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Abstract

The effectiveness of comparative modeling approaches for pro-
tein structure prediction can be substantially improved by incor-
porating predicted structural information in the initial sequence-
structure alignment. Motivated by the approaches used to align pro-
tein structures, this paper focuses on developing machine learning
approaches for estimating the RMSD value of a pair of protein frag-
ments. These estimated fragment-level RMSD values can be used
to construct the alignment, assess the quality of an alignment, and
identify high-quality alignment segments.

We present algorithms to solve this fragment-level RMSD predic-
tion problem using a supervised learning framework based on sup-
port vector regression and classification that incorporates protein
profiles, predicted secondary structure, effective information encod-
ing schemes, and novel second-order pairwise exponential kernel
functions. Our comprehensive empirical study shows superior re-
sults compared to the profile-to-profile scoring schemes.
Keywords: structure prediction, comparative modeling, machine
learning, classification, regression

1 Introduction
Over the years, several computational methodologies have
been developed for determining the 3D structure of a protein
(target) from its linear chain of amino acid residues [27, 12,
32, 23, 31, 28]. Among them, approaches based on compar-
ative modeling [27, 28] are the most widely used and have
been shown to produce some of the best predictions when the
target has some degree of homology with proteins of known
3D structure (templates) [3, 42].

The key idea behind comparative modeling approaches
is to align the sequence of the target to the sequence of
one or more template proteins and then construct the tar-
get’s structure from the structure of the template(s) using
the alignment(s) as a reference. Thus, the construction of
high-quality target-template alignments plays a critical role
in the overall effectiveness of the method, as it is used to
both select the suitable template(s) and to build good ref-
erence alignments. The overall performance of compar-
ative modeling approaches will be significantly improved,
if the target-template alignment constructed by consider-
ing sequence and sequence-derived information is as close
as possible to the structure-based alignment between these
two proteins. The development of increasingly more sen-
sitive target-template alignment algorithms [1, 22, 25], that
incorporate profiles [7, 2], profile-to-profile scoring func-
tions [5, 17, 39, 8], and predicted secondary structure infor-
mation [13, 24] have contributed to the continuous success of

comparative modeling [37, 38].
The dynamic-programming-based algorithms [19, 33]

used in target-template alignment are also used by many
methods to align a pair of protein structures. However, the
key difference between these two problem settings is that,
while the target-template alignment methods score a pair
of aligned residues using sequence-derived information, the
structure alignment methods use information derived from
the structure of the protein. For example, structure alignment
methods like CE [30] and MUSTANG [15] score a pair of
residues by considering how well fixed-length fragments (i.e.,
short contiguous backbone segments) centered around each
residue align with each other. This score is usually computed
as the root mean squared deviation (RMSD) of the optimal
superimposition of the two fragments.

In this paper, motivated by the alignment requirements of
comparative modeling approaches and the operational char-
acteristics of protein structure alignment algorithms, we focus
on the problem of estimating the RMSD value of a pair of pro-
tein fragments by considering only sequence-derived infor-
mation. Besides its direct application to target-template align-
ment, accurate estimation of these fragment-level RMSD val-
ues can also be used to solve a number of other problems
related to protein structure prediction such as identifying
the best template by assessing the quality of target-template
alignments and identifying high-quality segments of an align-
ment.

We present algorithms to solve the fragment-level RMSD
prediction problem using a supervised learning framework
based on support vector regression and classification that
incorporates sequence-derived information in the form of
position-specific profiles and predicted secondary struc-
ture [14]. This information is effectively encoded in fixed-
length feature vectors. We develop and test novel second-
order pairwise exponential kernel functions designed to cap-
ture the conserved signals of a pair of local windows cen-
tered at each of the residues and use a fusion-kernel-based
approach to incorporate the profile- and secondary structure-
based information.

An extensive experimental evaluation of the algorithms
and their parameter space is performed using a dataset
of residue-pairs derived from optimal sequence-based local
alignments of known protein structures. Our experimental re-
sults show that there is a high correlation (0.681 – 0.768) be-
tween the estimated and actual fragment-level RMSD scores.
Moreover, the performance of our algorithms is consider-
ably better than that obtained by state-of-the-art profile-to-
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profile scoring schemes when used to solve the fragment-
level RMSD prediction problems.

The rest of the paper is organized as follows. Section 2,
provides key definitions and notations used throughout the
paper. Section 3 formally defines the fragment-level RMSD
prediction and classification problems and describes their ap-
plications. Section 4 describes the prediction methods that
we developed. Section 5 describes the datasets and the vari-
ous computational tools used in this paper. Section 6 presents
a comprehensive experimental evaluation of the methods de-
veloped. Section 7 summarizes some of the related research
in this area. Finally, Section 8 summarizes the work and pro-
vides some concluding remarks.

2 Definitions and Notations
Throughout the paper we will use X and Y to denote proteins,
xi to denote the ith residue of X , and π(xi, yj) to denote the
residue-pair formed by residues xi and yj .

