items, denoted by (i1i2 : : : im), where ij is an item. The support of
an itemset is de�ned as the fraction of the total transactions that contain this itemset. An itemset is said
to frequent if its support is above a certain user-speci�ed minimum threshold. Given a database of D of
transactions, the problem of mining for association is to �nd the all frequent itemsets among all transactions.

A sequence is an ordered list of itemsets, denoted by < s1s2 : : : sn >, where si is an itemset. The
support of a sequence is de�ned as the fraction of total data-sequences that contain this sequence. A
sequence is said to be frequent if its support is above a certain user-speci�ed minimum threshold. Given
a database D of data-sequences, the problem of mining for sequential patterns is to �nd the all frequent

sequences among all data-sequences. Each such frequent sequence represents a sequential pattern. It is
important to note that from now on the term sequential is adjective of pattern, while term serial is adjective
of algorithm.

3 Serial Tree Projection Algorithm

Since sequential patterns are essentially associations over temporal data, the algorithm utilizes some of the
ideas initially proposed for discovery of associations. The algorithm presented in this paper is based on
tree projection algorithm for association rules [AAP00]. The goal of this algorithm is to �nd all frequent
itemsets in the database of transactions. The tree projection algorithm represents discovered itemsets in
a lexicographic tree structure. We assume that a lexicographical ordering exists among the items in the
database.In this tree, called Projection Tree, each node is associated with a k-itemset. A node can be
extended into multiple children nodes via items that are lexicographically larger than all the items in its
itemset. The new children represent (k + 1)-itemset and are called their parent's extensions.

For example, let's assume that 1-itemset (1), (2) and (3) are frequent. An item 3 can extend itemset (1)
and (2) by creating itemset (1 3) and (1 3), but item 2 can only extend itemset (1) by creating itemset (1 2).
An extension (3 2) cannot be created since item 3 is lexicographically larger than item 2.

Tree projection algorithm grows the tree progressively such that only the nodes corresponding to frequent
itemsets are generated. The level-wise version of the algorithm grows the tree in a breadth-�rst manner. In
iteration k, it extends all the nodes at level k � 1. The candidate extensions of a given node are formed by
using only the frequent extensions of its parent. All the nodes that belong to a sub-tree which potentially
can be extended are called active extensions. If the node cannot be extended any further it becomes inactive
and is pruned from the tree.

{ 2 {

()

(1) (2) (3)

(1 2) (2 3)

(1 2 4)

level 0

level 1

level 2

level 3

(4) (5)

(1 4) (2 5)(2 4)

. .- Active node - Inactive node

Figure 1: An example of Projection Tree for Associations

Figure 1 illustrates an example of Projection Tree that has just been expanded to level 3. In this example
the only active nodes are (), (1), (1 2) and (1 2 4). The other nodes could not be extended any further and
therefore became inactive.

One of the key features of the algorithm is that the support of the itemsets represented by the candidate
extensions are gathered by using the set of projected transactions at the parent. Let's briey describe the
concept of projection. The algorithm maintains a list of active items of the node. Active item list of a
node consists of items that can be found in itemset represented by its descendants. When a transaction is
projected on a node, only the items that occur in its active item list are kept. The transaction gets recursively
projected along the paths determined by active extensions. The idea is, only those items in a transaction
percolate down the tree that can only potentially be useful in extending the tree by one more level. With
every pass of the algorithm, many extensions become progressively inactive, which in turn results in the
reduction of active item list sizes at all the nodes. Thus, the size of the projected transaction set reduces
progressively. This yields the algorithm its e�ciency in the counting phase.

The process of counting support of (k + 1)-itemsets is accomplished in the following way. Each node,
representing the itemset I = (i1i2 : : : ik�1), at level k � 1 maintains a count matrix, which is used to count
support of candidate extensions (i1i2 : : : ik�1ikik+1), where items ik and ik+1 are active extensions of the
node. Once transactions are projected to the node with matrix, the algorithm iterates through them to
gather count of the matrix.

