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ABSTRACT
As FPGA densities increase, partitioning-based FPGA placement
approaches are becoming increasingly important as they can be
used to provide high-quality and computationally scalable solu-
tions. However, modern FPGA architectures incorporate heteroge-
neous resources, which place additional requirements on the parti-
tioning algorithms because they now need to not only minimize the
cut and balance the partitions, but also they must ensure that none
of the resources in each partition is oversubscribed. In this paper,
we present a number of multilevel multi-resource partitioning al-
gorithms that are guaranteed to produce solutions that balance the
utilization of the different resources across the partitions. We evalu-
ate our algorithms on twelve industrial benchmarks ranging in size
from 5,236 to 140,118 vertices and show that they achieve minimal
degradation in the min-cut while balancing the various resources.
Comparing the quality of the solution produced by some of our
algorithms against that produced by hMETIS, we show that our al-
gorithms are capable of balancing the different resources while in-
curring only a 3.3%–5.7% higher cut.
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1. INTRODUCTION
In recent years, due to the development of high-quality multi-

level hypergraph partitioning algorithms [9, 2], partitioning-based
placement has emerged as a promising approach for placing large
designs on ASICs. These methods have been shown to be com-
putationally scalable, capable of leading to high-quality solutions,
and scale to very large designs [13, 1]. Moreover, as FPGA den-
sities increase, the characteristics of this placement methodology
are becoming increasingly important for placing large designs on
FPGAs, as well [12].

However, unlike ASICs that are in general homogeneous, and as
such, the only constraint that they impose on the partitioning al-
gorithm is that of balancing the area of the cells assigned to the
different partitions, modern FPGA architectures incorporate het-
erogeneous resources (e.g., CLBs, Multipliers, RAM blocks, IP
Cores [16], etc). This places additional constraints on the type
of partitionings that need to be computed, as the partitioning al-
gorithm must now ensure that the resources used in each partition
can be accommodated by the resources provided at the different re-
gions of the FPGA. For example, a partitioning solution that places
most of the FFs on one side of the bisection and most of the RAM
blocks on the other side of the bisection, even if it is balanced in
terms of the total number of cells on either side of the cut, it is not
very useful for FPGA placement as it may over-subscribe these two
resource types.

As a result, existing partitioning algorithms [9, 2, 4, 14, 7] can
not be used to develop partitioning-based placement methods for
FPGAs with heterogeneous resources, as they can lead to partition-
ings that have highly unbalanced resource requirements. To illus-
trate this, we used a multilevel hypergraph partitioning algorithm
(hMETIS [10]) to bisect twelve different circuits synthesized for the
Xilinx Vertex II architecture, which contain cells that map to differ-
ent resources. Various statistics measuring the balance of the dif-
ferent resource types are shown in Table 1. These results show that
even though the bisection, in terms of the number of cells assigned
to each partition, achieves a balance of 49%-51%, in general, indi-
vidual resources are considerably more unbalanced.

In this paper, we present a new class of multi-resource hyper-
graph bisectioning algorithms that are capable of producing a parti-



value of ≤ 2.0 required
# types min ub max ub avg ub # viol

ind1 11 0.4 10.3 4.4 6
ind2 9 0.6 9.5 4.8 6
ind3 11 0.9 27.1 6.4 7
ind4 12 0.8 81.5 10.6 9
ind5 11 0.8 16.6 5.8 7
ind6 11 0.5 13.8 4.3 5
ind7 11 0.7 11.0 3.0 3
ind8 12 0.7 7.6 2.6 4
ind9 11 0.9 33.2 5.3 6
ind10 5 0.8 3.1 1.6 1
ind11 11 0.8 11.1 3.3 4
ind12 11 1.2 30.9 5.6 8

Table 1: The distribution of unbalance factors of different types
of cells, for 49%-51% bisection. For the partition to be feasible,
unbalance factor of each cell-type must be below 2.0. The col-
umn “min ub” shows the minimum unbalance factor, “max ub”
shows the maximum unbalance factor, “avg ub” shows average
unbalance factor, and “# viol” shows the number of cell-types
in violation by exceeding the unbalance factor of 2.0.