Given a protein X of length n and a user-specified param-
eter w, we define wmer(xi) to be the (2w + 1)-length con-
tiguous subsequence of X centered at position i (w < i ≤
n − w). Similarly, given a user-specified parameter v, we
define vfrag(xi) to be the (2v + 1)-length contiguous sub-
structure of X centered at position i (v < i ≤ n− v). These
substructures are commonly referred to as fragments [30, 15].
Without loss of generality, we represent the structure of a pro-
tein using the Cα atoms of its backbone. The wmers and
vfrags are fixed-length windows that are used to capture
information about the sequence and structure around a partic-
ular sequence position, respectively.

Given a residue-pair π(xi, yj), we define fRMSD(xi, yj)
to be the structural similarity score between vfrag(xi) and
vfrag(yj). This score is computed as the root mean square
deviation between the pair of substructures after optimal su-
perimposition. A residue-pair π(xi, yj) will be called re-
liable if its fRMSD is bellow a certain value (i.e., there is
a good structural superimposition of the corresponding sub-
structures).

Finally, we will use the notation 〈a, b〉 to denote the dot-
product operation between vectors a and b.

3 Problem Statement
The work in this paper is focused on solving the following
two problems related to predicting the local structural simi-
larity of residue-pairs.

Definition 1 (fRMSD Estimation Problem) Given a
residue-pair π(xi, yj), estimate the fRMSD(xi, yj) score
by considering information derived from the amino acid
sequence of X and Y .

Definition 2 (Reliability Prediction Problem) Given a
residue-pair π(xi, yj), determine whether it is reliable or not
by considering only information derived from the amino acid
sequence of X and Y .

It is easy to see that the reliability prediction problem is a
special case to the fRMSD estimation problem. As such, it

may be easier to develop effective solution methods for it and
this is why we consider it as a different problem in this paper.

The effective solution to these two problems has four ma-
jor applications to protein structure prediction. First, given
an existing alignment between a (target) protein and a tem-
plate, a prediction of the fRMSD scores of the aligned residue-
pairs (or their reliability) can be used to assess the quality of
the alignment and potentially select among different align-
ments and/or different templates. Second, fRMSD scores
(or reliability assessments) can be used to analyze differ-
ent protein-template alignments in order to identify high-
quality moderate-length fragments. These fragments can then
be used by fragment-assembly-based protein structure pre-
diction methods like TASSER [41] and ROSETTA [26] to
construct the structure of a protein. Third, since residue-
pairs with low fRMSD scores are good candidates for align-
ment, the predicted fRMSD scores can be used to construct
a position-to-position scoring matrix between all pairs of
residues in a protein and a template. This scoring matrix can
then be used by an alignment algorithm to compute a high-
quality alignment for structure prediction via comparative
modeling. Essentially, this alignment scheme uses predicted
fRMSD scores in an attempt to mimic the approach used by
various structural alignment methods [15, 30]. Fourth, the
fRMSD scores (or reliability assessments) can be used as in-
put to other prediction tasks such as remote homology pre-
diction and/or fold recognition.

In this paper we study and evaluate the feasibility of solv-
ing the fRMSD estimation and reliability prediction problems
for residue-pairs that are derived from optimal local sequence
alignments. As a result, our evaluation focuses on the first
two applications discussed in the previous paragraph (assess-
ment of target-template alignment and identification of high-
confidence alignment regions). However, the methods devel-
oped can also be used to address the other two applications as
well.

4 Methods
We approach the problems of distinguishing reli-
able/unreliable residue-pairs and estimating their fRMSD
scores following a supervised machine learning framework
and use support vector machines (SVM) [10, 36] to solve
them.

Given a set of positive residue-pairs A+ (i.e., reliable) and
a set of negative residue-pairs A− (i.e., unreliable), the task
of support vector classification is to learn a function f(π) of
the form

f(π) =
∑

πi∈A+

λ+
i K(π, πi)−

∑
πi∈A−

λ−i K(π, πi), (1)

where λ+
i and λ−i are non-negative weights that are computed

during training by maximizing a quadratic objective function,
and K(., .) is the kernel function designed to capture the sim-
ilarity between pairs of residue-pairs. Having learned the
function f(π), a new residue-pair π is predicted to be pos-
itive or negative depending on whether f(π) is positive or
negative. The value of f(π) also signifies the tendency of π
to be a member of the positive or negative class and can be
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used to obtain a meaningful ranking of a set of the residue-
pairs.

We use the error insensitive support vector regression
ε-SVR [36, 34] for learning a function f(π) to predict
the fRMSD(π) scores. Given a set of training instances
(πi, fRMSD(πi)), the ε-SVR aims to learn a function of the
form

f(π) =
∑

πi∈∆+

α+
i K(π, πi)−

∑
πi∈∆−

α−i K(π, πi), (2)

where ∆+ contains the residue-pairs for which fRMSD(πi)−
f(πi) > ε, ∆− contains the residue pairs for which
fRMSD(πi)− f(πi) < −ε, and α+

i and α−i are non-negative
weights that are computed during training by maximizing a
quadratic objective function. The objective of the maximiza-
tion is to determine the flattest f(π) in the feature space and
minimize the estimation errors for instances in ∆+ ∪ ∆−.
Hence, instances that have an estimation error satisfying
|f(πi) − fRMSD(πi)| < ε are neglected. The parameter ε
controls the width of the regression deviation or tube.