The Tree Projection Algorithm for discovering frequent sequential pattern borrows most of its ideas
from Tree Projection algorithm for discovering associations. Thus, the discovered sequential patterns are
arranged in a tree data structure, where each node is associated with k-item sequential pattern. However, in
a sequential tree projection algorithm a node can be extended into multiple children nodes via items in two
ways as follows. A child of the node can be created by extending the last itemset in a pattern represented
by a node with an item that is lexicographically larger than all the items in that itemset (called itemset

extension) or by extending a pattern with a new 1-item itemset (called sequence extension). The new children
represent (k + 1)-item patterns.

For example, let's assume that 1-item patterns < (1) >, < (2) > and < (3) > are frequent. An item 3 can
extend pattern < (2) > by creating both an itemset extension < (2 3) > and sequence extension < (2) (3) >.
However an item 1 can extend pattern < (2) > only be creating a sequence extension < (2) (1) >. An
itemset extension < (2 1) > cannot be created since item 2 is lexicographically larger then item 1.

Figure 2 illustrates an example of Projection Tree. In this example the set of active extensions of node
< (2) > is f1; 3g, where 1 is an active sequence extension and 3 is an active itemset extension. The set of
active items is f1; 2; 3g.

Another di�erence between to algorithms is how the counting support of (k + 1)-item pattern is ac-
complished. Each node, representing the pattern P =< s1s2 : : : sm >, at level k � 1 maintains four count
matrices. The �rst matrix is a lower-triangular matrix, which is used to count support of candidate ex-
tensions < s1s2 : : : (sm i j) >, where items i and j are active itemset extensions of the node. The second

{ 3 {

< >

< (1) > < (2) > < (3) > < (4) >

< (1 2) > < (1 3) > < (1) (3) > < (2) (1) > < (2) (2) > < (2 3) > < (2) (3) > < (3) (1) > < (3) (2) >

< (1 2 3) > < (1 2) (3) > < (2) (1 2) > < (2) (1) (2) > < (2 3) (1) > < (3) (1 2) >< (2 3) (2) >

level 0

level 1

level 2

level 3

Notation:

- active node - inactive node

Figure 2: An example of Projection Tree

matrix is used to count support of candidate extensions < s1s2 : : : sm (i) (j) >, where item i is an active
itemset extension of the node and item j is an active sequence extension of the node. The third matrix is a
lower-triangular matrix, which is used to count support of candidate extensions < s1s2 : : : sm (i j) >, where
items i and j are active sequence extensions of the node such that item j is lexicographically larger then item
item i. The last matrix is used to count support of candidate extensions < s1s2 : : : (sm i) (j) >, where item
i is an active itemset extension of the node and item j is an active sequence extension of the node. Once
sequences are projected to the node with matrices, the algorithm iterates through them to gather counts of
matrices.

4 Parallel Formulation

The overall structure of the computations performed by the serial tree projection algorithm for discovering
sequential patterns (discussed in Section 3)) is encapsulated in the tree that is generated by the algorithm.
In particular, if we use the breadth-�rst approach for tree expansion, the computation proceeds as follows.
Initially, there is a single node (i.e., the NULL node), which is expanded to generate all sequential patterns
of length one, leading to a tree of depth one. Then, the nodes of that tree that correspond to sequential
patterns whose support satisfy the given minimum support constraints are expanded to generate sequential
patterns of length two, leading to a tree of depth two. This process of level-by-level tree expansion continues
until the tree cannot be grown any further because none of the leaf nodes (i.e., candidate sequential patterns)
satisfy the minimum support constraints.

The bulk of the computation in the tree projection algorithm is performed in determining which of the
nodes (i.e., sequential patterns) of the tree satisfy the minimum support constraints. Again, as discussed
in Section 3, this is done by projecting the original sequences into each of the nodes of the tree and then
counting the support using the various matrices. It is important to emphasize, that when counting the
support of the nodes at level k, the database sequences are projected to the parent nodes at level k � 2. As
discussed in [AAP00], this is done solely for performance reasons.