tioning solution that simultaneously balance the different resources
assigned to each one of the partitions, and thus can be used to power
partitioning-based placement methodologies for emerging FPGA
architectures. Specifically, we present five different multi-resource
partitioning algorithms that are based on the multilevel hypergraph
partitioning paradigm. Three of these algorithms solve the prob-
lem by balancing the different resources at the same time that they
compute the bisection, while the other two are used to post-process
a high-quality but potentially unbalanced solution to enforce the
multiple balancing constraints. We experimentally evaluated the
performance of these algorithms on twelve different industrial cir-
cuits containing up to 140,118 cells. Our results show that each one
of these algorithms is capable of producing solutions that satisfy the
multiple balancing constraints and achieve different time-quality
trade-offs. Moreover, comparing the quality of the solution pro-
duced by some of our algorithms against that produced by hMETIS,
we show that our algorithms are capable of balancing the different
resources while incurring only a 3.3%–5.7% higher cut.

The rest of the paper is organized as follows. Section 2 defines
various concepts and terms that are used in the paper and present
a brief overview of the multilevel partitioning paradigm. Section 3
provides a formal definition of the multi-resource partitioning prob-
lem. Section 4 describes the various multi-resource partitioning
algorithms that we developed. Section 5 present a comprehensive
experimental evaluation of these algorithms. Finally, Section 6 pro-
vides some concluding remarks.

2. NOTATION AND BACKGROUND
A hypergraph G = (V , E) is a set of vertices V and a set of

hyperedges E . Each hyperedge is a subset of the set of vertices V .
The size of a hyperedge is the cardinality of this subset. A vertex
v is said to be incident on a hyperedge e, if v ∈ e. Each vertex
v and hyperedge e has a weight associated with them and they are
denoted by w(v) and w(e), respectively. A circuit/netlist consist-
ing of a set of cells and a set of nets can be directly represented via
a hypergraph, whose vertices corresponds to the cells and whose
hyperedges corresponds to the nets. Due to this one-to-one corre-
spondence between hypergraphs and netlists we will use the terms
vertices/cells and hyperedges/nets interchangeably throughout this
paper.

A bisection of V is denoted by a vector P such that P[i] indi-

cates the partition number that vertex i belongs to. The cut of the
bisection is equal to the sum of the weight of the hyperedges that
connect vertices belonging to different partitions. We say that a
bisection P of V satisfies a single balancing constraint specified
by [l, u], where l < u, iff l ≤ ∑

v∈Vi
w(v) ≤ u, for each parti-

tion Vi . A bisection that satisfies the constraint is called feasible,
otherwise it is infeasible. Given these definitions, the hypergraph
bisection problem is formally defined as follows: Given a hyper-
graph G(= V , E) and a balancing constraint [l, u], find a feasible
bisection P of G that minimizes the cut. Since there is only a single
balancing requirement, this formulation is usually referred to as the
single-constraint bisectioning problem [5].

3. PROBLEM DEFINITION
Historically, FPGA devices contained single type of resource

(CLBs for example) that were uniformly distributed throughout the
chip. However, taking advantage of ever-increasing silicon den-
sities, modern FPGA devices contain multiple types of resources,
which allow them to efficiently implement complex and high per-
formance designs. One such example is the recently introduced
Virtex II architecture from Xilinx that contains specialized resources
such as multiplier and RAM blocks interspersed among CLBs. As
a result, designs created for such modern FPGAs try to pro actively
make use of these specialized resources in order to obtain better
performance and versatility.