In the current work we focused on several key considera-
tions while setting up the classification and regression prob-
lems. In particular we explored different types of sequence
information associated with the residue-pairs, developed effi-
cient ways to encode this information to form fixed length
feature vectors, and designed sensitive kernel functions to
capture the similarity between pairs of residues in the feature
spaces.

4.1 Sequence-based Information

For a given protein X , we encode the sequence information
using profiles and predicted secondary structure.

4.1.1 Profile Information The profile of a protein X
is derived by computing a multiple sequence alignment of X
with a set of sequences {Y1, . . . , Ym} that have a statistically
significant sequence similarity with X (i.e., they are sequence
homologs).

The profile of a sequence X of length n is represented by
two n×20 matrices, namely the position-specific scoring ma-
trix PX and the position-specific frequency matrix FX . Ma-
trix P can be generated directly by running PSI-BLAST [2],
whereas matrix F consists of the frequencies used by PSI-
BLAST to derive P . These frequencies, referred to as the tar-
get frequencies [18] consists of both the sequence-weighted
observed frequencies (also referred to as effective frequen-
cies [18]) and the BLOSUM62 [9] derived-pseudocounts [2].
Further, each row of the matrix F is normalized to one.

4.1.2 Predicted Secondary Structure Information
For a sequence X of length n we predict the secondary struc-
ture and generate a position-specific secondary structure ma-
trix SX of length n × 3. The (i, j) entry of this matrix rep-
resents the strength of the amino acid residue at position i to
be in state j, where j ∈ (0, 1, 2) corresponds to the three sec-
ondary structure elements: alpha helices (H), beta sheets (E),
and coil regions (C).

4.2 Coding Schemes

The input to our prediction algorithms are a set of wmer-
pairs associated with each residue-pair π(xi, yj). The input
feature space is derived using various combinations of the el-
ements in the P and S matrices that are associated with the
subsequences wmer(xi) and wmer(yj).

For the rest of this paper, we will use PX(i−w . . . i + w)
to denote the (2w + 1) rows of matrix PX corresponding to
wmer(xi). A similar notation will be used for matrix S.

4.2.1 Concatenation Coding Scheme For a given
residue-pair π(xi, yj), the feature-vector of the concatena-
tion coding scheme is obtained by first linearizing the ma-
trices PX(i−w . . . i+w) and PY (j−w . . . j +w) and then
concatenating the resulting vectors. This leads to feature-
vectors of length 2× (2w +1)× 20. A similar representation
is derived for matrix S leading to feature-vectors of length
2× (2w + 1)× 3.

The concatenation coding scheme is order dependent as
the representations for π(xi, yj) and π(yj , xi) are not equiv-
alent. We call the feature representations obtained by the two
concatenation orders as forward (frwd) and reverse (rvsd)
representations. Note that we use the terms forward and re-
verse only for illustrative purposes as there is no way to assign
a fixed ordering to the residues of a residue-pair, as this is the
source of the problem in the first place.

We explored two different ways of addressing this order
dependency. In the first approach, we trained up to ten mod-
els with random use of the forward and backward represen-
tation for the various instances. The final classification and
regression results were determined by averaging the results
produced by each of the ten different models. In the sec-
ond approach, we built only one model based on the forward
representation of the residue-pairs. However, during model
application, we classified/regressed both the forward and re-
verse representations of a residue-pair and used the average of
the SVM/ε-SVR outputs as the final classification/regression
result. We denote this averaging method by avg.

4.2.2 Pairwise Coding Scheme For a given residue-
pair π(xi, yj), the pairwise coding scheme generates a
feature-vector by linearizing the matrix formed by an
element-wise product between PX(i − w . . . i + w) and
PY (j−w . . . j+w). The length of this vector is (2w+1)×20
and is order independent. If we denote the element-wise prod-
uct operation by “⊗”, then the element-wise product matrix
is given by

PX(−w + i . . . w + i)⊗ PY (−w + j . . . w + j). (3)

A similar approach is used to obtain the pairwise coding
scheme for matrix S, leading to feature-vectors of length
(2w + 1)× 3.

4.3 Kernel Functions

The general structure of the kernel function that we use
for capturing the similarity between a pair of residue-pairs
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π(xi, yj) and π′(x′i′ , y
′
j′) is given by

Kcs(π, π′) = exp

(
1.0 + Kcs

1 (π, π′)√
Kcs

1 (π, π)Kcs
1 (π′, π′)

)
, (4)

where Kcs
1 (π, π′) is given by

Kcs
1 (π, π′) = Kcs

2 (π, π′) + (Kcs
2 (π, π′))2, (5)

andKcs
2 (π, π′) is a kernel function that depends on the choice

of particular coding scheme (cs). For the concatenation cod-
ing scheme using matrix P (i.e., cs = Pconc), Kcs

2 (π, π′) is
given by

KP
conc

2 (π, π′) =
k=+w∑
k=−w

〈PX(i + k),PX′(i′ + k)〉+

k=+w∑
k=−w

〈PY (j + k),PY ′(j′ + k)〉.