Given that the computations are structured in this fashion, there are two general ways that can be used
to decompose the computations [KGGK94]. The �rst approach exploits the data parallelism that exists in
computing the support at each node, whereas the second approach exploits the task parallelism that exists
in the tree-based nature of the computation. Our parallel formulations using both of these approaches are
described in the rest of this section.

4.1 Data Parallel Formulation

The key idea behind our data parallel formulation (DPF) is to decompose the computations associated with
counting the support of the various sequential patterns at each node of the tree. In particular, our parallel

{ 4 {

formulation works as follows.
If p is the total number of processors, the original database is initially partitioned into p equal size parts,

and each one is assigned to a di�erent processor. To compute the support of the candidate sequences at
level k, each processor projects its local set of data sequences to the nodes at level k � 2, and computes
their support based on the local data sequences. The global supports are determined by using a reduction
operation to add up the individual supports. These global supports are made known to all the processors,
and are used to determine which nodes at the kth level meet the minimum support constraints. Note that in
this approach, all the processors build the same tree (which is identical to that built by the serial algorithm).
This parallel formulation is similar in nature to the count distribution method developed for parallelizing
the serial Apriori algorithm for �nding associative patterns [AS96, HKK99].

Since the database is equally distributed among the processors, the overall computation is well balanced1.
However, if mk is the number of candidate sequential patterns at level k, the communication overhead of this
formulation due to the reduction operation is O(mk) (since mk >> p, [KGGK94]). Let tsk be the amount
of time required by the serial algorithm to compute the support of the candidate patterns at level k. The
proposed parallel algorithm will perform the same step in the following time:

tpk = tsk=p+O(mk): (1)

If n is the total number of sequences in the database, and fk�2 is the number of nodes at level k � 2 of the
tree, then

tsk = O(n � fk�2); (2)

since each sequence needs to be projected to each one of the nodes at level k�2. Combining Equations 2 and 1,
we can see that the maximum number of processors that can be used cost-e�ectively is given by

p = O

�
n � fk�2
mk

�
:

This formula indicates that DPF algorithm leads to scalable formulations only when the overall work increases
as a result of an increase in the database size. In this case, as n increases, we can use more processors, and
still achieve good parallel e�ciency. However, if the overall work increases as a result of a decrease in the
minimum support, in that case n stays the same, but both mk and fk�2 increase, at about the same rate.
As a result, we cannot use more processors as the overall work increases, without a decrease in the parallel
e�ciency.

Furthermore, this algorithm works well only when the tree and count matrices can �t into the main
memory of each processor. If the number of candidates is large, then the matrices may not �t into the
main memory. In this case, this algorithm has to partition the tree and compute the counts by scanning the
database multiple times, once for each partition of the tree.

4.2 Task Parallel Formulation

The key idea behind the task parallel formulation (TPF) is that when the support of the candidate patterns
at level k is computed by projecting the databases at the various nodes at the k � 2 level of the tree, the
computations at each of these k � 2 nodes are independent of each other. Thus, the computations at each
node becomes an independent task and the overall computation can be parallelized by distributing these
tasks among the available processors.

Our task parallel formulation distributes the tasks among the processors in the following way. First,
the tree is expanded using the data-parallel algorithm described in Section 4.1, up to a certain level k + 1,
with k > 0. Then, the di�erent nodes at level k are distributed among the processors. Once this initial
distribution is done, each processor proceeds to generate the subtrees (i.e., sub-forest) underneath the nodes
that it has been assigned.

In order for each processor to proceed independently of the rest, it must have access to the sequences in
the database that may contain the patterns corresponding to the nodes of the tree that it has been assigned.

1This can be ensured by partitioning the database in a random fashion, so that no processor will be assigned a portion of
the database that has more frequent patterns than others.