For partitioning driven placement to succeed in utilizing these
different resource types, the partitioning algorithms need to take
them into account and balance each type of cells across the cut
lines. Motivated by this observation we focus on multi-resource
aware partitioning, which can be formally defined as follows. Con-
sider an FPGA architecture with m distinct resource types and let
cli

j denote the minimum number of resources of type i allowed in
partition j , and cui

j be the maximum number of resources of type
i allowed in partition j . Then the multi-resource bisection P of G
seeks to minimize the cut subject to:

cli
j ≤

∑

∀v∈V :P[v]=1 and t (v)=i

1 ≤ cui
j

for j = 1, 2, i = 1, 2, . . . , m, and t (v) is the resource type re-
quired by cell v. Note that this is a general definition of the multi-
resource bisection and only the upper bound is usually needed in
most cases. Furthermore, when the number of cells of a certain
type are small and an odd number, it sometimes makes it impos-
sible to satisfy the balance constraint. In such cases the balance
constraint needs to be relaxed. For example, if there are only 3
cells of a certain type present, then balance constraint of 49%-51%
is impossible to satisfy and needs to be relaxed to 33% - 67% to
accomodate them.

4. MULTI-RESOURCE PARTITIONING AL-
GORITHMS FOR FPGAS

To solve the multi-resource bisectioning problem we developed
two classes of multi-resource partitioning algorithms. The first
class, computes the overall solution by constructing a bisection that
simultaneously balances the multiple resources, whereas the sec-
ond class, achieves the desired balance by modifying a bisection
that was initially obtained using a traditional single-constraint bi-
sectioning algorithm. We will refer to the first class as the native
multi-resource partitioning algorithms and to the second class as
the multi-resource enforcement algorithms. The details of the var-
ious algorithms in each of these classes are provided in the rest of
this section.



4.1 Native Multi-Resource Partitioning Algo-
rithms

We developed three different algorithms, called multi-phase, multi-
constraint, and multi-phase–multi-constraint that are capable of di-
rectly computing a partitioning that balances the different resources.
These algorithms were motivated by recently developed graph par-
titioning algorithms for partitioning finite element meshes arising
in multi-phase and multi-physics scientific numerical simulations [11,
3]. Specifically, our multi-phase algorithm is based on the graph
partitioning algorithm proposed in [3], our multi-constraint algo-
rithm is based on the graph-partitioning algorithm proposed in [11],
whereas the multi-phase–multi-constraint algorithm combines ele-
ments from both of these approaches. Details on these algorithms
are provided in the remainder of this section.

4.1.1 Multi-Phase Bisection (MP)
The basic idea of this algorithm is very simple. First we con-

struct a series of hypergraphs containing cells of type 1 (H1), cells
of type 1 and 2(H2), cells of type 1,2 and 3 (H3), and so on. The
hyperedges for these sub hypergraphs are reconstructed based on
the information from the original hypergraph. After that, hMETIS
is used to obtain a partition of H1. Now using the partition infor-
mation of H1, we can easily assign partitions for cells of type 1
in H2. To obtain the bisection of type 2 cells of H2, we fix the
cells of type 1 (also set the area as zero) and use hMETIS as usual
which generates the partition information for cells of type 2. Now
partition information for cells of type 1 and cells of type 2 are avail-
able. This partitioning also satisfies the balance constraints for both
types due to the fact the balance constraint of type 1 was preserved
since they were fixed vertices and the balance constraint of the type
2 cells were satisfied hMETIS. (because area of type 1 cells were set
to zero). We continue this process by influencing the partitioning
of H3 by incorporating partition information of cell types 1 and 2
from H2. Next, we handle H4 by using partition information from
H3 and so on.

Since it is easier to influence the bisection of smaller subset of
cells from the partition information of larger subset of cells, we re-
order the types such that the number of cells of type 1 are the most,
type 2 second most and so on.

4.1.2 Multi-Constraint Bisection (MC)
The multi-resource partitioning problem can be naturally solved

using the multi-constraint partitioning problem initially developed
in the context of graphs. Specifically, using the general framework
introduced in [11], we extend the hypergraph model so that each
vertex v has a weight vector w(v) of size m associated with it.
The i th component of this vector wi (v) corresponds to the weight
associated with the i th constraint. This model assumes, without
loss of generality, that the weight vectors of the vertices satisfy the
property that

