
Feature-Based Recommendation System

Eui-Hong (Sam) Han
iXmatch Inc.

5555 West 78th Street, Suite E
Minneapolis, MN 55439

sam@ixmatch.com

George Karypis
∗

iXmatch Inc.
5555 West 78th Street, Suite E

Minneapolis, MN 55439

karypis@cs.umn.edu

ABSTRACT
The explosive growth of the world-wide-web and the emer-
gence of e-commerce has led to the development of recom-
mender systems—a personalized information filtering tech-
nology used to identify a set of N items that will be of
interest to a certain user. User-based and model-based col-
laborative filtering are the most successful technology for
building recommender systems to date and is extensively
used in many commercial recommender systems. The basic
assumption in these algorithms is that there are sufficient
historical data for measuring similarity between products or
users. However, this assumption does not hold in various ap-
plication domains such as electronics retail, home shopping
network, on-line retail where new products are introduced
and existing products disappear from the catalog. Another
such application domains is home improvement retail indus-
try where a lot of products (such as window treatments,
bathroom, kitchen or deck) are custom made. Each product
is unique and there are very little duplicate products. In
this domain, the probability of the same exact two products
bought together is close to zero. In this paper, we discuss
the challenges of providing recommendation in the domains
where no sufficient historical data exist for measuring simi-
larity between products or users. We present feature-based
recommendation algorithms that overcome the limitations
of the existing top-N recommendation algorithms. The ex-
perimental evaluation of the proposed algorithms in the real
life data sets shows a great promise. The pilot project de-
ploying the proposed feature-based recommendation algo-
rithms in the on-line retail web site shows 75% increase in
the recommendation revenue for the first 2 month period.

Categories and Subject Descriptors
D.m [Software]: Miscellaneous; J.m [Computer Appli-

cations]: Miscellaneous

∗also with the Department of Computer Science and Engi-
neering, University of Minnesota

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’05, October 31–November 5, 2005, Bremen, Germany.
Copyright 2005 ACM 1-59593-140-6/05/0010 ...$5.00.

General Terms
Algorithms

Keywords
E-Commerce, Collaborative filtering, Recommender systems,
Product Features, Web Retailer

1. INTRODUCTION
The explosive growth of the world-wide-web and the emer-

gence of e-commerce has led to the development of recom-
mender systems [16]. Recommender systems are personal-
ized information filtering technology used to either predict
whether a particular user will like a particular item (predic-
tion problem) or to identify a set of N items that will be
of interest to a certain user (top-N recommendation prob-
lem). In recent years, recommender systems have been used
in a number of different applications [22, 9, 12, 23, 21, 11,
15, 3] such as recommending products a customer will most
likely buy; movies, TV programs, or music a user will find
enjoyable; identifying web-pages that will be of interest; or
even suggesting alternate ways of searching for information.
An excellent survey of different recommender systems for
various applications can be found in [21, 16].

Over the years, various approaches for building recom-
mender systems have been developed that utilize either de-
mographic, content, or historical information [9, 1, 2, 22,
23, 12]. Among them, collaborative filtering (CF), which
relies on historical information, is probably the most suc-
cessful and widely used technique for building recommender
systems [17, 12]. The first system to generate automated
recommendations was the GroupLens system [17, 12], it pro-
vided users with personalized recommendations on Usenet
postings. The recommendations for each individual were
obtained by identifying a neighborhood of similar users and
recommending the articles that this group of users found
useful.

Two approaches have been developed for building CF-
based top-N recommender systems. The first approach, re-
ferred to as user-based [22, 12, 18, 17, 8, 19], relies on the
fact that each person belongs in a larger group of similarly-
behaving individuals. As a result, items (e.g., products,
movies, books, etc.) frequently purchased/liked by the var-
ious members of the group can be used to form the basis of
the recommended items. The second approach, known as
model-based [22, 4, 18, 25, 11, 20, 10, 6], analyzes the histor-
ical information to identify relations between the different
items such that the purchase of an item (or a set of items) of-

446

ten leads to the purchase of another item (or a set of items),
and then use these relations to determine the recommended
items. One of the model-based approach called item-based
top-N recommendation algorithms [20, 10, 6] provide rec-
ommender systems that can scale to very large datasets and
compute recommendations in almost real-time. In addition,
these algorithms produce recommendations and predictions
whose quality is either comparable or better than those pro-
duced by other much slower algorithms.

