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ABSTRACT
The effectiveness of existing top-N recommendation meth-
ods decreases as the sparsity of the datasets increases. To
alleviate this problem, we present an item-based method
for generating top-N recommendations that learns the item-
item similarity matrix as the product of two low dimensional
latent factor matrices. These matrices are learned using a
structural equation modeling approach, wherein the value
being estimated is not used for its own estimation. A com-
prehensive set of experiments on multiple datasets at three
different sparsity levels indicate that the proposed methods
can handle sparse datasets effectively and outperforms other
state-of-the-art top-N recommendation methods. The ex-
perimental results also show that the relative performance
gains compared to competing methods increase as the data
gets sparser.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

General Terms
Experimentation

Keywords
recommender systems; topn; sparse data; item similarity

1. INTRODUCTION
Top-N recommender systems have been widely used in E-

commerce applications to recommend ranked lists of items so
as to help the users in identifying the items that best fit their
personal tastes. Over the years, many algorithms have been
developed to address the top-N recommender problem [12].
These algorithms make use of the user feedback (purchase,
rating or review) to compute the recommendations. Typi-
cally these algorithms represent the feedback information as
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a user-purchase matrix and act on it. The existing meth-
ods can be broadly classified into two classes: collaborative
filtering (CF) based methods and content based methods.
User/Item co-rating information is utilized in collaborative
methods to build models. One class of CF methods, re-
ferred to as nearest-neighborhood-based methods, compute
the similarities between the users/items using the co-rating
information and new items are recommended based on these
similarity values. Another class of CF methods, referred to
as model-based methods, employ a machine learning algo-
rithm to build a model (in terms of similarities or latent
factors), which is then used to perform the recommendation
task. The state-of-the-art methods for rating prediction and
top-N recommendation problem learn the relationship be-
tween items in the form of an item similarity matrix [8, 5, 11,
7]. In content based methods [6, 9], the features associated
with users/items are used to build models.

Recently, a novel top-N recommendation method has been
developed, called SLIM [7], which improves upon the tra-
ditional item-based nearest neighbor collaborative filtering
approaches by learning directly from the data, a sparse ma-
trix of aggregation coefficients that are analogous to the tra-
ditional item-item similarities. SLIM has been shown to
achieve good performance on a wide variety of datasets and
to outperform other state-of-the-art approaches. However,
an inherent limitation of SLIM is that it can only model re-
lations between items that have been co-purchased/co-rated
by at least some users. As a result, it cannot capture tran-
sitive relations between items that are essential for good
performance of item-based approaches in sparse datasets.

In this paper we propose a method, called FISM, which
learns the item-item similarity matrix as a product of two
low-dimensional latent factor matrices. This factored rep-
resentation of the item-item similarity matrix allows FISM
to capture and model relations between items even on very
sparse datasets. Our experimental evaluation on multiple
datasets and at different sparsity levels confirms that and
shows that FISM performs better than SLIM and other state-
of-the-art methods. Moreover, the relative performance gai-
ns increase with the sparsity of the datasets.

The key contributions of the work presented in this paper
are the following:

(i) extends the factored item-based methods to the top-N
problem, which allow them to effectively handle sparse
datasets;

(ii) estimates the factored item-based top-N models using
a structural equation modeling approach;



(iii) estimates the factored item-based top-N models using
both squared error and a ranking loss; and

(iv) investigates the impact of various parameters as they
relate to biases, neighborhood agreement, and model’s
induced sparsity.

The rest of the paper is organized as follows. Section 2
introduces the notations used in the paper. In Section 3
the relevant existing methods are presented. Section 4 mo-
tivates the need for a better model and contrasts the pro-
posed approach against existing schemes. In Section 5, the
details of FISM models are presented. Section 6 provides the
evaluation methodology and the data set characteristics. In
Section 7 the results of the experimental evaluation are pro-
vided. Finally, Section 8 provides some concluding remarks.

2. NOTATIONS
In this paper, all vectors are represented by bold lower

case letters and they are row vectors (e.g., p,q). All matrices
are represented by bold upper case letters (e.g., R, W).
The ith row of a matrix A is represented by ai. We use
calligraphic letters to denote sets (e.g., C,D). A predicted
value is denoted by having a˜(tilde) over it (e.g., r̃) and an
estimated value is denoted by having aˆ(hat) over it (e.g.,
r̂).