(6)

For the pairwise coding scheme using matrix P (i.e., cs =
Ppair), Kcs

2 (π, π′) is given as

KP
pair

2 (π, π′) =
k=+w∑
k=−w

〈PX(i + k)⊗ PY (j + k),

PX′(i′ + k)⊗ PY ′(j′ + k)〉.
(7)

Similar kernel functions can be derived using matrix S for
both the pairwise and the concatenation coding schemes. We
will denote these coding schemes as Spair and Sconc, respec-
tively. Since the overall structure of the kernel that we used
(Equations 4 and 5) is that of a normalized second-order ex-
ponential function, we will refer to it as nsoe.

The second-order component of Equation 5 allows the
nsoe kernel to capture pairwise dependencies among the
residues used at various positions within each wmer, and we
found that this leads to better results over the linear func-
tion. This observation is also supported by earlier research
on secondary-structure prediction as well [14]. In addition,
nsoe’s exponential function allows it to capture non-linear re-
lationships within the data just like the kernels based on the
Gaussian and radial basis function [36].

4.3.1 Fusion Kernels We also developed a set of ker-
nel functions that incorporate both profile and secondary
structure information using an approach motivated by fusion
kernels [16, 34]. Specifically, we constructed a new ker-
nel function as the unweighted sum of the nsoe kernel func-
tion for the profile and secondary structure information. For
example, the concatenation-based fusion kernel function is
given by

K(P +S)conc

(π, π′) = KP
conc

(π, π′) +KS
conc

(π, π′). (8)

A similar kernel function can be defined for the pairwise cod-
ing scheme as well. We will denoted the pairwise-based fu-
sion kernel by K(P +S)pair

(π, π′). Note that since these fu-
sion kernels are linear combinations of valid kernels, they are
also admissible kernels.

5 Materials
5.1 Datasets

We evaluated the classification and regression performance of
the various kernels on a set of protein pairs used in a previous
study for learning a profile-to-profile scoring function [21].
These pairs of proteins were derived from the SCOP 1.57
database, classes a-e, with no two protein domains sharing
greater than 75% sequence identity. The dataset is comprised
of 473 protein pairs belonging to the same family, 433 pairs
belonging to the same superfamily but not the same family,
and 422 pairs belonging to the same fold but not the same
superfamily. For each protein pair, we used the alignment
produced by the Smith-Waterman [33] algorithm to generate
the aligned residue-pairs that were used to train and test the
various algorithms. These alignments were computed using
the sensitive PICASSO [8, 18] profile-to-profile scoring func-
tion. For each aligned residue-pair π(xi, yj), we computed
its fRMSD(xi, yj) score by considering fragments of length
seven (i.e., we optimally superimposed vfrags with v = 3).

For the fRMSD estimation problem, we used the entire
set of aligned residue-pairs and their corresponding fRMSD
scores for training and testing the ε-SVR-based regression al-
gorithms. For the reliability prediction problem, we used the
aligned residue-pairs to construct two different classification
datasets, that will be referred to as easy and hard. The pos-
itive class (i.e., reliable residue-pairs) for both datasets con-
tains all residue-pairs whose fRMSD score is less than 0.75Å.
However, the datasets differ on how the negative class (i.e.,
unreliable residue-pairs) is defined. For the hard problem,
the negative class consists of all residue-pairs that are not
part of the positive class (i.e., have an fRMSD score that is
greater than or equal to 0.75Å), whereas for the easy prob-
lem, the negative class consists only of those residue-pairs
whose fRMSD score is greater than 2.5Å. Thus, the easy
dataset contains classes that are well-separated in terms of the
fRMSD score of their residue-pairs and as such it represents
a somewhat easier learning problem. Both these datasets are
available at the supplementary website for this paper1.

We perform a detailed analysis using different subsets of
the datasets to train and test the performance of the models.
Specifically, we train four models using (i) protein pairs shar-
ing the same SCOP family, (ii) protein pairs sharing the same
superfamily but not the family, (iii) protein pairs sharing the
same fold but not the superfamily, and (iv) protein pairs from
all the three levels. These four models are denoted by fam,
suf, fold, and all. We also report performance numbers by
splitting the test set in the aforementioned four levels. These
subsets allow us to evaluate the performance of the schemes
for different levels of sequence similarity.

5.2 Profile Generation

To generate the profile matrices P and F , we ran PSI-
BLAST, using the following parameters (blastpgp -j
5 -e 0.01 -h 0.01). The PSI-BLAST was performed
against NCBI’s nr database that was downloaded in Novem-
ber of 2004 and contained 2,171,938 sequences.

1http://bioinfo.cs.umn.edu/supplements/fRMSDPred/
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5.3 Secondary Structure Prediction

We use the state-of-the-art secondary structure prediction
server called YASSPP [14] (default parameters) to generate
the S matrix. The values of the S matrix are the output of the
three one-versus-rest SVM classifiers trained for each of the
secondary structure elements.

5.4 Evaluation Methodology

We use a five-fold cross-validation framework to evaluate the
performance of the various classifiers and regression models.
To prevent unwanted biases, we restrict all residue-pairs in-
volving a particular protein to belong solely in the training or
the testing dataset.