These algorithms build the recommendation model by an-
alyzing the similarities between the various items and then
use these similar items to identify the set of items to be
recommended. The basic assumption in these algorithms is
that there are sufficient historical data for measuring sim-
ilarity between items. However, this assumption does not
hold in various application domains. For example, when a
new item X is introduced to the market, the similarity be-
tween X and other existing items cannot be measured be-
cause none of the customers bought X before. The problem
compounds if X has limited quantity and runs out in short
time span. By the time enough historical data are gathered
to measure the similarity between X and other items, X is
no longer available. Another example can be found in a do-
main such as home improvement retail industry where a lot
of products (such as window treatments, bathroom, kitchen
or deck) are custom made. Each item is unique and there are
very little duplicate items. In this domain, the probability
of the same two items bought together is close to zero.

In this paper, we will discuss the challenges of provid-
ing recommendation in the domains where no sufficient his-
torical data exist for measuring similarity between items.
We present feature-based recommendation algorithms that
overcome the limitations of the existing item-based top-N
recommendation algorithms. We will provide experimental
evaluation of the proposed algorithms in the real life data
sets. We also provide results from the pilot project deploy-
ing the proposed feature-based recommendation algorithms
in the on-line retail web site.

The rest of this paper is organized as follows. Section 2
presents a brief survey of the related research on collabora-
tive filtering-based recommender algorithms. Section 3 de-
scribes the feature-based recommendation algorithms. Sec-
tion 4 provides the experimental evaluation of the proposed
algorithms and shows the results from the pilot project. Fi-
nally, Section 5 provides some concluding remarks.

2. RELATED WORK
User-based collaborative filtering is the most successful

technology for building recommender systems to date and is
extensively used in many commercial recommender systems.
In general, user-based systems compute the top-N recom-
mended items for a particular user by following a three-step
approach [22, 12, 19]. In the first step, they identify the k

users in the database that are the most similar to the active
user. During the second step, they compute the union of
the items purchased by these users and associate a weight
with each item based on its importance in the set. Finally,
in the third step, they select the N items from that union
that have the highest weight and have not already been pur-
chased by the active user as the items to be recommended.
Within that framework, the method used to determine the
k most similar users and the scheme used to determine the
importance of the different items play the most critical role

in the overall performance of the algorithm. Commonly, the
similarity between the users is computed by treating them
as vectors in the item-space and measuring their similarity
via the cosine or correlation coefficient functions [18, 19],
whereas the importance of each item is determined by how
frequently it was purchased by the k most similar users.
However, alternate approaches for both of these steps have
been explored and shown to lead to somewhat better results.
A detailed survey of different user-based algorithms and a
comparison of their performance can be found in [18, 8, 19].

Despite the popularity of user-based recommender sys-
tems, they have a number of limitations related to scala-
bility and real-time performance. The computational com-
plexity of these methods grows linearly with the number
of customers that in typical commercial applications can
grow to be several millions. Furthermore, even though the
user-item matrix is sparse, the user-to-user similarity ma-
trix is quite dense. This is because, even a few frequently
purchased items can lead to dense user-to-user similarities.
Moreover, real-time top-N recommendations based on the
current basket of items, utilized by many e-commerce sites,
cannot take advantage of pre-computed user-to-user similar-
ities. Finally, even though the throughput of user-based rec-
ommendation algorithm can be increased by increasing the
number of servers running the recommendation algorithm,
they cannot decrease the latency of each top-N recommen-
dation that is critical for near real-time performance. One
way of reducing the complexity of the nearest-neighbor com-
putations is to cluster the users and then to either limit the
nearest-neighbor search among the users that belong to the
nearest cluster or use the cluster centroids to derive the rec-
ommendations [24, 15]. These approaches, even though they
can significantly speed up the recommendation algorithm,
they tend to decrease the quality of the recommendations.