C and D are used to denote the sets of users and items,
respectively, whose respective cardinalities are n and m (i.e.,
|C| = n and |D| = m). Matrix R will be used to represent
the user-item implicit feedback (purchase/review) matrix of
size n ×m. Symbols u and i are used to denote individual
users and items, respectively. An entry (u, i) in R, denoted
by rui, is used to represent the feedback information for user
u on item i. R is a binary matrix. If the user has provided
feedback for a particular item, then the corresponding entry
in R is 1, otherwise it is 0. We will refer to the entries
for which the user has provided feedback as rated items and
those for which the user has not provided feedback as unrated
items.

3. REVIEW OF RELEVANT RESEARCH
The methods developed in this work are motivated by two

classes of methods that were recently developed for top-N
recommendation and rating prediction.

The first method, SLIM, proposed by Ning et. al. [7],
predicts the recommendation scores of a user u for all items
as

r̃u = ruS, (1)

where ru is the rating vector of u on all items and S is a
m×m sparse matrix of aggregation coefficients.

Matrix S can be considered as an item-item similarity ma-
trix, and as such the recommendation strategy employed by
SLIM is similar in nature to that of the traditional item-
based nearest-neighbor top-N recommendation approaches
[3]. However, unlike these methods, SLIM directly esti-
mates the similarity values from the data using a simul-
taneous regression approach, which is similar to structural
equation modeling with no exogenous variables [10]. Specif-
ically, SLIM estimates the sparse matrix S as the minimizer

for the following regularized optimization problem:

minimize
S

1

2
‖R−RS‖2F +

β

2
‖S‖2F + λ‖S‖1 (2)

subject to S ≥ 0 , diag(S) = 0,

where ‖S‖F is the matrix Frobenius norm of S and ‖S‖1
is the entry-wise `1-norm of S. In Equation 2, RS is the
estimated matrix of recommendation scores (i.e., R̃). The
constraint diag(S) = 0 conforming to the structural equa-
tion modeling is also applied to ensure that rui is not used
to compute rui. The non-negativity constraint is applied on
S so that the learned S corresponds to positive aggregations
over items. In order to learn a sparse S, SLIM introduces
the `1-norm of S as a regularizer in Equation 2 [13]. The
matrix S learned by SLIM is referred to as SLIM’s aggre-
gation coefficient matrix. Extensive experiments in [7] have
shown that SLIM outperforms the rest of the state-of-the-art
top-N recommendation methods.

The second method is called NSVD and was developed
by Paterek in [8]. This is a factored item-item collaborative
filtering method developed for the rating prediction prob-
lem. In this method, an item-item similarity was learned
as a product of two low-rank matrices, P and Q, where

P ∈ Rm×k, Q ∈ Rm×k, and k � m. This approach ex-
tends the traditional item-based neighborhood methods by
learning the similarity between items as a product of their
corresponding latent factors. Given two items i and j, the
similarity sim(i, j) between them is computed as the dot
product between the corresponding factors from P and Q
i.e., sim(i, j) = pi · qT

j . The rating for a given user u on
item i is both predicted and estimated as

r̂ui = r̃ui = bu + bi +
∑
j∈R+

u

pjq
T
i , (3)

where bu and bi are the user and item biases and R+
u is

the set of items rated by u. The parameters of this model
are estimated as the minimizer to the following optimization
problem:

minimize
P,Q

1

2

∑
u∈C

∑
i∈R+

u

‖rui−r̂ui‖2F +
β

2
(‖P‖2F +‖Q‖2F ), (4)

where r̂ui is the estimated value for user u and item i (as in
Equation 3).

In another method based on NSVD, Koren proposed a hy-
brid approach called SVD++ [5]. This method merged the
idea of latent factor models and traditional neighborhood
based models to learn similarities between users or items.
Both these models (i.e., NSVD and SVD++) were evalu-
ated by computing the root mean square error (RMSE) on
the test ratings in the Netflix competition data set. Hence
the goal of these models was to minimize the RMSE and
only the non-zero entries of the rating matrix were used in
training.