We measure the quality of the methods using the stan-
dard receiver operating characteristic (ROC) scores and the
ROC5 scores averaged across every protein pair. The ROC
score is the normalized area under the curve that plots the true
positives against the false positives for different thresholds for
classification [7]. The ROCn score is the area under the ROC
curve up to the first n false positives. We compute the ROC
and ROC5 numbers for every protein pair and report the av-
erage results across all the pairs and cross-validation steps.
We selected to report ROC5 scores because each individual
ROC-based evaluation is performed on a per protein-pair ba-
sis, which, on average, involves one to two hundred residue-
pairs.

The regression performance is assessed by computing the
standard Pearson correlation coefficient (CC) between the
predicted and observed fRMSD values for every protein pair.
The results reported are averaged across the different pairs
and cross-validation steps.

5.5 Profile-to-Profile Scoring schemes

To assess the effectiveness of our supervised learning algo-
rithms we compare their performance against that obtained by
using two profile-to-profile scoring schemes to solve the same
problems. Specifically, we use the profile-to-profile scor-
ing schemes to compute the similarity between the aligned
residue-pairs summed over the length of their wmers. To as-
sess how well these scores correlated with the fRMSD score
of each residue-pair we compute their correlation coefficients.
Note that since residue-pairs with high-similarity score are
expected to have low fRMSD scores, good values for these
correlation coefficients will be close to -1. Similarly, for the
reliability prediction problem, we sort the residue-pairs in de-
creasing similarity score order and assess the performance by
computing ROC and ROC5 scores.

The two profile-to-profile scoring schemes that we used
are based on the dot-product and the PICASSO score, both
of which are used extensively and shown to produce good
results [18, 39, 17]. The dot-product similarity score is de-
fined both for the profile- as well as the secondary-structure-
based information, whereas the PICASSO score is defined
only for the profile-based information. The profile-based dot-
product similarity score between residues xi and yj is given
by 〈PX(i),PY (j)〉. Similarly, the secondary-structure-based
dot-product similarity score is given by 〈SX(i),SY (j)〉.

The PICASSO similarity score [8, 18] between residues xi

and yj uses both the P and F matrices and is given by
〈FX(i)PY (j) + FY (j)PX(i)〉. We will use Pdotp, Sdotp,
and PFpic to denote these three similarity scores, respec-
tively.

5.6 Support Vector Machines

The classification and regression is done using the publicly
available support vector machine tool SVMlight [29] that im-
plements an efficient soft margin optimization algorithm.

The performance of SVM and ε-SVR depends on the pa-
rameter that controls the trade-off between the margin and the
misclassification cost (“C” parameter). In addition, the per-
formance of ε-SVR also depends on the value of the deviation
parameter ε. We performed a limited number of experiments
to determine good values for these parameters. These exper-
iments showed that C = 0.1 and ε = 0.1 achieved consis-
tently good performance and was the value used for all the
reported results.

6 Results
We have performed a comprehensive study evaluating the
classification and regression performance of the various infor-
mation sources, coding schemes, and kernel functions (Sec-
tion 4) and compare it against the performance achieved by
the profile-to-profile scoring schemes (Section 5.5).

We performed a number of experiments using different
length wmers for both the SVM/ε-SVR- and profile-to-
profile-based schemes. These experiments showed that the
supervised learning schemes achieved the best results when
5 ≤ w ≤ 7, whereas in the case of the profile-to-profile
scoring schemes, the best performing value of w was depen-
dent on the particular scoring scheme. For these reasons, for
all the SVM/ε-SVR-based schemes we only report results for
w = 6, whereas for the profile-to-profile schemes we report
results for the values of w that achieved the best performance.

6.1 Order Dependency in the Concatenation
Coding Scheme

Section 4.2.1 described two different schemes for addressing
the order-dependency of the concatenation coding scheme.
Our experiments with these approaches showed that both
achieved comparable results. For this reason and due to space
constraints in this section we only present results for the sec-
ond approach (i.e., averaging the SVM/ε-SVR prediction val-
ues of the forward and reverse representations). These re-
sults are shown in Table 1, which shows the classification and
regression performance achieved by the concatenation-based
fusion kernel for the two representations and their average.

These results show that there exists a difference in the
performance achieved by the forward and reverse represen-
tations. Depending on the protein set used to train and/or test
the model, these differences can be non-trivial. For exam-
ple, for models trained on the fold and all protein sets, the
performance achieved by the reverse representation is con-
siderably higher than that achieved by the forward represen-
tation. However, these results also show that by averaging
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Table 1: Comparing the classification and regression per-
formance of the various concatenation based kernels due
to order dependency.

Reliability Prediction EST
EASY HARD

Scheme ROC5 ROC ROC5 ROC CC
(P+S)conc -fam (frwd) 0.802 0.937 0.666 0.903 0.693
(P+S)conc -fam (rvsd) 0.803 0.937 0.664 0.902 0.693
(P+S)conc -fam (avg) 0.817 0.941 0.673 0.906 0.700
(P+S)conc -suf (frwd) 0.822 0.938 0.653 0.898 0.687
(P+S)conc -suf (rvsd) 0.821 0.938 0.651 0.899 0.688
(P+S)conc -suf (avg) 0.827 0.940 0.659 0.902 0.694
(P+S)conc -fold (frwd) 0.785 0.918 0.618 0.872 0.660
(P+S)conc -fold (rvsd) 0.800 0.922 0.638 0.881 0.663
(P+S)conc -fold (avg) 0.796 0.922 0.637 0.882 0.667
(P+S)conc -all (frwd) 0.839 0.948 0.680 0.909 0.717
(P+S)conc -all (rvsd) 0.853 0.950 0.692 0.913 0.721
(P+S)conc -all (avg) 0.853 0.952 0.693 0.913 0.725
The test set consisted of proteins from the all set, whereas the
training set uses either the all, fam, suf, and fold sets. The
frwd and rvsd notations indicate concatenation orders of the two
wmers, whereas avg denotes the scheme which uses the aver-
age output of both the results. EST denotes the fRMSD estima-
tion results using regression. The numbers in bold show the best
performing schemes for each of the sub-tables.