To address the scalability concerns of user-based recom-
mendation algorithms a variety of model-based recommen-
dation techniques have been developed. Billsus and Paz-
zani [4] developed a model-based recommender system by
treating the top-N recommendation problem as a classifi-
cation problem, in which the goal was to classify the items
purchased by an individual user into two classes like and dis-
like. A classification model based on neural networks was
built for each individual user where the items purchased
by the user were thought of as the examples and the users
as the attributes. To reduce the dimensionality a singular
value decomposition of the user-item matrix was obtained.
The prediction on an item was computed by constructing
an example for that item and feeding it to the classifier.
The authors reported considerable improvements over the
traditional user-based algorithms. Though this approach is
quite powerful it requires building and maintaining a neu-
ral network model for each individual user in the database,
which is not scalable to large databases. Breese et al. [18]
presented two model-based algorithms for computing both
predictions and top-N recommendations. The first algo-
rithm follows a probabilistic approach in which the users
are clustered and the conditional probability distribution of
different items in the cluster was estimated. The probabil-
ity that the active user belongs to a particular cluster given
the basket of items was then estimated from the cluster-
ing solution and the probability distribution of items in the
cluster. The clustering solution for this technique is com-
puted using the expectation maximization (EM) principle.

447

The second algorithm is based on Bayesian network models
where each item in the database is modeled as a node having
states corresponding to the rating of that item. The learning
problem consists of building a network on these nodes such
that each node has a set of parent nodes that are the best
predictors for its rating. They presented a detailed com-
parison of these two model-based approaches with the user-
based approach and showed that Bayesian networks model
outperformed the clustering model as well as the user-based
scheme. Heckerman et al. [7] proposed a recommendation al-
gorithm based on dependency networks instead of Bayesian
networks. Though the accuracy of dependency networks is
inferior to Bayesian networks they are more efficient to learn
and have smaller memory requirements. Agrawal et al. [25]
presented a graph-based recommendation algorithm where
the users are represented as the nodes in a graph and the
edges between the nodes indicate the degree of similarity be-
tween the users. The recommendations for a user were com-
puted by traversing nearby nodes in this graph. The graph
representation of the model allows it to capture transitive
relations which cannot be captured by nearest neighbor al-
gorithms and the authors reported better performance than
the user-based schemes.

A number of different model-based approaches have been
developed that use item-to-item similarities as well as asso-
ciation rules. Shardanand and Maes [22] developed an item-
based prediction algorithm within the context of the Ringo
music recommendation system, referred to as artist-artist,
that determines whether or not a user will like a particular
artist by computing its similarity to the artists that the user
has liked/disliked in the past. This similarity was computed
using the Pearson correlation function. Sarwar et al. [20]
further studied this paradigm for computing predictions and
they evaluated various methods for computing the similarity
as well as approaches to limit the set of item-to-item similar-
ities that need to be considered. The authors reported con-
siderable improvements in performance over the user-based
algorithm. Mobasher et al. [14] presented an algorithm for
recommending additional webpages to be visited by a user
based on association rules. In this approach, the historical
information about users and their web-access patterns were
mined using a frequent itemset discovery algorithm and were
used to generate a set of high confidence association rules.
The recommendations were computed as the union of the
consequent of the rules that were supported by the pages
visited by the user. Lin et al. [13] used a similar approach
but they developed an algorithm that is guaranteed to find
association rules for all the items in the database. Finally,
within the context of using association rules to derive top-N
recommendations, Demiriz [5] studied the problem of how
to weight the different rules that are supported by the ac-
tive user. He presented a method that computes the sim-
ilarity between a rule and the active user’s basket as the
product of the confidence of the rule and the Euclidean dis-
tance between items in the antecedent of association rule
and the items in the user’s basket. He compared this ap-
proach both with the item-based scheme described in [10]
and the dependency network-based algorithm [7]. His ex-
periments showed that the proposed association rule-based
scheme is superior to dependency networks but inferior to
the item-based schemes.

3. FEATURE-BASED top-N RECOMMENDA-
TION ALGORITHMS

The basic knowledge that the feature-based recommenda-
tion algorithms tries to discover can be summarized as “peo-
ple who bought products with features like these also bought
a product with features like these.” An example of this kind
of knowledge in an electronics retail shop can be “people who
bought a TV with features like HDTV, Rear-Project, HDMI
Input, Built-In HDTV Tuner, and IEEE 1394 (FireWire)
DV interface also bought a DVD player with features like
Progressive-Scan Multiformat, HDMI Output, 3D virtual
surround sound, Dolby Digital 2-channel down-mixing, Mul-
tiMediaCard, and Secure Digital.” Note that this statement
is about features of products not about particular products.
Now assume a customer is checking out a brand new TV that
significantly matches the product features of this statement.
The recommendation system will be able to recommend a
DVD that matches the product features of this statement
regardless of whether that particular DVD is an existing
product or a new product. Consider another example in a
home improvement retailer: “people who bought windows
with features like clad-wood, safety glass, and bay window
also bought window treatments with features like natural
woven shade, bamboo, semi-sheer, and scarves.” When a
customer is considering custom windows with the features
of this statement, the salesperson can recommend window
treatments with features in this statement.