4. MOTIVATION
In real world scenarios, users typically provide feedback

(purchase, rating or review) to only a handful of items out
of possibly thousands or millions of items. This results in
the user-item rating matrix becoming very sparse. Meth-
ods like SLIM (as well as traditional methods like ItemKNN
[3]), which rely on learning similarities between items, fail to



capture the dependencies between items that have not been
co-rated by at least one user. It can be shown that the min-
imizer in Equation 2 will have sij = 0, if i and j have not
been co-rated by at least one user. But two such items can
be similar to each other by virtue of another item which is
similar to both of them (transitive relation). Methods based
on matrix factorization, alleviate this problem by projecting
the data onto a low dimensional space, thereby implicitly
learning better relationships between the users and items
(including items which are not co-rated). However, such
methods are consistently out-performed by SLIM [7].

To overcome this problem, our proposed item-oriented
FISM method uses a factored item similarity model similar
in spirit to that used by NSVD and SVD++. Learning the
similarity matrix by projecting the values in a latent space of
much smaller dimensionality, implicitly helps to learn transi-
tive relations between items. Hence, this model is expected
to perform better even on sparse data, as it can learn rela-
tionships between items which are not co-rated.

Comparing FISM with NSVD, besides the fact that these
two methods are designed to solve different problems (top-N
vs rating prediction), their key difference lies in how the fac-
tored matrices are estimated. FISM employs a regression ap-
proach based on structural equation modeling in which, un-
like NSVD (and SVD++), the known rating information for
a particular user-item pair (rui) is not used when the rating
for that item is being estimated. This impacts how the diag-
onal entries of the item-item similarity matrix corresponding
to S = PQT influence the estimation of the recommenda-
tion score. Diagonal entries in the item similarities matrix
correspond to including an item’s own value while comput-
ing the prediction for that item. NSVD does not exclude the
diagonal entries while estimating the ratings during learning
and prediction phases, while FISM explicitly excludes the di-
agonal entries while estimating. This shortcoming of NSVD
impacts the quality of the estimated factors when the num-
ber of factors becomes large. In this case it can lead to rather
trivial estimates, in which an item ends up recommending
itself. This is illustrated in our experimental results (Sec-
tion 7), which show that for a small number of factors, the
two estimation approaches produce similar results, whereas
as the number of factors increases moderately, FISM’s esti-
mation approach consistently and significantly outperforms
the approach used by NSVD.

5. FISM- FACTORED ITEM SIMILARITY
METHODS

In FISM, the recommendation score for a user u on an un-
rated item i (denoted by r̃ui) is calculated as an aggregation
of the items that have been rated by u with the correspond-
ing product of pj latent vectors from P and the qi latent
vector from Q. That is,

r̃ui = bu + bi + (n+
u )
−α ∑

j∈R+
u

pjq
T
i , (5)

where R+
u is the set of items rated by user u, pj and qi are

the learned item latent factors, n+
u is the number of items

rated by u, and α is a user specified parameter between 0
and 1.

The term (n+
u )−α in Equation 5 is used to control the de-

gree of agreement between the items rated by the user with
respect to their similarity to the item whose rating is being

estimated (i.e., item i). To better understand this, consider
the case in which α = 1. In this case (excluding the bias),
the predicted rating is the average similarities between the
items rated by the user (i.e., R+

u ) and item i. Item i will get
a high rating if nearly all of the items in R+

u are similar to i.
On the other hand, if α = 0, then the predicted rating is the
aggregate similarity between i and the items in R+

u . Thus,
i can be rated high, even if only one (or few) of the items in
R+
u are similar to i. These two settings represent different

extremes and we believe that in most cases the right choice
will be somewhere in between. That is, the item for which
the rating is being predicted needs to be similar to a substan-
tial number of items to get a high rating. To capture this
difference, we have introduced the parameter α, to control
the number of neighborhood items that need to be similar
for an item to get the high rating. The value of α is expected
to be dependent on the characteristics of the dataset and its
best performing value is determined empirically.

We developed two different types of FISM models that use
different loss functions and associated optimization meth-
ods, which are described in the next two sections.

