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Abstract

As the sequence identity between a pair of proteins decreases,

alignment strategies that are based on sequence and/or sequence

profiles become progressively less effective in identifying the correct

structural correspondence between residue pairs. This significantly

reduces the ability of comparative modeling-based approaches to

build accurate structural models. Incorporating into the alignment

process predicted information about the local structure of the pro-

tein holds the promise of significantly improving the alignment qual-

ity of distant proteins. This paper studies the impact on the align-

ment quality of a new class of predicted local structural features that

measure how well fixed-length backbone fragments centered around

each residue-pair align with each other. It presents a comprehensive

experimental evaluation comparing these new features against exist-

ing state-of-the-art approaches utilizing profile-based and predicted

secondary-structure information. It shows that for protein pairs with

low sequence similarity (less than 12% sequence identity) the new

structural features alone or in conjunction with profile-based infor-

mation lead to alignments that are considerably better than those

obtained by previous schemes.

Keywords: sequence alignment, machine learning, comparative

modeling

1 Introduction

Over the years a wide range of comparative modeling-based

methods [23, 25, 28] have been developed for predicting the

structure of a protein (target) from its amino acid sequence.

The central idea behind these techniques is to align the se-

quence of the target protein to one or more template proteins

and then construct the target’s structure from the structure of

the template(s) using the alignment(s) as reference.

The overall performance of comparative modeling ap-

proaches [30, 31] depends on how well the alignment, con-

structed by considering sequence and sequence-derived in-

formation, agrees with the structure-based alignment between

the target and the template proteins. This can be quite chal-

lenging, as two proteins can have high structural similarity

even though there exists very little sequence identity between

them. This led to the development of sophisticated profile-

based methods and scoring functions [8, 1, 5, 32, 10, 19]

that allowed high-quality alignments between protein pairs

whose sequence identities are as low as 20%. However, these

profile-based methods become less effective for protein pairs

with lower similarities. As a result, researchers are increas-

ingly relying on alignment scoring methods that also incor-

porate various predicted structural information such as sec-

ondary structure, backbone angles, and protein blocks [12,

20, 7, 13].

Recently we developed machine-learning methods [21]

that can accurately estimate the root mean squared deviation

(RMSD) value of a pair of equal-length protein fragments

(i.e., contiguous backbone segments) by considering only se-

quence and sequence-derived information. Our interest in

solving this problem is motivated by the operational char-

acteristics of various dynamic-programming-based [18, 29]

protein structure alignment methods like CE [27] and MUS-

TANG [14] that score the aligned residues by computing the

RMSD value of the optimal superimposition of the two fixed-

length fragments centered around each residue. Thus, by be-

ing able to accurately predict the RMSD values of all these

fragment-pairs from the protein sequence alone, we can en-

able the target-template alignment algorithms to use the same

information as that used by the structure alignment methods.

In this paper we focus on studying the extent to which the

predicted fragment-level RMSD (fRMSD) values can actually

lead to alignment improvements. Specifically, we study and

evaluate various alignment scoring schemes that use infor-

mation derived from sequence profiles, predicted secondary

structure, predicted fRMSD values, and their combinations.

Results on two different datasets show that scoring schemes

using the predicted fRMSD values alone and/or in combina-

tion with scores derived from sequence profiles lead to bet-

ter alignments than those obtained by current state-of-the-

art schemes that utilize sequence profiles and predicted sec-

ondary structure information, especially for sequence pairs

having less than 12% sequence identity. In addition, we

present two methods based on seeded alignments and itera-

tive sampling that significantly reduce the number of fRMSD
values that need to be predicted, without a significant loss in

the overall alignment accuracy. This significantly reduces the

computational requirements of the proposed alignment strate-

gies.

The rest of the paper is organized as follows. Section 2

provides key definitions and notations used throughout the

paper. Section 3 describes the datasets and the various com-

putational tools used in this paper. Section 4 describes the

scoring schemes used in our study and the various optimiza-

tions that we developed. Section 5 presents a comprehensive

experimental evaluation of the methods developed. Finally,

Section 6 summarizes the work and provides some conclud-

ing remarks.