In this section, we will describe three feature-based rec-
ommendation algorithms that capture the knowledge dis-
cussed here. The first two algorithm is designed to provide
recommendations in the domain where the product catalog
changes frequently (e.g., electronics retail). The third algo-
rithm is designed to provide recommendations for product
catalog with custom products.

3.1 Frequently Changing Product Catalog
In this type of catalog (e.g., electronics retail, home shop-

ping network, on-line retail), new products are introduced
frequently and existing products become out of stock or dis-
continue frequently. Challenges of recommendation system
in this catalog include how to use new products in the basket
for recommendation and how to recommend new products.

We present two methods to address these challenges. We
assume that we are given a training basket data correspond-
ing to past sales history. Each basket corresponds to single
transaction where a set of products are sold to a customer.
We have a corresponding training product catalog contain-
ing all the products in the training basket data and their
product features. We also have a current product catalog
that contain available products (including new products that
are not in the training product catalog) and their product
features.

In the first method, given a training basket data, we build
a recommendation model M using item-based top-N recom-
mendation algorithms described in [10]. The recommenda-
tion steps can be summarized as follows:

1. Given a set of products X in a shopping basket, find
similar products S of X using the product features of
X from the training product catalog.

2. Find recommended products R of the set S using the
recommendation model M .

448

3. Find recommended features F by summarizing or ag-
gregating product features of R.

4. Find top-N matching products using F from the cur-
rent product catalog.

In step 1, existing products (i.e., products in the training
product catalog) in X will find themselves as the match-
ing products. New products in X will find the most similar
products from the training product catalog. Hence, S con-
tains the existing products from X and the most similar
existing products of new products in X. By using S that
contains similar products of new products in step 2, this
method utilizes new products of the shopping basket in the
recommendation process.

In step 3, we utilize the recommendation score or confi-
dence in the summary/aggregation of product features. The
score of one feature is the sum of recommendation score of
each recommended product that has this feature. Hence,
features that are in many recommended products and are
in highly recommended products are scored highly. These
product feature scores are in turn used in step 4 for matching
products.

In step 4, each product is scored by adding scores of fea-
tures in F that this product has. By scoring products from
the current product catalog using the recommended features
and their scores, the best matching products from the cur-
rently available products (including new products that do
not exist in the training basket) are recommended.

This proposed method utilizes new products in the bas-
ket for recommendation and also recommends new products.
However, products that are introduced to the training bas-
ket recently (or lately) and do not have many shopping bas-
kets with these products are not utilized in full extent in the
recommendation process. For instance, assume a very pop-
ular product was introduced toward the end of period for
training data. There are very small number of baskets with
this product. However, there will be many baskets with this
product in the deployment. The recommendation with this
product will provide no hits or very low confidence recom-
mendation, because there are very small number of baskets
in the training set. A better option is to regard this product
as a new product and find other similar products from the
training product catalog. Now the challenge is how to se-
lect some of existing products as new products. A frequency
or support threshold-based approach is feasible, but always
presents a difficult task of determining the right threshold
value.

We propose another method that avoids the issue with
threshold. In this method, instead of using item-based top-
N recommendation algorithms to determine recommended
products, we use the features of products in the basket di-
rectly.

In this method, given a training basket data, we build as-
sociation rules AR as follows. For each basket in the training
basket data, for each product in the basket, construct a rule
such that this product is in the consequence of the rule and
all other products are in the antecedent of the rule. For ex-
ample, given a basket {a, b, c}, we will have rules {a, b} →
c, {a, c} → b and {b, c} → a. The recommendation steps
can be summarized as follows:

1. Given a set of products X in a shopping basket, find
matching rules R of X by matching the product fea-

tures of X against the features of the products in the
antecedent of rules in AR.