∑
∀v∈V wi (v) = 1.0 for i = 1, 2, . . . , m. Using a

framework analogous to that used for single-constraint problems,
we allow for m lower- and upper-bound constraints on the size of
each partition (li , ui ) for i = 1, 2, . . . , m, such that 0 < li <

ui and li + ui = 1. Given these definitions, the multi-constraint
hypergraph bisection problem is formally defined as follows:

Compute a bisection P of V that minimizes the sum of the weight
of the hyperedges that span multiple partitions subject to the con-
straint that

li ≤
∑

∀v∈V :P[v]= j

wi (v) ≤ ui ,

where j = 1, 2 and i = 1, 2, . . . , m represent the different vertex
weights. This multi-constraint partitioning problem tries to find a

bisection such that each weight is individually balanced within the
specified lower- and upper-bound tolerances.

Using this multi-constraint partitioning problem formulation the
multi-resource partitioning problem can be formulated as follows.
Given a multi-resource hypergraph G = (V , E) with m different
vertex types, then each vertex v ∈ V is assigned a vector of m ver-
tex weights w(v), such that wt (v)[v] = 1 and ∀i �= t (v)wi (v) = 0.
It is easy to see that a feasible multi-constraint solution of this
hypergraph will correspond to a feasible solution for the multi-
resource partitioning problem, as well.

We have developed a multi-constraint hypergraph partitioning al-
gorithm that follows the traditional structure of the multilevel par-
titioning paradigm. Specifically, we developed algorithms for the
coarsening, initial partitioning, and uncoarsening phases that com-
bine elements of the single-constraint hypergraph partitioning al-
gorithms in hMETIS with the multi-constraint extensions, initially
introduced for graph partitioning [11]. Due to space constraints,
in this paper we will only describe the multi-constraint partitioning
refinement algorithm used during the uncoarsening phase as it is an
integral part in many of the approaches presented in this paper. The
interested readers should refer to [11, 8, 5] for further details.

Multi-constraint Refinement (MC-FM). We developed a
multi-constraint bisection refinement algorithm, called MC-FM, which
is based on the widely used single-constraint FM algorithm [6] and
operates as follows. For each one of the two partitions, it maintains
m priority queues, where m is the number of weights. A vertex
belongs to only a single priority queue depending on the relative
order of the weights in its weight vector. In particular, a vertex
v with weight vector (w1(v),w2(v), . . . , wm(v)), belongs to the
j th queue if w j (v) = maxi (wi (v)). Given these 2m queues, the
algorithm starts by initially inserting all the vertices to the appropri-
ate queues according to their gains. Then, it proceeds by selecting
one of these 2m queues, picking the highest gain vertex from this
queue, and moving it to the other partition. The queue is selected
as follows. If the current bisection represents a feasible solution,
then the queue that contains the highest gain vertex among the 2m
vertices at the top of the priority queues is selected. On the other
hand, if the current bisection is infeasible, then the queue is selected
depending on the relative weights of the two partitions. Specifi-
cally, if A and B are the two partitions, then the algorithm selects
the queue corresponding to the largest wi (x) with x ∈ {A, B} and
i = 1, 2, . . . , m. If it happens that the selected queue is empty,
then the algorithm selects a vertex from the non-empty queue cor-
responding to the next heaviest weight of the same partition. For
example, if m = 3, (w1(A), w2(A), w3(A)) = (.43, .60, .52), and
(w1(B), w2(B), w3(B)) = (.57, .4, .48), the algorithm will select
the second queue of partition A. If this queue is empty, it will then
try the third queue of A, followed by the first queue of A. Note
that we give preference to the third queue of A as opposed to the
first queue of B, even though B has more of the first weight than
A does of the third. This is because our goal is to reduce the sec-
ond weight of A. If the second queue of A is non-empty, we will
select the highest gain vertex from that queue and move it to B.
However, if this queue is empty, we still will like to decrease the
second weight of A, and the only way to do that is to move a node
from A to B. This is why when our first-choice queue is empty, we
then select the most promising node from the same partition that
this first-queue belongs to.