5.1 FISMrmse
In FISMrmse, we compute the loss using the squared error

loss function, given by

L(·) =
∑
i∈D

∑
u∈C

(rui − r̂ui)2, (6)

where rui is the ground truth value and r̂ui is the estimated
value. The estimated value r̂ui, for a given user u and item
i is computed as

r̂ui = bu + bi + (n+
u − 1)

−α ∑
j∈R+

u \{i}

pjq
T
i , (7)

where R+
u \{i} is the set of items rated by user u, excluding

the current item i, whose value is being estimated. This
exclusion is done to conform to regression models based on
structural equation modeling. This is also one of the im-
portant differences between FISM and other factored item
similarities model (like NSVD and SVD++) as discussed in
Section 4.

In FISMrmse, the matrices P and Q are learned by mini-
mizing the following regularized optimization problem:

minimize
P,Q

1

2

∑
u,i∈R

‖rui − r̂ui‖2F +
β

2
(‖P‖2F + ‖Q‖2F )

+
λ

2
‖bu‖22 +

γ

2
‖bi‖22, (8)

where the vectors bu and bi correspond to the vector of user
and item biases, respectively. The regularization terms are
used to prevent overfitting and β, λ and γ are the regular-
ization weights for latent factor matrices, user bias vector
and item bias vector respectively.

Following the common practices for top-N recommenda-
tion [2, 7], note that the loss function in Equation 6 is com-
puted over all entries of R (i.e., both rated and unrated).
This is in contrast with rating prediction methods, which
compute the loss over only the rated items. However, in
order to reduce the computational requirements for opti-
mization, the zero entries are sampled and used along with
all the non-zero values of R. During each iteration of learn-



ing, ρ ·nnz(R) zeros are sampled and used for optimization.
Here ρ is a constant and nnz(R) is the number of non-zero
entries in R. Our experimental results indicate that a small
value of ρ (in the range 3 − 15) is sufficient to produce the
best model. This sampling strategy makes FISMrmse com-
putationally efficient.

The optimization problem of Equation 8 is solved using
a Stochastic Gradient Descent (SGD) algorithm [1]. Algo-
rithm 1 provides the detailed procedure and gradient update
rules. P and Q are initialized with small random values as
the initial estimate (line 6). In each iteration of SGD (Lines
8 – 26), based on the sampling factor (ρ), a different set of
zeros are sampled and used for training along with the non-
zero entries of R. This process is repeated until the error on
the validation set does not decrease further or the number
of iterations has reached a predefined threshold.

Algorithm 1 FISMrmse:Learn.

1: procedure FISMrmse Learn
2: η ← learning rate
3: β ← `F regularization weight
4: ρ← sample factor
5: iter ← 0
6: Init P and Q with random values in (-0.001, 0.001)
7:
8: while iter < maxIter or error on validation set de-

creases do
9: R′ ← R∪ SampleZeros(R, ρ)

10: R′ ← RandomShuffle(R′)
11:
12: for all rui ∈ R′ do
13: x← (n+

u − 1)
−α ∑

j∈R+
u \{i}

pj

14:
15: r̃ui ← bu + bi + qT

i x
16: eui ← rui − r̃ui
17: bu ← bu + η · (eui − λ · bu)
18: bi ← bi + η · (eui − γ · bi)
19: qi ← qi + η · (eui · x− β · qi)
20:
21: for all j ∈ R+

u \{i} do
22: pj ← pj +η · (eui · (n+

u − 1)
−α ·qi−β ·pj)

23: end for
24: end for
25: iter ← iter + 1
26: end while
27:
28: return P,Q
29: end procedure

5.2 FISMauc
As a second loss function, we consider a ranking error

based loss function. This is motivated by the fact that
the Top-N recommendation problem deals with ranking the
items in the right order, unlike the rating prediction prob-
lem where minimizing the RMSE is the goal. We used a
ranking loss function based on Bayesian Personalized Rank-
ing (BPR) [11], which optimizes the area under the curve
(AUC). Given user’s rated items in R+

u and unrated items

in R−u , the overall ranking loss is given by

L(·) =
∑
u∈C

∑
i∈R+

u ,j∈R−u

((rui − ruj)− (r̂ui − r̂uj))2, (9)

where the estimates r̂ui and r̂uj are computed as in Equa-
tion 7. As we can see in Equation 9, the error is computed
as the relative difference between the actual non-zero and
zero entries and the difference between their corresponding
estimated values. Thus, this loss function focuses not on
estimating the right value, but on the ordering of the zero
and non-zero values.