2. Find recommended features F by summarizing or ag-
gregating the features of products in the consequence
of the rules in R.

3. Find top-N matching products using F from the cur-
rent product catalog.

Note that in step 1 we simply use the features of the prod-
ucts in the basket and find association rules that match the
features directly. This step eliminates the distinction be-
tween existing products and new products and uses all the
features of the basket in the recommendation process. In
step 2, similar to the first method, the matching scores from
the step 1 are used to score the features. Step 3 is the same
as the step 4 of the first method.

3.2 Product Catalog with Custom Products
In this type of catalog (e.g., home improvement retail in-

dustry, built to order on-line retail), complete enumeration
of all possible products is not feasible. Only high-level or
categorical listing with sample products is feasible. For ex-
ample, in the home improvement retail outlet, high level
categories like window treatments, bathroom, kitchen, or
deck can be listed with some examples of each of these cat-
egory. From the sales record, we will not find many exact
duplicate products or configurations. We might find simi-
lar bathroom configurations from different sales records, but
they will not match exactly. Hence, any user- or item-based
recommendation model will not work in this catalog data
set.

We propose a recommendation method that is based on
clustering and feature matching for this catalog data set.
When the product catalog does not have a product hierar-
chy, we construct a product hierarchy from the sales data
using clustering algorithms [26]. Given a product hierar-
chy, we roll up leaf nodes in the hierarchy if they do not
have sufficient number of products in the node and split leaf
nodes if they have too many products and the cluster co-
hesiveness/tightness [26] is low. The goal of rolling up and
splitting nodes in the product hierarchy is to have leaf nodes
that have sufficient number of products and yet have high
cluster cohesiveness.

Given a training basket data and the product hierarchy,
we build a recommendation model M using item-based top-
N recommendation algorithms described in [10]. In this
model, item corresponds to the cluster (the leaf node) of
the product hierarchy that each product belongs to.

1. Given a set of products X in a shopping basket, find
the set of clusters C that products in X belong in the
product hierarchy.

2. Find recommended clusters R of the set C using the
model M .

3. For each recommended cluster in R, find recommended
features F of products in the cluster by summariz-
ing/aggregating the features of products in the cluster.

4. For each recommended cluster, either show the cluster
and its recommended features F or find the matching
custom products from the training basket using F .

449

The recommended features F of a cluster can be deter-
mined as the centroid vector of the product features in the
cluster, or the product features of the medoid product of the
cluster. Another option is to use some business rules to se-
lect representative product of the recommended cluster and
use the features of these representative products. The busi-
ness rules can be the most popular products in terms of sales,
most profitable products, products with supplier incentives,
or products with most inventory. However, these options
lack differentiation power as any combination of products
that give same C in step 1 will get the same recommenda-
tion. Third option is to select features basket-sensitive way
in which the products in the basket of X are considered. In
this option, given a recommended cluster r in R, we first se-
lect past shopping baskets that contain products from clus-
ter C and the recommended cluster r. We then rank these
shopping baskets by matching features of X to the products
from cluster C. We then score features of products in r from
these baskets utilizing matching scores.

An example using electronic retails data will demonstrate
the proposed method. Note that electronic retails is not the
proper domain for this kind of catalog, but is used to explain
the process because this domain is well known. Assume that
a customer is buying a TV and a VCR. The cluster (or leaf
node in the product hierarchy) of these products are high-
end TV and high-end VCR. Given these clusters, assume
that the recommended cluster is high-end HOME AUDIO
& SPEAKER using item-based recommendation of clusters
of past sales baskets.

Now the question is what are the key features of the high-
end HOME AUDIO & SPEAKER to use for final product
recommendation. First option is to select features that are
most common among all the high-end HOME AUDIO &
SPEAKERs. Second option is to select the most popular
(in terms of sales, or some other characteristics) high-end
HOME AUDIO & SPEAKERs and use the features of these
HOME AUDIO & SPEAKERs. Third option is to select
features based on the past shopping baskets that contain
high-end TV, high-end VCR and high-end HOME AUDIO &
SPEAKER. From these baskets, we will select baskets that
are most similar in terms of features of TV and VCR of the
current shopping basket. Then use the features of HOME
AUDIO & SPEAKERs in these baskets for final product
recommendation.