{ 5 {

< (1 2) >

< (2) (1) >

< (2 3) >

< (3) (1) >

3

2

1

nodes
items

Figure 3: A bipartite graph corresponding to pro-
jection tree

< (1 2) >

< (2) (1) >

< (2 3) >

< (3) (1) >

3

2

1

nodes

items

X

Processor P0

Processor P1

Figure 4: A partitioned bipartite graph

The database sequences (or portions o�) that each processor Pi needs to have access to, can be determined
as follows. Let Si be the set of nodes assigned to Pi, Ai be the union of all the active items of the nodes in
Si, and Bi be the union of all the items in each of the frequent patterns that correspond to a node in Si.
Given these de�nitions, each processor needs to have access to all the sequences that contain items belonging
in the set Ci = Ai

S
Bi. Moreover, since it computes only the frequent patterns that are underneath the

nodes in Si, it needs to only retain the items from the original sequences that are in Ci. We will refer to the
set of items Ci as the sub-forest itemset of the node set Si.

In our algorithm, once the distribution of the nodes at level k is determined, the sets C0; C1; : : : ; Cp�1
are determined and broadcasted to all the processors. Each processor then reads the local portion of the
database (the one that was used by the data-parallel algorithm), splits it into p parts, one for each processor,
and sends it to the appropriate processor. Each processor, upon receiving the sequences corresponding to
its portion of the tree, writes them to the disk and proceeds to expand its nodes independently. Note that
since the sets Ci for di�erent processors can overlap, processors will end up having overlapping sections of
the original database.

The key step in the STPF algorithm is the method used to partition the nodes of the kth level of the
tree into p disjoint sets S0; S1; : : : ; Sp�1. In order to ensure load balance, this partitioning must be done in
a way so that the work is equally divided among the di�erent processors. A simple way of achieving this is
to assign a weight to each node based on the amount of work required to expand that node, and then use a
bin-packing algorithm [CLR90] to partition the nodes into p equal-weight buckets. This weight can be either
a measure of the actual computational time that is required, or it can be a measure that represents a relative
time, in relation to the time required by other nodes. Obtaining relative estimates is much easier than
obtaining estimates of the actual execution time. Nevertheless, accurately estimating the relative amount of
work associated with each node is critical for the overall success of this load balancing scheme.

A simple estimate of the relative amount of work of a particular node is to use the support of its
corresponding sequential pattern. The motivation behind this approach is that if a node has a high support
it will most likely generate a deeper subtree, than a node with a lower support. However, this estimate is
based on a single measure and can potentially by very inaccurate. A better estimate of the relative amount
of work can be obtained by summing up the support of all of its active extensions, that is, the support of
all of its children nodes at the k+1st level in the tree. This measure by looking ahead at the support of the
patterns of length k + 1, will lead to a more accurate estimate. This is the method that we use to estimate
the relative amount of work associated with each node.

Even though this bin-packing-based approach is able to load-balance the computations, it may lead
to partitions in which the sub-forest itemsets assigned to each processor have a high degree of overlap.
Consequently, the follow-up database partitioning will also lead to highly overlapping local databases. This
increases the amount of time required to perform the partitioning, the amount of disk-storage required at
each processor, and as we will see in the experiments presented in Section 5.2, it also increases the amount
of time required to perform the projection. Ideally, we will like to partition the nodes at the kth level in such

{ 6 {

< >

< (1) > < (2) > < (3) >

��< (1 2) > ��< (2) (1) > �< (2 3) >��< (3) (1) >

< (1 2 3) > < (1 2) (3) > < (2) (1 2) > < (2) (1) (2) > < (2 3) (1) > < (3) (1 2) >< (2 3) (2) >

level 0

level 1

level 2

level 3

Notation:

�- assigned to processor P0��- assigned to processor P1

Figure 5: A tree with nodes assigned to two processors

< >

< (1) > < (2) >

< (1 2) > < (2) (1) >

< (1 2 3) > < (1 2) (3) > < (2) (1 2) > < (2) (1) (2) >

level 0

level 1

level 2

level 3

< >

< (2) > < (3) >

< (2 3) > < (3) (1) >

< (2 3) (1) > < (3) (1 2) >< (2 3) (2) >

Processor P0 Processor P1

Figure 6: Projection Trees distributed to two processors

a way so that in addition to balancing the load we also minimize the degree of overlap among the di�erent
databases assigned to each processor.

Since the degree of overlap in the local databases is directly proportional to the degree of overlap in
the sub-forest itemsets, we can minimize the database overlap by minimizing the overlap in the sub-forest
itemsets. This later problem can be solved by using a minimum-cut bipartite graph partitioning algorithm,
as follows.