Table 2: Comparing the performance of the rbf and nsoe
kernel functions.

Reliability Prediction EST
EASY HARD

Scheme ROC5 ROC ROC5 ROC CC
Pconc-all (rbf) 0.728 0.910 0.572 0.865 0.537
Pconc-all (nsoe) 0.750 0.918 0.598 0.875 0.566
Ppair-all (rbf) 0.708 0.900 0.550 0.854 0.528
Ppair-all (nsoe) 0.723 0.905 0.559 0.856 0.534

The test and training set consisted of proteins from the all set.
EST denotes the fRMSD estimation results using regression.
The numbers in bold show the best performing schemes for
each of the sub-tables.

the predictions of these two representations, we are able to
achieve the best results (or close to). In many cases, the aver-
aging scheme achieves up to 1% improvement over either the
forward or reverse representations for both the classification
as well as regression problem. For this reason, throughout
the rest of this study we only report the results obtained us-
ing the averaging scheme for the concatenation-based coding
schemes.

6.2 RBF versus NSOE Kernel Functions

Table 2 compares the classification and regression perfor-
mance achieved by the standard rbf kernel against that
achieved by the normalized second-order exponential kernel
(nsoe) described in Section 4.3. These results are reported
only for the concatenation and pairwise coding schemes that
use profile information. The rbf results were obtained after
normalizing the feature-vectors to unit length, as it produced
substantially better results over the unnormalized representa-
tion.

These results show that the performance achieved by the
nsoe kernel is consistently 3% to 5% better than that achieved
by the rbf kernel for both the classification and regression
problems. The key difference between the two kernels is that
in the nsoe kernel the even-ordered terms are weighted higher
in the expansion of the infinite exponential series than the
rbf kernel. As discussed in Section 4.3, this allows the nsoe
kernel function to better capture the pairwise dependencies
that exists at different positions of each wmer.

6.3 Input Information and Coding Schemes

Table 3 compares how the features derived from the profiles
and the predicted secondary structure impact the performance
achieved for the reliability prediction problem. The table
presents results for the SVM-based schemes using the con-
catenation and pairwise coding schemes as well as results
obtained by the dot-product-based profile-to-profile scoring
scheme (see the discussion in Section 5.5 for a discussion on
how these scoring schemes were used to solve the reliability
prediction problem).

Analyzing these results across the different SCOP-derived
test sets, we can see that protein profiles lead to better
performance for the family-derived set, whereas secondary
structure information does better for the superfamily- and
fold-derived sets. The performance improvements achieved
by the secondary-structure-based schemes are usually much
greater than the improvements achieved by the profile-based
scheme. Moreover, the relative performance gap between
secondary-structure- and profile-based schemes increases as
we move from the superfamily- to the fold-derived set. This
holds for both the easy and hard datasets and for both the
kernel-based methods and the profile-to-profile-based scor-
ing scheme. These results show that profiles are more impor-
tant for protein-pairs that are similar (as it is the case in the
family-derived set), whereas secondary-structure information
becomes increasingly more important as the sequence simi-
larity between the protein-pairs decreases (as it is the case in
the superfamily- and fold-derived sets).

Analyzing the performance achieved by the different cod-
ing schemes, we can see that concatenation performs uni-
formly better than pairwise. As measured by ROC5, the con-
catenation scheme achieves 4% to 15% better performance
than the corresponding pairwise-based schemes. However,
both schemes perform considerably better than the profile-to-
profile-based scheme. These performance advantages range
from 11% to 30% (as measured by ROC5).

6.4 Fusion Kernels

6.4.1 Reliability Prediction Problem Table 4 shows
the performance achieved by the fusion kernels on solving
the reliability prediction problem for both the easy and hard
datasets. For comparison purposes, this table also shows the
best results that were obtained by using the profile-to-profile-
based schemes to solve the reliability prediction problem.
Specifically, we present dot-product-based results that score
each wmer as the sum of its profile and secondary-structure
information ((P +S)dotp) and results that score each wmer
as the sum of its PICASSO score and a secondary-structure-
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Table 3: Classification performance of the individual kernels for both the easy and hard datasets.
EASY HARD

fam suf fold fam suf fold
Scheme ROC5 ROC ROC5 ROC ROC5 ROC ROC5 ROC ROC5 ROC ROC5 ROC