2 Definitions and Notations

Throughout the paper we will use X and Y to denote proteins,

xi to denote the ith residue of X , and π(xi, yj) to denote the

residue-pair formed by residues xi and yj .
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Given a protein X of length n and a user-specified param-

eter v, we define vfrag(xi) to be the (2v + 1)-length con-

tiguous substructure of X centered at position i (v < i ≤
n − v). These substructures are commonly referred to as

fragments [27, 14]. Given a residue-pair π(xi, yj), we define

fRMSD(xi, yj) to be the structural similarity score between

vfrag(xi) and vfrag(yj). This score is computed as the

root mean square deviation between the pair of substructures

after optimal superimposition. Finally, we define the fRMSD
estimation problem as that of estimating the fRMSD(xi, yj)
score for a given residue-pair π(xi, yj) by considering only

information derived from the amino acid sequence of X and

Y .

3 Materials

3.1 Datasets

We evaluate the accuracy of the alignment schemes on two

datasets. The first dataset, referred to as the ce ref dataset,

was used in a previous study to assess the performance of

different profile-profile scoring functions for aligning protein

sequences [5]. The ce ref dataset consists of 581 alignment

pairs having high structural similarity but low sequence iden-

tity (≤ 30%). The gold standard reference alignment was

curated from a consensus of two structure alignment pro-

grams: FSSP [11] and CE [27]. The second dataset, referred

to as the mus ref dataset, was derived from the SCOP 1.57

database [17]. This dataset consists of 190 protein pairs with

an average sequence identity of 9.6%. Mustang [14] was used

to generate the gold standard reference alignments.

To better analyze the performance of the different align-

ment methods, we segmented each dataset based on the pair-

wise sequence identities of the proteins that they contain. We

segmented the ce ref dataset into four groups, of sequence

identities in the range of 6-12%, 12-18%, 18-24%, and 24-

30% that contained 15, 140, 203, and 223 pairs of sequences,

respectively. We segmented the mus ref dataset into three

groups, of sequence identities in the range of 0-6%, 6-12%,

and 12-30% that contained 76, 67, and 47 pairs of sequences,

respectively. Note that the three groups of the mus ref are

highly correlated with the bottom three levels of the SCOP

hierarchy, with most pairs in the first group belonging to the

same fold but different superfamily, most pairs in the second

group belonging to the same superfamily but different fam-

ily, and most pairs in the third group belonging to the same

family.

3.2 Evaluation Methodology

We evaluate the quality of the various alignment schemes by

comparing the differences between the generated candidate

alignment and the reference alignment generated from struc-

tural alignment programs [5, 24, 6]. As a measure of align-

ment quality, we use the Cline Shift score (CS) [2] to com-

pare the reference alignments with the candidate alignments.

The CS score is designed to penalize both under- and over-

alignment and crediting the parts of the generated alignment

that may be shifted by a few positions relative to the refer-

ence alignment [5, 2, 22]. The CS score ranges from a small

negative value to 1.0, and is symmetric in nature. We also as-

sessed the performance on the standard Modeler’s (precision)

and Developer’s (recall) score [24], but found similar trends

to the CS score and hence do not report the results here.

3.3 Profile Generation

The profile [1] of a sequence X of length n is represented

by two n × 20 matrices, namely the position-specific scor-

ing matrix PX and the position-specific frequency matrix

FX . These profiles capture evolutionary information for a

sequence. The FX(i) and PX(i) are the ith column of X’s

position-specific scoring and frequency matrices. For our

study, the profile matrices P and F were generated using PSI-

BLAST [1] with the following parameters: blastpgp -j

5 -e 0.01 -h 0.01. The PSI-BLAST was performed

against NCBI’s nr database that was downloaded in Novem-

ber of 2004 and contained 2,171,938 sequences.