Let G = (VA; VB ; E) be an undirected bipartite graph, where VA, and VB are the two sets of vertices and
E is the set of edges. The vertices in VA correspond to the nodes of the tree, the vertices in VB correspond
to the sequence items, and there is an edge (u; v) 2 E with u 2 VA and v 2 VB , if the item b is an active
item of node u. Each vertex u 2 VA has a weight w(u) that is equal to the relative amount of work required
to expand its corresponding subtree, and each vertex v 2 VB has a weight of one. Furthermore, each edge
(u; v) has a weight of one.

A partitioning of this bipartite graph into p parts that minimizes the edge-cut (i.e., the number of edges
that straddle partitions), subject to the constraint that the the sum of the weight of the vertices in VA
assigned to each part is roughly the same, can be used to achieve the desired partitioning of the tasks. Since
each partition contains tree-nodes whose total estimated work is roughly the same, the overall computation
will be balanced. Furthermore, by minimizing the edge-cut the resulting partition groups nodes together so
that their sub-forest itemsets have as little overlap as possible. Note that an edge belonging to the cut-set
indicates that the corresponding item is shared between at least two partitions. In general, for each item u,
the number of its incident edges that belong to the cut-set plus one, represent the total number of sub-forest
itemsets that this node belongs to.

Let's consider an example of the tree T illustrated in Figure 2. This tree is expanded to level 3, assuming
that two processors are available we want partition T based on nodes at level 2 in two partitions. The graph

{ 7 {

Dataset Avg. no. of transactions Avg. no. of items Avg. length of maximal Avg. size of itemsets MinSup(%)
per sequence per transaction potentially frequent maximal potentially

sequences frequent sequences

(1) 10 2.5 4 1.25 0.1
(2) 10 5 4 1.25 0.25
(3) 10 5 4 2.5 0.33
(4) 20 2.5 4 1.25 0.25

Table 1: Parameter values for datasets

N.of P DPF TPF-GP2 TPF-GP3 TPF-BP2 TPF-BP3

2 7914.82s 4370.37s 4263.24s 6128.41s 6885.33s
4 7922.66s 3012.61s 3443.54s 4835.05s 6740.49s
8 8017.73s 2346.55s 2785.41s 3626.02s 6294.13s
16 8135.03s 1992.7s 2595.51s 2903.85s 5508.26s
32 8413.89s 1804.09s 2497.52s 2404.73s 4604.7s

Table 2: Serial execution time for C10� T5� S4� I2:5

G corresponding to tree T is illustrated in Figure 3. Let's assume that graph G was partitioned as shown
in Figure 4. This partition results in assigning nodes < (1 2) > and < (2) (1) > to processor P0; nodes
< (2 3) > and < (3) (1) > are assigned to processor P1 (see Figure 5). Each processors is then distributed
a new tree as illustrated in Figure 6.

In our algorithm, we compute the bipartite min-cut partitioning algorithm using the multi-constraint
graph partitioning algorithm [KK98] available in the METIS graph partitioning package [KK95].

5 Experimental Evaluation

5.1 Experimental Setup

We use the same synthetic datasets as in [SA96], albeit with more data-sequences. We generated datasets
by setting number of maximally potentially frequent sequences NS = 5000, number of maximal potentially
frequent itemsets NI = 25000 and number of items. N = 10000. The number of data-sequences D was set
to 1 million. Table 1 summarizes the dataset parameter settings and shows the minimum support used in
experiments reported below.

We ran our experiments on IBM SP cluster. The IBM SP consists of 79 four-processor and 3 two-processor
machines with 391 GB of memory. The machines utilize the 222 MHz Power3 processors.