In FISMauc, the matrices P and Q are learned by mini-
mizing the following regularized optimization problem:

minimize
P,Q

1

2

∑
u∈C

∑
i∈R+

u ,j∈R−u

‖(rui − ruj)− (r̂ui − r̂uj)‖2F

+
β

2
(‖P‖2F + ‖Q‖2F ) +

γ

2
(‖bi‖22), (10)

where the terms mean the same as in Equation 8. Note
that there are no user bias terms (i.e., bu), since the terms
cancel out when taking the difference of the ratings. For
each user, FISMauc computes loss over all possible pairs of
entries in R+

u and R−u . Similar to FISMrmse, to reduce the
computational requirements, zero entries for each user are
sampled from R−u based on sample factor (ρ).

The optimization problem in Equation 10 is solved us-
ing a Stochastic Gradient Descent (SGD) based algorithm.
Algorithm 2 provides the detailed procedure.

5.3 Scalability
The scalability of these methods consists of two aspects.

First, the training phase needs to be scalable, so that these
methods can be used with larger datasets. Second, the time
taken to compute the recommendations needs to be reduced
and ideally made independent of the total number of recom-
mendable items. Regarding the first aspect, the training for
both FISMrmse and FISMauc is done using SGD algorithm.
The gradient computations and updates of SGD can be par-
allelized and hence these algorithms can be easily applied
to larger datasets. In [4], a distributed SGD is proposed.
A similar algorithm with modifications can be used to scale
the FISM methods to larger datasets. The main difference
is in computing the rows of P that can be updated inde-
pendently in parallel. There are also software packages like
Spark1 which can be used to implement SGD based algo-
rithms on a large cluster of processing nodes.

For computing the recommendations efficiently during run
time, methods like SLIM enforce sparsity constraint on S
while learning and utilizes this sparsity structure to reduce
the number of computations during run time. However,
in FISM, the factored matrices learned are usually dense
and as such, the predicted vector r̃u will be dense (because
PQT is dense). Sparsity in r̃u can be introduced by com-
puting S = PQT and then setting the smaller values to
zero. One systematic way of doing this is to selectively re-
tain only those non-zero entries which contribute the most
to the length of the item similarities vector represented by
the column in S to which the entry belongs. The impact
of this sparsification is further explored in the experimental
results.

1http://spark-project.org/



Algorithm 2 FISMauc:Learn.

1: procedure FISMauc Learn
2: η ← learning rate
3: β ← `F regularization weight
4: ρ← number of sampled zeros
5: iter ← 0
6: Init P and Q with random values in (-0.001, 0.001)
7:
8: while iter < maxIter or error on validation set de-

creases do
9: for all u ∈ C do

10: for all i ∈ R+
u do

11: x← 0
12: t← (n+

u − 1)
−α ∑

j∈R+
u \{i}

pj

13: Z ←SampleZeros(ρ)
14:
15: for all j ∈ Z do
16: r̃ui ← bi + t · qT

i

17: r̃uj ← bj + t · qT
j

18: ruj ← 0
19: e← (rui − ruj)− (r̃ui − r̃uj)
20: bi ← bi + η · (e− γ · bi)
21: bj ← bj − η · (e− γ · bj)
22: qi ← qi + η · (e · t− β · qi)
23: qj ← qj − η · (e · t− β · qj)
24: x← x + e · (qi − qj)
25: end for
26: end for
27:
28: for all j ∈ R+

u \{i} do
29: pj ← pj + η · ( 1

ρ · (n+
u − 1)

−α · x− β · pj)
30: end for
31: end for
32:
33: iter ← iter + 1
34: end while
35:
36: return P,Q
37: end procedure