Pdotp (6) 0.673 0.826 0.496 0.803 0.341 0.717 0.470 0.753 0.315 0.698 0.236 0.646
Sdotp (3) 0.642 0.786 0.680 0.884 0.706 0.901 0.466 0.771 0.503 0.856 0.567 0.885
Pconc-all 0.817 0.919 0.716 0.917 0.712 0.918 0.621 0.867 0.574 0.880 0.590 0.882
Sconc-all 0.790 0.908 0.794 0.939 0.823 0.951 0.615 0.865 0.631 0.913 0.695 0.923
Ppair-all 0.784 0.902 0.699 0.909 0.679 0.905 0.588 0.849 0.509 0.853 0.572 0.868
Spair-all 0.676 0.837 0.690 0.909 0.727 0.922 0.486 0.803 0.548 0.880 0.636 0.895

The test set consisted of proteins from the fam, suf, and fold sets, whereas the training set used the all set.
The numbers in parentheses for the profile-to-profile scoring schemes indicate the value of w for the wmers
that were used. The numbers in bold show the best performing schemes for each of the sub-tables.

Table 4: Classification performance of the fusion kernels for the easy and hard datasets.
EASY HARD

all fam suf fold all fam suf fold
Scheme ROC5 ROC ROC5 ROC ROC5 ROC ROC5 ROC ROC5 ROC ROC5 ROC ROC5 ROC ROC5 ROC
(P +S)dotp(6) 0.523 0.794 0.679 0.831 0.511 0.814 0.359 0.733 0.365 0.716 0.474 0.758 0.328 0.710 0.249 0.663
PFpic + Sdotp(2) 0.719 0.891 0.733 0.865 0.720 0.911 0.701 0.901 0.526 0.850 0.535 0.820 0.498 0.864 0.543 0.878
(P+S)conc -fam 0.817 0.941 0.829 0.929 0.811 0.948 0.808 0.949 0.673 0.906 0.652 0.879 0.662 0.921 0.714 0.927
(P+S)conc -suf 0.827 0.940 0.820 0.918 0.821 0.948 0.841 0.957 0.659 0.902 0.610 0.866 0.676 0.925 0.711 0.929
(P+S)conc -fold 0.796 0.922 0.751 0.874 0.778 0.931 0.863 0.967 0.637 0.882 0.557 0.822 0.635 0.903 0.753 0.944
(P+S)conc -all 0.853 0.952 0.846 0.936 0.841 0.956 0.873 0.967 0.693 0.913 0.665 0.886 0.679 0.926 0.747 0.939
(P+S)pair -fam 0.783 0.925 0.797 0.909 0.786 0.939 0.762 0.930 0.640 0.888 0.621 0.863 0.627 0.899 0.681 0.911
(P+S)pair -suf 0.810 0.932 0.805 0.907 0.818 0.945 0.808 0.947 0.652 0.890 0.619 0.859 0.653 0.904 0.698 0.919
(P+S)pair -fold 0.805 0.923 0.765 0.879 0.799 0.937 0.855 0.959 0.644 0.882 0.576 0.837 0.636 0.894 0.751 0.936
(P+S)pair -all 0.832 0.942 0.823 0.920 0.825 0.949 0.850 0.958 0.668 0.897 0.634 0.867 0.650 0.907 0.734 0.930

The test and training set consisted of proteins from the all, fam, suf, and fold sets. The numbers in parentheses for the profile-to-profile
scoring schemes indicate the value of w for the wmers that were used. The numbers in bold show the best performing schemes for the
kernel-based and profile-to-profile scoring based schemes. The underlined results show the cases where the pairwise coding scheme
performs better than the concatenation coding scheme.

based dot-product score (PFpic + Sdotp).
From these results we can see that the SVM-based

schemes, regardless of their coding schemes, consistently
outperform the profile-to-profile scoring schemes. In particu-
lar, comparing the best results obtained by the concatenation
scheme against those obtained by the PFpic + Sdotp scheme
(i.e., entries in bold), we see that the former achieves 18% to
24% higher ROC5 scores for the easy dataset. Moreover, the
performance advantage becomes greater for the hard dataset
and ranges between 31% to 36%.

Comparing the performance achieved by the fusion ker-
nels with that achieved by the nsoe kernels (Table 3) we can
see that by combing both profile and secondary structure in-
formation we can achieve an ROC5 improvement between
3.5% and 10.8%. These performance improvements are con-
sistent across the different test sets (fam, suf, and fold) and
datasets (hard and easy).

Comparing the performance achieved by the models
trained on different protein subsets, we can see that the best
performance is generally achieved by models trained on pro-
tein pairs from all three levels of the SCOP hierarchy (i.e.,
trained using the all set). However, these results also show an
interesting trend that involves the set of fold-derived protein-
pairs. For this set, the best (or close to) classification perfor-
mance is achieved by models trained on fold-derived protein-
pairs. This holds for both the concatenation and pairwise cod-

ing schemes and the easy and hard datasets. These results
indicate that training a model using residue-pairs with high-
to-moderate sequence similarity (i.e., as it is the case with
the fam- and suf-derived sets) does not perform very well for
predicting reliable residue-pairs that have low or no sequence
similarity (as it is the case with the fold-derived set).

Finally, as it was the case with the nsoe kernels, the con-
catenation coding schemes tend to outperform the pairwise
schemes for the fusion kernels as well. However, the advan-
tage of the concatenation coding scheme is not uniform and
there are certain training and test set combinations for which
the pairwise scheme does better. These cases correspond to
the underlined entries in Table 4.