5.2 Results

We evaluated DPF and TPF based on the following criteria: how e�ective they are in terms of execution
time and how e�ective they are in balancing workload. Additionally, we implemented two approaches for
balancing the workload in TPF. One was based on Bipartite Graph Partitioning (TPF-GP) and the other was
based in Bin Packing (TPF-BP). Those schemes were also evaluated based on how well they can minimize the
overlap between databases assigned to each processor. Both schemes were run starting the task parallelism
at level 2 and level 3 and resulting in 4 sets of experiments for each of the datasets (TPF-GP2, TPF-GP3,
TPF-BP2, TPF-BP3).

Figure 7, Figure 8, Figure 9 and Figure 10 show the execution time of all �ve schemes on the four
di�erent datasets on 2,4, 8, 16 and 32 processors. A number of interesting observations can be made looking
at these results.

First, the DPF algorithm achieves good speedups for all four data sets. In particular, as we increase the
number of processors from 2 to 32 (a factor of 16), the amount of time decreases by a factor of 12.3, 13.9,
13.42 and 13.64 for each one of the four datasets, respectively.

{ 8 {

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2 4 8 16 32

Number of Processors

R
un

tim
e

(in
 s

ec
s)

DPF TPF-GP2 TPF-GP3 TPF-BP2 TPF-BP3

Figure 7: (1)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2 4 8 16 32

Number of Processors

R
un

tim
e

(in
 s

ec
s)

DPF TPF-GP2 TPF-GP3 TPF-BP2 TPF-BP3

Figure 8: (2)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2 4 8 16 32

Number of Processors

R
un

tim
e

(in
 s

ec
s)

DPF TPF-GP2 TPF-GP3 TPF-BP2 TPF-BP3

Figure 9: (3)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2 4 8 16 32

Number of Processors

R
un

tie
m

 (i
n

se
cs

)

DPF TPF-GP2 TPF-GP3 TPF-BP2 TPF-BP3

Figure 10: (4)

Second, the speedups achieved by the TPF-GP2 algorithm are actually sometimes super-linear. As the
number of processors increases from 2 to 32, the runtime for each one of the four datasets decreases by factor
of 29.8, 24.5, 8.0 and 14.66, respectively. The super-linear speedup is due to the fact that each processor
is assigned a sub-forest of the original tree and the databases are re-distributed. As a result, the amount
of time spent in projection and disk I/O actually reduces as the number of processors increases. Also the
poor result on the third data set is due to the fact that the static tasks assignment leads to unbalanced work
distribution.

Third, comparing the bipartite graph partitioning based formulation of TPF to the one based on bin-
packing we can see that graph partitioning leads to substantially smaller execution times. This is because
of the two reasons. First, as discusses in Section 4.2, the graph partitioning based approach reduces the
overlap among the local databases; thus reducing the redistribution cost as well as disk I/O. Second, because
each processor is assigned fewer distinct items, the projection cost is reduced. To illustrate the reduction
in database sizes we plotted the size of local databases (summed over all the processors) for the two sets of
schemes. These results are shown in Figure 11, Figure 12, Figure 13 and Figure 14. These �gures show
the database sizes, relative to the size of the databases (after it has been pruned so it only contains the
active items) on a single processor. As we can see from those �gures, the graph partitioning based schemes
lead to local databases whose size up to a factor smaller that the bin-packing scheme.

Also, the reduction in projection time can be seen in Table 2, that shows the total amount of time
spent by all the processors in performing the local computation. From this table we can see that the graph
partitioning scheme TPF-GP2 spends only 1804 secs versus 2404 secs for TPF-BP2.

Fourth, comparing TPF-GP2 versus TPF-GP3 and TPF-BP2 against TPF-BP3, we can see that the
run-times achieved by the schemes that switch to tasks distribution after the second level are in general
smaller. The only exception is for the third dataset in which TPF-GP3 does better that TPF-GP2 on 8, 16
and 32 processors. This is due to the fact that TPF-GP3 lead to better load balance and that TPF-GP2 is

{ 9 {

0

2

4

6

8

10

12

14

16

2 4 8 16 32

Number of Processors

N
or

m
al

iz
ed

 F
ile

 S
iz

es
TPF-GP2 TPF-GP3 TPF-BP3 TPF-BP3

Figure 11: (1)