4.1.3 Multi-Phase Multi-Constraint (MPMC)
This algorithm incorporates the features of both multi-phase bi-

section and multi-constraint bisection. The general structure is sim-



ilar to that of Section 4.1.1, but when constructing the sub hyper-
graphs ( H1, H2 .. Hm ), it also incorporates pseudo hyperedges to
retain the information of the original hypergraph more accurately
and also to prevent these sub hypergraphs from becoming sparser
and result in disconnected segments. This problem is especially se-
vere when numerous constraints are present and results in highly
disconnected H1. Bisection of this trivial hypergraph H1 may not
correspond well with min-cut bisection of the original hypergraph.

Adding pseudo hyperedges is done in the following way. When
a vertex is removed, its neighbors are analyzed to determine how
closely each neighbor is connected to the removed vertex. If the
connectivity is larger than 10% of average hyperedge weight, then
these neighbors are considered to be connected to the removed ver-
tex and are connected by a light weight pseudo hyperedge. The
connectivity to neighbors is estimated by representing each hyper-
edge by a clique of edges each with the weight of w(e)/(|e| − 1)

and by summing the weights of edges common to each neighbor
and the removed vertex. The pseudo hyperedges introduced do not
participate in estimating connectivity. These settings work very
well for our purpose as evident in Section 5 but may require fine
tuning depending on the application.

In addition to the above process, we also apply MC-FM for each
of the sub hypergraphs containing more than one type (H2..Hm ).
This allows previously fixed cells to become free and move, which
often results in substantial improvement.

4.2 Multi-Resource Enforcement Algorithms
In analyzing the characteristics of the various multi-resource cir-

cuits we discovered that the different types of vertices are reason-
ably well-distributed throughout the underlying hypergraph. This
suggests that the bisections produced by single-constraint partition-
ing algorithms, even though they will not be perfectly balanced,
they will not be arbitrarily unbalanced either. Moreover, since
these partitionings can be computed using state-of-the-art multi-
level schemes, they will have small cuts. Motivated by this ob-
servation, we developed two schemes that take as input a min-cut
single constraint partitioning and try to enforce the various multi-
resource balanced constraints.

4.2.1 Single-Constraint Direct-Balancing (SCDB)
In this method, we use the multilevel single-constraint partitioner

hMETIS to seed the initial bisection. Then we use an explicit bal-
ancing algorithm to balance the multiple resources in a single step.
This multi-constraint balancing algorithm operates very similar to
MC-FM (described in Section 4.1.2), except that it gives priority
to finding a balanced bisection rather than minimizing cut. This
balancing step tends to increase the cut, especially when the num-
ber of constraints is large. Hence, it is imperative to apply multi-
constraint refinement algorithms after obtaining a feasible bisec-
tion. Therefore, a single iteration of MC-FM is applied in an effort
to improve the cut quality after obtaining a feasible bisection.

4.2.2 Single-Constraint Multi-Phase Balancing (SCMB)
As in the previous algorithm (Section 4.2.1), we use hMETIS to

obtain an initial solution and then fix all the cells of the types that
satisfy the balancing constraints. For the unbalanced types, we or-
der them from least unbalanced to most unbalanced, and then bisect
each of them in the way described in Section 4.1.1. After each un-
balanced type is balanced we also apply an iteration of MC-FM to
capitalize on the perturbation caused during balancing.

4.3 Additional Improvements
After the bisection of the original hypergraph has been com-

No. of cells of various types
# cells # nets # types min max avg

ind1 18160 17689 11 1 8138 1651
ind2 5236 4874 9 3 2584 582
ind3 15783 16272 11 14 5889 1435
ind4 58571 60734 12 6 22193 4881
ind5 89697 91925 11 9 45305 8154
ind6 56462 57674 11 3 26759 5133
ind7 119407 121822 11 5 55873 10855
ind8 136539 139147 12 1 73106 11378
ind9 109115 111776 11 4 54377 9920
ind10 72130 49594 5 58 42789 14426
ind11 92778 93184 11 1 46577 8434
ind12 140118 141505 11 4 76887 12738

Table 2: The characteristics of netlists used for evaluating al-
gorithms

puted, it is possible to further improve the cut by applying a multi-
constraint V-cycle. Multi-Constraint V-cycle consists of two com-
ponents, restricted multi-constraint coarsening and multi-constraint
refinement. The restricted multi-constraint coarsening step differs
from regular multi-constraint coarsening by the presence of an ad-
ditional requirement that any two vertices that are collapsed to-
gether belong to the same partition. The information regarding
the partitioning is thus preserved during the creation of succes-
sive approximate hypergraphs. This coarsening scheme is a multi-
constraint version of restricted coarsening presented in [9]. The
second component is same as the multi-constraint refinement pre-
sented in Section 4.1.2.