6.4.2 fRMSD Estimation Problem Table 5 shows the
performance achieved by ε-SVR for solving the fRMSD esti-
mation problem as measured by the correlation coefficient be-
tween the observed and predicted fRMSD values. We report
results for the fusion kernels and the PFpic +Sdotp profile-to-
profile scoring scheme. Note that as discussed in Section 5.5,
the scores computed by PFpic + Sdotp should be negatively
correlated with the fRMSD; thus, negative correlations repre-
sent good estimations.

From these results we can see that as it was the case with
the reliability prediction problem, the ε-SVR-based methods
consistently outperform the profile-to-profile scoring scheme
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Table 5: Regression Performance of the fusion kernels on
the hard dataset.

Scheme all fam suf fold
PFpic + Sdotp (3) -0.590 -0.550 -0.611 -0.625
(P+S)conc -fam 0.700 0.662 0.720 0.736
(P+S)conc -suf 0.694 0.612 0.739 0.764
(P+S)conc -fold 0.667 0.557 0.719 0.770
(P+S)conc -all 0.725 0.681 0.744 0.768
(P+S)pair -fam 0.676 0.639 0.695 0.708
(P+S)pair -suf 0.672 0.610 0.705 0.727
(P+S)pair -fold 0.676 0.639 0.695 0.708
(P+S)pair -all 0.694 0.645 0.712 0.746

The test and training set consisted of proteins from the all, fam,
suf, and fold sets. The number in parentheses for the profile-to-
profile scoring scheme indicates the value of w for the wmer
that was used. Good correlation coefficient values will be nega-
tive for the profile-to-profile scoring scheme and positive for the
kernel-based schemes. The numbers in bold show the best per-
forming schemes. The underlined results show the cases where
the pairwise coding scheme performs better than the concate-
nation coding scheme.
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Figure 1: Scatter plot for test protein-pairs at all levels be-
tween estimated and actual fRMSD scores. The color coding
represents the approximate density of points plotted in a fixed
normalized area.

across the different combinations of training and testing
sets. The (P+S)conc models achieve an improvement over
PFpic + Sdotp that ranges from 21% to 23.2%. The per-
formance difference between the two schemes can also be
seen in Figures 1 and 2 that plots the actual fRMSD scores
against the estimated fRMSD scores of (P+S)conc-all and
the PFpic + Sdotp similarity scores, respectively. Compar-
ing the two figures we can see that the fRMSD estimations
produced by the ε-SVR-based scheme are significantly better
correlated with those produced by PFpic + Sdotp.

Finally, in agreement with the earlier results, the con-
catenation coding scheme performs better than the pairwise
scheme. The only exceptions are the models trained on the
fold-derived set, for which the pairwise scheme does better
when tested on the all- and fam-derived sets (underlined en-
tries in Table 5).
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Figure 2: Scatter plot for test protein-pairs at all levels be-
tween profile-to-profile scores and actual fRMSD scores. The
color coding represents the approximate density of points
plotted in a fixed normalized area.

7 Related Research
The problem of determining the reliability of residue-
pairs has been visited before in several different settings.
ProfNet [21, 20] uses artificial neural networks to learn a
scoring function to align a pair of protein sequences. In
essence, ProfNet aims to differentiate related and unrelated
residue-pairs and also estimate the RMSD score between
these residue-pairs using profile information. Protein pairs
are aligned using STRUCTAL [6], residue-pairs within 3Å
apart are considered to be related, and unrelated residue-pairs
are selected randomly from protein pairs known to be in dif-
ferent folds. A major difference between our methods and
ProfNet is in the definition of reliable/unreliable residue-pairs
and on how the RMSD score between residue-pairs is mea-
sured. As discussed in Section 2, we measure the structural
similarity of two residues (fRMSD) by looking at how well
their vfrags structurally align with each other. However,
ProfNet only considers the proximity of two residues within
the context of their global structural alignment. As such, two
residues can have a very low RMSD and still correspond to
fragments whose structure is substantially different. This fun-
damental difference makes direct comparisons between the
results impossible. The other major differences lie in the de-
velopment of order independent coding schemes and the use
of information from a set of neighboring residues by using a
wmer size greater than zero.

The task of aligning a pair of sequences has also been
casted as a problem of learning parameters (gap opening,
gap extension, and position independent substitution matrix)
within the framework of discriminatory learning [11, 40] and
setting up optimization parameters for an inverse learning
problem [35]. Recently, pair conditional random fields were
also used to learn a probabilistic model for estimating the
alignment parameters (i.e., gap and substitution costs) [4].
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8 Conclusion and Future Work
In this paper we defined the fRMSD estimation and the re-
liability prediction problems to capture the local structural
similarity using only sequence-derived information. We de-
veloped a machine-learning approach for solving these prob-
lems by using a second-order exponential kernel function to
encode profile and predicted secondary structure information
into a kernel fusion framework. Our results showed that the
fRMSD values of aligned residue-pairs can be predicted at a
good level of accuracy. We believe that this lays the founda-
tion for using estimated fRMSD values to evaluate the quality
of target-template alignments and refine them.
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