3.4 Secondary Structure Prediction

For a sequence X of length n we predict the secondary struc-

ture and generate a position-specific secondary structure ma-

trix SX of length n × 3. The (i, j) entry of this matrix rep-

resents the strength of the amino acid residue at position i to

be in state j, where j ∈ (0, 1, 2) corresponds to the three sec-

ondary structure elements: alpha helices (H), beta strands (E),

and coil regions (C). We use the state-of-the-art secondary

structure prediction server YASSPP [13] (default parameters)

to generate the S matrix. The values of the S matrix are the

output of the three one-versus-rest SVM classifiers trained for

each of the secondary structure elements.

3.5 fRMSD Estimation

To estimate the fRMSD scores for a residue-pair π(xi, yj) we

used the recently developed fRMSDPredprogram [21]. The

fRMSDPredprogram uses an ǫ-SVR learning methodology to

estimates the fRMSD score of a reside-pair π(xi, yj) by tak-

ing into account the profile and the predicted secondary struc-

ture of a fixed-length window around the xi and yj residues.

The ǫ-SVR estimation technique deploys a novel second-

order pairwise exponential kernel function which shows su-

perior results in comparison to the radial basis kernel func-

tion.

The ǫ-SVR implementation used the publicly available

support vector machine tool SVMlight [26] which has an

efficient ǫ-SVR implementation. We used the defaults for

regularization and regression tube width parameters. The

fRMSDPredprogram was trained on a dataset consisting of

1117 protein pairs derived from the SCOP 1.57 database.

This training dataset was used in previous studies [21, 19],

and no two protein domains in the dataset shared greater

than 75% sequence identity. For each protein pair in the

train dataset we use the standard Smith-Waterman [29] al-

gorithm to generate the residue-pairs for which we compute

the fRMSD score by considering fragment lengths of seven.

2



3.6 Gap Modeling and Shift Parameters

For all the different scoring schemes, we use a local align-

ment framework with an affine gap model, and a zero-shift

parameter [32] to maintain the necessary requirements for a

good optimal alignment [9]. We optimize the gap modeling

parameters (gap opening (go), gap extension (ge)), the zero

shift value (zs), and weights on the individual scoring matri-

ces for integrating them to obtain the highest quality align-

ments for each of the schemes. Having optimized the align-

ment parameters on the ce ref dataset, we keep the alignment

parameters unchanged for evaluation on the mus ref dataset.

4 Methods

4.1 Scoring Schemes

We use the standard Smith-Waterman based local align-

ment [29] algorithm in our methods. The different alignment

schemes vary in the computation of the position-to-position

similarity scores between residue-pairs.

4.1.1 Profile-Profile Scoring Scheme Many differ-

ent profile-profile scoring functions [16, 32, 15] have been

developed for determining the similarity between a pair of

profile columns (i.e., residue-pairs). We use one of the

best performing profile-profile scoring functions called PI-

CASSO [10, 16], which computes the similarity between the

ith position of protein’s X profile and the jth position of the

protein’s Y profile as 〈FX(i),PY (j)〉+〈FY (j),PX(i)〉. The

operator 〈, 〉 denotes a dot-product operation. We will refer to

this scoring scheme as prof.

4.1.2 Predicted Secondary Structure-based Scor-

ing Scheme For a given residue-pair π(xi, yj) we com-

pute the similarity score based on the predicted secondary

structure information as a dot-product of the ith row of SX

and the jth row of SY , i.e., 〈SX(i),SY (j)〉. This approach

of incorporating secondary structure information along with

profiles, has been shown to significantly improve the align-

ment quality [20]. We will refer to this scoring scheme as

ss.