5. EXPERIMENTS
We experimentally evaluated our multi-resource aware partition-

ing algorithms on an industrial benchmark suite consisting of twelve
large designs synthesized for Virtex II architecture [15]. The types
of cells consist of sub CLB elements such as LUTs, FFs, MUXes,
control gates and non CLB elements such as RAM Blocks, DCMs,
IOBs etc. The details of these benchmarks are listed in Table 2. The
column labeled as “# types” shows the number of distinct types of
cells available on that particular benchmark. The columns labeled
as “min” shows minimum number of cells of any type for that
benchmark, and similarly the “max” and “avg” columns provide
the details of distribution of number of cells in each hypergraph.

To evaluate the quality of the solutions obtained by the various
multi-resource partitioning algorithms, we used hMETIS (version
1.5.3 [10]) to obtain single-constraint bisections of the different
hypergraphs. These solutions were obtained using hMETIS’s de-
fault parameters (including V-cycle at the end). Furthermore, to
make such quality comparisons easier, we computed the Average
Ratio of Quality (ARQ) of each algorithm against that obtained by
hMETIS. To ensure the meaningful averaging of these ratios, we first
took the log2-values of these ratios, then calculated their mean µ,
and then used 2µ as their average. This method ensures that ratios
corresponding to comparable degradations or improvements (i.e.,
ratios that are less than or greater than one) are given equal impor-
tance. The ARQ number larger than 1.0 indicates degradation in
quality.

To ensure the statistical significance of our experimental results,
for both hMETIS and each one of the five multi-resource partitioning
algorithms we report average min-cut of ten runs.

5.1 Comparison of Native Algorithms
Tables 3 and 4 show the results obtained by the various native

multi-resource partitioning algorithms (described in Section 4.1)



Without V-cycle With V-cycle
hMETIS MP MC MPMC MP MC MPMC

ind1 246 987 378 403 426 346 388
ind2 149 349 181 149 144 173 129
ind3 101 908 224 169 908 224 169
ind4 153 4012 405 446 508 376 336
ind5 717 2188 1133 1053 1221 1058 1039
ind6 809 2615 1649 1038 2548 1649 1038
ind7 1021 4126 1187 1234 957 1081 1151
ind8 400 4076 682 921 707 568 734
ind9 1392 4937 1577 1832 1651 1491 1656
ind10 480 719 528 550 505 498 528
ind11 373 1311 545 582 730 504 570
ind12 409 1300 636 533 744 576 531
ARQ 1.000 4.406 1.554 1.500 1.882 1.448 1.386
Time 1.000 0.230 0.577 2.496 2.360 1.760 5.206

Table 3: Performance of algorithms as an average of 10 runs
for 49%-51% balance constraint.

Without V-cycle With V-cycle
hMETIS MP MC MPMC MP MC MPMC

ind1 213 940 261 375 337 243 355
ind2 147 316 152 123 103 141 114
ind3 85 922 126 177 128 110 110
ind4 127 3910 217 241 184 171 149
ind5 634 2242 779 943 813 739 883
ind6 822 2390 924 1022 841 871 932
ind7 917 4376 983 1167 849 873 1059
ind8 430 3781 558 711 431 502 425
ind9 1289 4052 1449 1454 1371 1367 1326
ind10 360 543 429 391 376 399 377
ind11 193 1053 271 237 240 247 236
ind12 307 1334 375 440 366 361 413
ARQ 1.000 4.811 1.246 1.383 1.141 1.136 1.165
Time 1.000 0.255 0.636 2.667 1.863 1.806 5.015

Table 4: Performance of algorithms as an average of 10 runs
for 45%-55% balance constraint.

for 49%–51% and 45%–55% balance, respectively. Each of these
tables shows the average minimum cuts obtained by the MP, MC,
and MPMC multi-resource partitioning algorithms under two dif-
ferent scenarios. In the first scenario, the solution obtained by these
algorithms was kept as it was, whereas in the second scenario, the
solution was further refined by performing a V -cycle refinement
step (as discussed in Section 4.3).