6. EXPERIMENTAL EVALUATION

6.1 Data Sets
We evaluated the performance of FISM on three different

real datasets, namely ML100K, Netflix and Yahoo Music.
ML100K is the subset of data obtained from the Movie-
Lens2 research project, Netflix is a subset of data extracted
from Netflix Prize dataset3 and finally Yahoo Music is the
subset of data obtained from Yahoo! Research Alliance Web-
scope program4. For each of the three datasets, we created
three different versions at different sparsity levels. This was
done to specifically evaluate the performance of FISM on
sparse datasets. For each dataset, we started by randomly
choosing a subset of users and items from the main dataset.
These datasets are represented with a ’-1’ suffix. Keeping
the same set of users and items, the first sparser version of

2http://www.grouplens.org/node/12
3http://www.netflixprize.com/
4http://research.yahoo.com/academic relations

the datasets with the ’-2’ suffix are created by randomly
removing entries from the first datasets’ user-item matri-
ces. The second sparser version of the datasets with the
’-3’ suffix are similarly created by randomly removing en-
tries from second datasets’ user-item matrices. Note that all
these datasets have rating values and we converted them into
implicit feedback by setting the positive entries to 1. The
characteristics of all the datasets is summarized in Table 1.

Table 1: Datasets.

Dataset #Users #Items #Ratings Rsize Csize Density

ML100K-1 943 1,178 59,763 63.99 50.73 5.43%
ML100K-2 943 1,178 39,763 42.57 33.75 3.61%
ML100K-3 943 1,178 19,763 21.16 16.78 1.80%

Netflix-1 6,079 5,641 429,339 70.63 76.11 1.25%
Netflix-2 6,079 5,641 221,304 36.40 39.23 0.65%
Netflix-3 6,079 5,641 110,000 18.10 19.50 0.32%

Yahoo-1 7,558 3,951 282,075 37.32 71.39 0.94%
Yahoo-2 7,558 3,951 149,050 19.72 37.72 0.50%
Yahoo-3 7,558 3,951 75,000 9.92 18.98 0.25%

The “#Users”, “#Items” and “#Ratings” columns are the number
of users, items and ratings respectively, in each of the datasets. The
“Rsize” and “Csize” columns are the average number of ratings for
each user and for each item (i.e., row and column density of the
user-item matrix), respectively, in each of the datasets. The “Den-
sity” column is the density of each dataset (i.e., density = #Rat-
ings/(#Users × #Items)).

6.2 Evaluation Methodology
To evaluate the performance of the proposed model 5-fold

Leave-One-Out-Cross-Validation (LOOCV) is employed. F-
or each fold, dataset is split into training and test set by
randomly selecting one item for each user and placing it in
the test set. The rest of the data is used as the training set.
Such a training set is used to build the model and the trained
model is then used to generate a ranked list of size-N items
for each user. The model is then evaluated by comparing
the ranked list of recommended items with the item in the
test set. For all the results presented in this paper, N is
equal to 10.

The recommendation quality is measured using Hit Rate
(HR) and Average Reciprocal Hit Rank (ARHR) [3]. HR is
defined as

HR =
#hits

#users
,

where #users is the total number of test users and #hits
is the number of users for which the model was successfully
able to recall the test item in the size-N recommendation
list. The ARHR is defined as

ARHR =
1

#users

#hits∑
i=1

1

posi
,

where posi is the position of the test item in the ranked
recommendation list for the ith hit. ARHR represents the
weighted version of HR, as it measures the inverse of the
position of the recommended item in the ranked list.

We chose HR and ARHR as evaluation metrics since they
directly measure the performance of the model on the ground
truth data i.e., what users have already provided feedback
for.



6.3 Comparison Algorithms
We compare the performance of FISM against that achiev-

ed by ItemKNN (cos) [3], ItemKNN (cprob) [3], ItemKNN
(log)5, PureSVD [2], BPRkNN, BPRMF [11] and SLIM [7].
We also compare the performance of a set of FISM models
in which the estimated value of r̂ui is given by Equation 5
(r̃ui) which also includes item i. This is done to access the
performance improvements by the new estimation approach.
This set of methods constitute the current state-of-the-art
for top-N recommendation task. Hence they form a good set
of methods to compare and evaluate our proposed approach
against.