Given the set of recommended features, we can either
recommend features themselves and/or recommend custom
products that match these features. So in the example
above, we can recommend features such as Videostage 5 de-
coding and post-processing circuitry, ADAPTiQ audio cali-
bration system, AM/FM tuner with 50 stations. Then these
features can be used to custom build an audio system. We
can also find matching custom products from the past sales
with these recommended features.

4. EXPERIMENTAL EVALUATION

4.1 Data Sets and Evaluation Metrics
We obtained the sales data from an upscale cable televi-

sion and on-line retailer for evaluation. The data set with
4.5 million records was a random subset from one year sales
data. We took first 9 months as training set and the last
3 months as test set. There were 8,908 products in this
sales data. From these data sets, we constructed a shop-

Table 1: Basket size distribution.
Size of Basket Training Basket Test Basket

2 89,385 67,896
3 22,507 20,066
4 7,729 7,989
5 3,226 3,828
6 1,712 2,108
7 935 1,230
8 591 784
9 374 538
10 259 362

11 and over 836 1,461

ping basket as products purchased by the same customer
within 2 day period. We dropped shopping baskets with
single product, because these baskets cannot be used for
recommendation evaluations.

In the training set, there were 127,554 shopping baskets
with at least 2 products. In this set, there were 5,511 unique
products. In the test set, there were 106,263 shopping bas-
kets with average number of products of 2.91. Note that
sales per month within the last 3 month of the data was
much higher than the previous 9 months. In this data set,
there were 7,635 unique products and 2,803 of them are new
products that did not exist in the training set. Table 1 shows
the number of baskets for different basket size.

We also obtained manual recommendations for these prod-
ucts. Out of 8,908 products, 1,912 products have manual
recommendations. These recommendations were provided
by product suppliers or domain experts.

We compare the following 5 approaches in this experimen-
tal evaluation.

• Manual: recommendation using manual recommenda-
tions.

• Item: recommendation using item-based top-N recom-
mendation algorithms described in [10].

• Feature: recommendation using the second feature-
based recommendation method discussed in Section 3.1.

• Item+Feature: recommendation using the combined
results of Item and Feature.

• Item+Feature+Manual: recommendation using the com-
bined results of Item, Feature, and Manual.

We combined recommendations of different methods by nor-
malizing recommendation scores of each method, adding up
the scores of recommended products from different methods,
and then rank the added scores of recommended products.

We evaluated these recommendation methods for the fol-
lowing two situations.

• Product Page Case: User is viewing a web page of
single product and product recommendation is needed
based on this single product.

• Checkout Page Case: User has one or more products in
the basket for check out and product recommendation
is needed based on the set of products in the basket.

We show the number of hits in top 1, 3, and 6 recommended
products of each method. In most real deployment of rec-
ommendation system, at most 3 products are presented.

450

Table 2: Product Page Case: 310,106 possible hits

method top-1 top-3 top-6
Manual 34,657 46,795 46,795
Item 17,296 33,590 46,672

Feature 11,072 26,201 38,965
Item+Feature 21,490 40,706 58,202

Item+Feature+Manual 43,185 72,634 90,029

Table 3: Product Page Case on Test Baskets with

New Products: 239,905 possible hits

method top-1 top-3 top-6
Manual 28,846 39,288 39,288
Item 7,149 14,791 21,568

Feature 7,092 16,072 24,654
Item+Feature 11,342 22,552 33,465

Item+Feature+Manual 33,160 54,326 65,164

However, some of the recommended products might be out
of stock and it might require more recommended products.
Top 6 recommendation will cover cases like this.

Note that the manual recommendations were used in the
sales process, and the data set we received contains sales in-
fluenced by these recommendations. Hence, the recommen-
dation results of the Manual method needs to be understood
with this bias.

4.2 Product Page Case
There were 106,263 test baskets and were 310,106 recom-

mendations for this test case. Given a test basket, we made
recommendation based on each product in the basket. We
consider the recommendation to be correct or a hit if the
top-k recommendation contains any of the products in the
basket.