0

2

4

6

8

10

12

14

16

2 4 8 16 32

Number of Processors

N
or

m
al

iz
ed

 F
ile

 S
iz

es

TPF-GP2 TPF-GP3 TPF-BP2 TPF-BP3

Figure 12: (2)

0

2

4

6

8

10

12

14

16

2 4 8 16 32

Normalized File Sizes

N
um

be
r

of
 P

ro
ce

ss
or

s

TPF-GP2 TPF-GP3 TPF-BP2 TPF-BP3

Figure 13: (3)

0

2

4

6

8

10

12

14

16

1 2 3 4 5

Number of Processors

N
or

m
al

iz
ed

 F
ile

 S
iz

es

TPF-GP2 TPF-GP3 TPF-BP2 TPF-BP3

Figure 14: (4)

highly unbalanced.

6 Conclusion and Directions of Future Research

In this paper we presented two algorithms for �nding sequential patterns using the tree projection algorithm
that are suitable for distributed memory parallel computers. Our experimental results show that both
the data parallel and the task parallel formulations are able to achieve good speedups as the number of
processors increase. Furthermore, the bipartite graph partitioning based task distribution approach is able
to substantially reduce the overlap in the databases required by each processor.

Despite these promising results we believe that the overall performance can be further improved by
developing dynamic load balancing schemes. One way of doing this is to modify the TPF algorithm so that
instead of expanding its di�erent subtrees asynchronously, to do so in a level by level fashion, and check
to see if the work needs to be redistributed after each level. Our preliminary experiments with such an
approach appear promising and is the focus of our current research.

{ 10 {

References

[AAP00] R.C. Agarwall, C. Aggarwal, and V.V.V. Prasad. A tree projection algorithm for generation of frequent
itemsets. Journal of Parallel and Distributed Computing (Special Issue on High Performance Data
Mining), 2000.

[AS94] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc. of the 20th VLDB
Conference, pages 487{499, Santiago, Chile, 1994.

[AS96] R. Aggrawal and R. Srikant. Mining sequential patterns. In Proc. of the Int'l Conference on Data
Engineering (ICDE), Taipei, Taiwan, 1996.

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press, McGraw-Hill,
New York, NY, 1990.

[HKK99] E.H. Han, G. Karypis, and V. Kumar. Scalable parallel data mining for association rules. IEEE
Transactions on Knowledge and Data Eng. (accepted for publication), 1999.

[HPMA+00] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.C. Hsu. Freespan: Frequent pattern-
projected sequential pattern mining. In Proc. 2000 Intl. Conference on KDD, 2000.

[JKK99] Mahesh V. Joshi, George Karypis, and Vipin Kumar. Universal formulation of sequential patterns.
Technical report, Universit of Minnesota, Department of Computer Science, Minneapolis, 1999.

[KGGK94] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Introduction to Parallel Computing:
Design and Analysis of Algorithms. Benjamin/Cummings Publishing Company, Redwood City, CA,
1994.

[KK95] G. Karypis and V. Kumar. metis: Unstructured graph partitioning and sparse matrix ordering system.
Technical report, Department of Computer Science, University of Minnesota, 1995. Available on the
WWW at URL http://www.cs.umn.edu/~karypis/metis/metis.html.

[KK98] G. Karypis and V. Kumar. Multilevel algorithms for multi-constraint graph partitioning. In Proceedings
of Supercomputing, 1998. Also available on WWW at URL http://www.cs.umn.edu/~karypis.

[MTV95] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovering frequent episodes in sequences. In Proc. of
the First Int'l Conference on Knowledge Discovery and Data Mining, pages 210{215, Montreal, Quebec,
1995.

[SA96] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and performance improvements.
In Proc. of the Fifth Int'l Conference on Extending Database Technology, Avignon, France, 1996.

[Zak98] M.J. Zaki. E�cient enumeration of frequent sequences. In 7th International Conference on Information
and Knowledge Management, 1998.

[Zak99] Mohammed J. Zaki. Parallel sequence mining on smp machines. In Workshop On Large-Scale Parallel
KDD Systems (in conjunction 5th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 57{65, San Diego, CA, august 1999.

{ 11 {