7. RESULTS
The experimental evaluation consists of two parts. First,

we study the effect of various model parameters of FISM on
the recommendation performance. Specifically, we look at
how bias, neighborhood agreement, induced sparsity, esti-
mation approach and non-negativity affect the top-N per-
formance. Due to the lack of space, we present these studies
only on the ML100K-3 (represented as ML100K), Yahoo-2
(represented as Yahoo) and Netflix-3 (represented as Netflix)
datasets. However the same results and conclusions carry
over to the rest of the datasets as well. These datasets are
chosen to represent the datasets from different sources and
at different sparsity levels. Unless specified all results in the
first set of experiments are based on FISMrmse.

Second, we present the comparison results with other com-
peting methods (Section 6.3) on all the datasets. We also
compare the performance of FISM for different values of N
(as in top-N) and finally we compare the performance of
FISM with respect to data sparsity.

7.1 Effect of Bias
In FISM’s model, the user and item biases are learned as

part of the model. In this study we compare the influence
of user and item biases on the overall performance of the
model. We compare the following four different schemes,
NoBias - where no user or item bias is learned as part of the
model, UserBias - only the user bias is learned, ItemBias -
only the item is learned and User&ItemBias - where both
user and item biases are learned. The results are presented
in Table 2. The results indicate that the biases affect the
overall performance, with item bias leading to the greatest
gains in performance.

7.2 Effect of Neighborhood Agreement
In this study, we compare the effect of neighborhood agree-

ment on the recommendation performance. Keeping the rest
of the parameters constant, we did a full parameter study
for different values of the normalization constant (α). The
results for both FISMrmse and FISMauc methods are pre-
sented in Figure 1. From the results, we can see that the
best performance is obtained when the value of α is in the
range 0.4 to 0.5, indicating that, on average, for the items to
be rated high and hence recommended, a substantial num-
ber of neighborhood items need to have a high similarity
value. Another interesting result to note is that the perfor-
mance of the FISMauc is more stable than the corresponding
FISMrmse’s performance for the different values of α. This
can be attributed to the fact that FISMauc minimizes the

5Part of Mahout library (http://mahout.apache.org/)

ranking loss, where the user related biases (number of items
rated) is to a large extent nullified.
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Figure 1: Effect of neighborhood agreement on performance.

7.3 Performance of Induced Sparsity on S

Figure 2 shows FISM’s performance on the sparsified S
matrix. The x-axis represents the density of S after spar-
sifying the matrix as explained in Section 5.3. We can see
that there is only a minimal reduction in the recommenda-
tion performance up to a density in the range 0.1 to 0.15.
At the same time, the average time required to compute
the recommendations for each user reduces drastically. This
gain in recommendation efficiency comes at a very small cost
in terms of recommendation performance, which may justify
it’s use in applications in which high-throughput recommen-
dation rates are required.
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Figure 2: Performance of induced Sparsity on S.

7.4 Effect of Estimation Approach
To study the effect of FISM’s estimation approach, which

excludes the item’s own rating during estimation, we com-
pare the performance of FISM with an approach which is the
same as FISM except that it includes the rating’s own value
during estimation. We call this method FISM(F), where F
corresponds to similar approaches used in factorization (F )
based schemes for rating prediction (NSVD and SVD++).

Keeping the rest of the parameters constant, the number
of latent factors k is varied and the performance of FISM and



Table 2: Performance of different bias schemes.

Scheme
ML100K Yahoo

Beta Lambda Gamma HR Beta Lambda Gamma HR

NoBias 8e-4 - - 0.1281 2e-5 - - 0.0974
UserBias 6e-4 0.1 - 0.1336 4e-5 0.1 - 0.1012
ItemBias 2e-4 - 0.01 0.1401 4e-5 - 1e-4 0.1007
User&ItemBias 6e-4 0.1 1e-4 0.1090 4e-5 0.1 1e-4 0.0977
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(a) ML100K dataset.
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Figure 3: Effect of estimation approach on performance.

FISM(F) is compared. Figure 3 shows the results for differ-
ent datasets. We can see that, for smaller values of k, the
performance of both the schemes is very similar. However,
when the value of k is increased, FISM starts to perform bet-
ter than FISM(F) and the gap between the performance of
the methods increases as the value of k increases. This con-
firms the fact that the estimation approach used by FISM is
superior to that used by approaches like NSVD and SVD++
and helps to avoid trivial solutions when the number of fac-
tors becomes large.