Table 2 shows the number of hits in “Product Page Case”.
For top-3 recommendation results, Manual has 15.1% cor-
rect recommendations, Item has 10.8%, Feature has 8.4%,
Item+Feature has 13.1%, and Item+Feature+Manual has
23.4%. This result shows that Manual has the best single
method result followed by Item and Feature. Item+Feature
shows the improvement over Item or Feature. This result
demonstrates that each method has different strength and
the combined method benefits from these strengths.
Item+Feature+Manual has the best performance at 23.4%,
which is 50.0% improvement from the Manual result.

We also extracted test baskets that contain new prod-
ucts to see the effectiveness of the Feature method in these
baskets. Table 3 shows the number of hits for this sub-
set of test baskets. There were 76,304 baskets and 239,905
recommendations were made. For top-3 recommendation
results, Manual has 16.4% correct recommendations, Item
has 6.2%, Feature has 6.7%, Item+Feature has 9.4%, and
Item+Feature+Manual has 22.6%. This result shows that
Feature outperforms Item in this subset as expected.

4.3 Checkout Page Case
There were 106,263 test baskets and were the same num-

ber of recommendations for this test case. Given a test bas-
ket of size m, we made recommendation based on the first
m − 1 products in the basket. We consider the recommen-
dation to be correct or a hit if the top-k recommendation
contains the last product of the basket.

Table 4: Checkout Page Case: 106,263 possible hits

method top-1 top-3 top-6
Manual 6,895 9,696 10,026
Item 3,821 6,716 9,573

Feature 2,568 5,384 7,496
Item+Feature 3,727 6,941 10,434

Item+Feature+Manual 7,383 12,949 17,174

Table 5: Checkout Page Case on Test Baskets with

New Products: 76,304 possible hits

method top-1 top-3 top-6
Manual 4,818 7,257 7,564
Item 768 1,797 2,814

Feature 941 1,984 2,810
Item+Feature 868 2,307 3,763

Item+Feature+Manual 4,195 7,882 10,138

Table 4 shows the number of hits in “Checkout Page
Case”. For top-3 recommendation results, Manual has 9.1%,
Item has 6.3%, Feature has 5.1%, Item+Feature has 6.5%,
and Item+Feature+Manual has 12.2% correct recommenda-
tions. Item+Feature+Manual has the best performance at
12.2%, which is 34.1% improvement from the Manual result.
This result is similar to that of the “Product Page Case”.

Table 5 shows the number of hits for the subset of test
baskets that contain new products. For top-3 recommen-
dation results, Manual has 9.5% correct recommendations,
Item has 2.4%, Feature has 2.6%, Item+Feature has 3.0%,
and Item+Feature+Manual has 10.3%. This result is again
similar to that of the “Product Page Case”.

4.4 Pilot Project
The upscale cable television and on-line retailer that pro-

vided the test data for the experiments carried out a pilot
project. In this project, this retailer deployed a recommen-
dation scheme of Manual+Item+Feature in “Product Page
Case” described in Section 4.1. The pilot shows a great
promise as this retailer saw 75% increase in the recommen-
dation revenue for the first 2 months of the evaluation. This
result is better than the improvement of 50% shown in Sec-
tion 4.2 for the similar setting. The difference is due to the
bias of the test data we used for the experiments. The man-
ual recommendations were used in the sales process, and the
test data set we received contains sales influenced by these
recommendations. Hence, the result of Manual shown in
the experiment is higher than the real performance, and the
improvement in the experiment is lower than the real.

5. CONCLUDING REMARKS
In this paper, we discussed the challenges of providing

recommendation in the domains where no sufficient histori-
cal data exist for measuring similarity between products or
users. We presented feature-based recommendation algo-
rithms that overcome the limitations of the existing top-N
recommendation algorithms. The experimental evaluation
of the proposed algorithms in the real life data sets shows
a great promise as the combined methods provide 50% im-
provement over the manual recommendation method. The
pilot project deploying the proposed feature-based recom-
mendation algorithms in the on-line retail web site shows

451

75% increase in the recommendation revenue for the first 2
month period.

6. REFERENCES
[1] M. Balabanovic and Y. Shoham. FAB: Content-based

collaborative recommendation. Communications of the
ACM, 40(3), March 1997.

[2] C. Basu, H. Hirsh, and W. Cohen. Recommendation
as classification: Using social and content-based
information in recommendation. In Proceedings of the
1998 Workshop on Recommender Systems, pages
11–15. AAAI Press, 1998.