The columns labeled “hMETIS” show the average min-cut ob-
tained by hMETIS for either 49%–51% or 45%–55% balance. Note
that hMETIS’s bisections will not necessarily solve the multi-resource
problem, as they do not account for the different vertex types.

Finally, the rows labeled “ARQ” provides the average ratio of
quality of each algorithm to hMETIS’s results (computed using the
scheme described in the previous section), and the rows labeled
“Time” shows the amount of time required by the multi-resource
partitioning algorithms relative to that required by hMETIS. Num-
bers less than one represent runtimes that are smaller than that of
hMETIS, whereas numbers greater than one represent higher run-
times.

Comparing the results in these tables we can see that all schemes
produce solutions whose cuts are worse than those produced by
hMETIS. This should not be surprising, as hMETIS solves the single-
constraint bisectioning problem which, in general, does not solve
the multi-resource partitioning problem.

Comparing the solutions produced by the various multi-resource
partitioning algorithms we can see that there is a considerable amount
of variability on the quality of the final solutions. In particular, in

Without V-cycle With V-cycle
hMETIS SCDB SCMB SCDB SCMB

ind1 246 265 251 260 238
ind2 149 161 165 160 162
ind3 101 125 124 125 124
ind4 153 230 251 226 251
ind5 717 1340 868 799 864
ind6 809 880 827 879 827
ind7 1021 998 1056 997 1048
ind8 400 488 411 472 394
ind9 1392 1463 1439 1456 1438
ind10 480 491 488 489 486
ind11 373 414 374 403 213
ind12 409 499 503 494 503
ARQ 1.000 1.184 1.119 1.123 1.057
Time 1.000 1.075 1.845 1.898 2.945

Table 5: Performance of algorithms combined with multi-
constraint V-cycle as an average 10 runs for 49%-51% balance
factor.

the absence of V -cycle refinement, the quality of the solutions pro-
duced by MP are significantly worse than those produced by ei-
ther MC or MPMC. On the average, the 49%–51% cuts produced
by MP are 4.4 times worse than those produced by the single-
constraint hMETIS, whereas the cuts produced by MC and MPMC
are only 55.4% and 50% worse than hMETIS’s cuts, respectively.
Similar trends can be also observed for the 45%–55% cuts, as well.
These results illustrate that the multi-constraint algorithm (MC)
and the modifications to the multi-phase partitioning algorithm im-
plemented in the MPMC algorithm, lead to superior solutions.

Comparing the results without and with V -cycle refinement we
see that the overall quality of all three algorithms improves by using
V -cycle refinement. However, the overall rate of improvement is
different for different schemes. The MP algorithm gains the most,
whereas the MPMC algorithm gains the least. We believe that the
reason for that is the fact that the solutions of MC and MPMC are
already of reasonable high quality, and thus, there is relatively lit-
tle room for improvement. However, because MP’s initial solu-
tion is considerably worse, by applying a V -cycle refinement, we
can achieve dramatic quality improvements. As a result, the 49%–
51% solution for MP now becomes only 88.2% worse than that of
hMETIS.

Finally, comparing MC with MPMC we can see that the lat-
ter leads to consistently better solutions, which are on the average
5%–10% better than those obtained by MC. However, this quality
advantage comes at the expense of higher computational require-
ments. In general, MPMC requires 2.5 to 5.0 times more time than
that required by MC. Note that the reason that the runtimes of MP
and MC without V -cycle are in general smaller than that of hMETIS
is because hMETIS does perform a V -cycle refinement at the end.