7.5 Effect of Non-Negativity
SLIM enforces non-negativity constraint to ensure that

the learned item similarities correspond to positive relation-
ships. SLIM has also shown that the adding such a con-
straint helps to improve the recommendation performance.
In FISM, no such explicit constraint is enforced. We im-
plemented the FISMrmse and FISMauc algorithms with non-
negativity constraints and, to our surprise there was no im-
provement in the performance. In fact, the performance
dropped considerably (HR of 0.0933 for ML100K and 0.0848
for Yahoo, compared to 0.1281 and 0.0974 without the con-
straints).
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Figure 4: Non-negative and negative entries in S.

To gain some insights on this issue, we observed the prop-
erties of S = PQT during the learning process. In particular,
we observed the number of negative and non-negative entries
in S during each iteration of the learning process. The ob-
servations are plotted in Figure 4. We can see that initially
the number of negative and non-negative entries is similar,
but as the model starts to learn, the number of negative en-
tries decreases drastically. The best performance is obtained
when the number of negative entries is significantly smaller
compared to the number of non-negative entries (of the or-
der 1:3). This shows that, even though the non-negativity



constraint is not explicitly enforced in FISM, the model still
learns the majority of the similarity values as non-negative
entries.

7.6 Comparison With Other Approaches
Table 3 shows the overall performance of FISM in com-

parison to other state-of-the-art algorithms for the top-N
recommendation task. For each of the methods, the fol-
lowing parameter space was explored and the best perform-
ing model in that parameter space is reported. For all the
ItemKNN based methods and PureSVD, parameter k was
selected from the range 2 to 800. For ItemKNN (cprob), the
α parameter was selected from the range 0 to 1 with a step
size of 0.05. For BPRkNN, the learning rate and λ were
selected from the range 10−5 to 1.0 with a multiplicative
increment of 10. For BPRMF, the number of latent factors
was selected from the range 2 to 800 and the learning rate
from the range 10−5 to 1.0 with a multiplicative increment
of 10. For FISM, both β and λ were selected from the range
10−5 to 30.

The results in Table 3 show that FISM performs better
than all the other methods across all the datasets. For
many of these datasets, the improvements achieved by FISM
against the next best performing schemes are quite sub-
stantial. In terms of the two loss functions, quite surpris-
ingly, the RMSE loss (FISMrmse) achieved better perfor-
mance than the AUC loss (FISMauc). This is contrary to
the results reported by other studies and we are currently
investigating it.

Note that for all the results presented so far, the number of
top-N items chosen is 10 (i.e., N = 10). Figure 5 shows the
performance achieved by the various schemes for different
values of N . These results are fairly consistent with those
presented in Table 3, with FISM performing the best.

To better illustrate the gains achieved by FISM over the
other competing approaches as the sparsity of the datasets
increases, Figure 6 shows the percentage improvement achie-
ved by FISM against the next best performing scheme for
each dataset across the three sparsity levels. These results
show that, as the datasets become sparser, the relative per-
formance of FISM (in terms of HR) increases and, on the
sparsest datasets, outperforms the next best scheme by at
least 24%.

8. CONCLUSION
In this paper, we presented a factored item similarity

based method (FISM) for the top-N recommendation prob-
lem. FISM learns the item similarities as the product of
two matrices, allowing it to generate high quality recom-
mendations even on sparse datasets. The factored repre-
sentation is estimated using a structural equation modeling
approach, which leads to better estimators as the number
of factors increases. We conducted a comprehensive set of
experiments on multiple datasets at different sparsity lev-
els and compared FISM’s performance against that of other
state-of-the-art top-N recommendation algorithms. The re-
sults showed that FISM outperforms the rest of the methods
and the performance gaps increases as the datasets become
sparser. For faster recommendation, we showed that spar-
sity can be induced in the resulting item similarity matrix
with minimal reduction in the recommendation quality.
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Figure 5: Performance for different values of N .
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Figure 6: Effect of sparsity on performance for various
datasets.