[3] D. Beeferman and A. Berger. Agglomerative clustering
of a search engine query log. In Proceedings of ACM
SIGKDD International Conference, pages 407–415,
2000.

[4] D. Billsus and M. J. Pazzani. Learning collaborative
information filters. In Proceedings of ICML, pages
46–53, 1998.

[5] A. Demiriz. An association mining-based product
recommender. In NFORMS Miami 2001 Annual
Meeting Cluster: Data Mining, 2001.

[6] M. Deshpande and G. Karypis. Item-based top-n
recommendation algorithms. ACM Transactions on
Information Systems, 2003.

[7] D. Heckerman, D. Chickering, C. Meek,
R. Rounthwaite, and C. Kadie. Dependency networks
for inference, collaborative filtering, and data
visualization. Journal of Machine Learning Research,
1:49–75, 2000.

[8] J. Herlocker, J. Konstan, A. Borchers, and J. Riedl.
An algorithm framework for performing collaborative
filtering. In Proceedings of SIGIR, pages 77–87, 1999.

[9] W. Hill, L. Stead, M. Rosenstein, and G. Furnas.
Recommending and evaluating choices in a virtual
community of use. In Proceedings of CHI, 1995.

[10] G. Karypis. Experimental evaluation of item-based
top-n recommendation algorithms. In Proceedings of
the ACM Conference on Information and Knowledge
Management, 2001.

[11] B. Kitts, D. Freed, and M. Vrieze. Cross-sell: A fast
promotion-tunable customer-item recommendation
method based on conditional independent
probabilities. In Proceedings of ACM SIGKDD
International Conference, pages 437–446, 2000.

[12] J. Konstan, B. Miller, D. Maltz, J. Herlocker,
L. Gordon, and J. Riedl. GroupLens: Applying
collaborative filtering to Usenet news.
Communications of the ACM, 40(3):77–87, 1997.

[13] W. Lin, S. Alvarez, and C. Ruiz. Collaborative
recommendation via adaptive association rule mining.
In International Workshop on Web Mining for
E-Commerce (WEBKDD’2000), 2000.

[14] B. Mobasher, R. Cooley, and J. Srivastava. Automatic
personalization based on web usage mining.
Communications of the ACM, 43(8):142–151, 2000.

[15] B. Mobasher, H. Dai, T. Luo, M. Nakagawa, and
J. Witshire. Discovery of aggregate usage profiles for
web personalization. In Proceedings of the WebKDD
Workshop, 2000.

[16] Resnick and Varian. Recommender systems.
Communications of the ACM, 40(3):56–58, 1997.

[17] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and
J. Riedl. GroupLens: An open architecture for
collaborative filtering of netnews. In Proceedings of
CSCW, 1994.

[18] J. s. Breese, D. Heckerman, and C. Kadie. Empirical
analysis of predictive algorithms for collaborative
filtering. In Proceedings of the 14th conference on
Uncertaintly in Artificial Intelligence, pages 43–52,
1998.

[19] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Analysis of recommendation algorithms for
e-commerce. In Proceedings of ACM E-Commerce,
2000.

[20] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Item-based collaborative filtering recommendation
algorithms. In WWW10, 2001.

[21] J. Schafer, J. Konstan, and J. Riedl. Recommender
systems in e-commerce. In Proceedings of ACM
E-Commerce, 1999.

[22] U. Shardanand and P. Maes. Social information
filtering: Algorithms for automating “word of mouth”.
In Proceedings of the ACM CHI’95 Conference on
Human Factors in Computing Systems, pages
210–217, 1995.

[23] L. Terveen, W. Hill, B. Amento, D. McDonald, and
J. Creter. PHOAKS: A system for sharing
recommendations. Communications of the ACM,
40(3):59–62, 1997.

[24] L. H. Ungar and D. P. Foster. Clustering methods for
collaborative filtering. In Workshop on
Recommendation Systems at the 15th National
Conference on Artificial Intelligence, 1998.

[25] J. wolf, C. Aggarwal, K. Wu, and P. Yu. Horting
hatches and egg: A new graph-theoretic approach to
collaborative filtering. In Proceedings of ACM
SIGKDD International Conference on Knowledge
Discovery & Data Mining, 1999.

[26] Y. Zhao and G. Karypis. Criterion functions for
document clustering: Experiments and analysis.
Machine Learning, in press, 2003.

452