5.2 Comparison of Enforcement Algorithms
Tables 5 and 6 show the results obtained by the various enforcement-

based multi-resource partitioning algorithms (described in Section 4.2)
for 49%–51% and 45%–55% balance, respectively. Each of these
tables shows the average minimum cuts obtained by the SCDB
and SCMB partitioning algorithms without and with V -cycle re-
finement. In addition, the columns labeled “hMETIS” show the re-
sults obtained by hMETIS (which are identical to those shown in Ta-
bles 3 and 4), the rows labeled “ARQ” provides the average ratio of
quality of each algorithm to hMETIS’s results, and the rows labeled
“Time” shows the amount of time required by the multi-resource
partitioning algorithms relative to that required by hMETIS.

Comparing the solutions produced by the two sets of enforcement-



Without V-cycle With V-cycle
hMETIS SCDB SCMB SCDB SCMB

ind1 213 218 213 216 204
ind2 147 149 150 149 150
ind3 85 99 96 98 95
ind4 127 167 159 149 155
ind5 634 675 665 669 652
ind6 822 848 832 846 831
ind7 917 928 922 902 905
ind8 430 479 430 425 427
ind9 1289 1334 1335 1320 1332
ind10 360 368 364 363 364
ind11 193 212 193 211 192
ind12 307 375 327 363 322
ARQ 1.000 1.088 1.046 1.058 1.033
Time 1.000 1.034 1.278 1.945 2.035

Table 6: Performance of algorithms combined with multi-
constraint V-cycle as an average 10 runs for 45%-55% balance
factor.

based multi-resource partitioning algorithms we can see that, unlike
the native algorithms, there is relatively little variation between the
performance achieved by them. Specifically, the performance dif-
ference between the two schemes is less that 7%, on the average.
However, the SCMB algorithm is consistently better than SCDB,
leading to better solutions in 31 out of the 48 different experimen-
tal data-points. Comparing the results without and with V -cycle
refinement we see that as it was the case with the native algorithms,
the overall quality of the two algorithms improves, as well. How-
ever, those improvements are relatively small, ranging on the aver-
age between 2% and 5%. Finally, comparing the amount of time
required by these algorithms we can see that SCMB is slower than
SCDB, but in most cases the difference is small.

5.3 Overall Comparisons
Comparing the performance achieved by the various multi-resource

partitioning algorithms we can see that in almost all the cases, the
enforcement-based algorithms lead to solutions that have lower cut
than those obtained by the native multi-resource partitioning al-
gorithms. For example, the best-performing enforcement-based
scheme SCMB outperforms the best-performing native scheme in
41 out 48 data-points. Moreover, the cut differences are consider-
able, and on the average SCMB leads to cuts that are 13%–32%
better than that of MPMC. However, this performance advantage is
also data-set dependent, and the relative performance of the various
schemes can change for different benchmarks.

Finally, comparing the performance achieved by SCMB against
that achieved by the single-constraint hMETIS, we can see that the
overall increase in the cut resulting by solving the multi-resource
partitioning problem, is quite small. For example, if we consider
SCMB’s results with V -cycle refinement we can see that on the
average the cut increase by only 5.7% and 3.3% for the 49%–51%
and 45%–55% balance constraints, respectively.

6. CONCLUSION
In this paper we presented two classes of multi-resource aware

partitioning algorithms for enabling partitioning-based placement
methods for FPGA architectures with heterogeneous devices. These
algorithms are very effective in minimizing the cut while satisfying
multiple balancing requirements with acceptable computational ef-
fort. The average cut of the most effective algorithm is only 5.7%
and 3.3% worse than that of the state-of-the-art partitioning tool
hMETIS [10] for 49%–51% and 45%–55% balance constraints, re-
spectively. Moreover, their additional computational requirements

are small, requiring only two to three times more time than hMETIS.
These results indicate that high-quality partitionings are feasible

for designs with multiple resource requirements, suggesting that
partitioning-based placement methods can be used for placing such
designs on modern FPGA architectures.
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