4.1.3 fRMSD-based Scoring Scheme For a given

residue-pair π(xi, yj), we use the fRMSDPredprogram [21]

to estimate its fRMSD(xi, yj) score. Since this score is ac-

tually a distance, we convert it into a similarity score us-

ing the transformation: log(α/fRMSD(xi, yj)). This trans-

formation assigns positive values to residue-pairs π(xi, yj)
having an estimated fRMSD score that is less than α. For

the purposes of this study the α parameter was set to one,

because we observed that the residue-pairs π(xi, yj) with

fRMSD(xi, yj) score of less than one are more likely to be

structurally aligned. We will refer to this scoring scheme as

frmsd.

4.2 Combination Schemes

Besides the above scoring schemes, we also investigated

their combinations. We used a weighted combination of the

profile-based, predicted secondary, and fRMSD-based scor-

ing schemes to compute a similarity score for a residue pair

π(xi, yj). In this approach the similarity score for a residue-

pair π(xi, yj), using the prof and frmsd scoring schemes is

given by

w ∗ prof(i, j)

maxP
+

(1 − w) ∗ frmsd(i, j)

maxF
, (1)

where prof(i, j) and frmsd(i, j) represent the PICASSO and

fRMSD scores for π(xi, yj), respectively. The value maxP
(maxF ) is the maximum absolute value of all prof-based

(frmsd-based) residue-pair scores between the sequences and

is used to normalize the different scores prior to addition.

The parameter w defines the weighting for different parts of

the scoring function after normalization. The optimal weight

parameter w, was determined by varying w from 0.0 to 1.0

with increments of 0.1. This parameter was optimized for

the ce ref dataset, and the same value was then used for the

mus ref dataset.

A similar approach is used to combine prof with ss and

frmsd with ss. In case of the frmsd +prof +ss there are two

weight parameters that need to be optimized.

We will denote the various combination schemes by just

adding their individual components, e.g., frmsd +prof will re-

fer to the scheme that uses the scores obtained by frmsd and

prof.

4.3 Speedup Optimization

For a residue-pair, we can compute the PICASSO- and sec-

ondary structure-based scores using two and one dot-product

operations, respectively. In comparison, the fRMSD score

needs |SV | dot-product operations, where |SV | is the num-

ber of support vectors determined by the ǫ-SVR optimization

method. Hence, the frmsd alignment scheme has a complex-

ity of at least O(|SV |), which is significantly higher than that

of the prof and ss alignment schemes. To reduce these compu-

tational requirements we developed two heuristic alignment

methods that require the estimation of only a fraction of the

total number of residue pairs.

4.3.1 Seeded Alignment The first method combines

the banded alignment approach and the seed alignment tech-

nique [9] and is performed in three steps. In the first step, we

generate an initial alignment, referred to as the seed align-

ment, using the Smith-Waterman algorithm and the prof +ss

scoring scheme. In the second step, we estimate the fRMSD
scores for all residue-pairs within a fixed number of residues

from the seed alignment, i.e., a band around the seed align-

ment. Finally, in the third step, we compute the optimal local

alignment in the restricted band around the initial seed align-

ment. The computed frmsd alignment lies within a fixed band

around the prof +ss alignment and will be effective if the orig-

inal frmsd alignment and the prof +ss alignments are not very

far away from each other. The complexity of this method can

be controled by selecting bands of different sizes. We refer

to this method as the seeded alignment technique. Note that

this method is essentially a refinement technique on the initial
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Figure 1: Relative CS Scores on the ce_ref dataset. For each segment we display the range of percent sequence identity, the

number of pairs in the segment, and the average CS score of the baseline prof scheme.

seed alignment.

4.3.2 Iterative Sampling Alignment The second

method employs an iterative sampling procedure to optimize

the speed of the frmsd alignment. The basic idea is fairly

similar to the seeded alignment. At iteration i, we estimate

1 out of Ri fRMSD scores in the dynamic-programming ma-

trix for those residue-pairs that lie within the banded region

of size Ki around the seed alignment generated in step i − 1.

Ki and Ri denote the band size and the sampling rate at it-

eration i, respectively. Using the estimated fRMSD scores,

an alignment is produced at step i which serves as the seed

alignment for step i + 1. The band size is reduced by half,

whereas the sampling rate is doubled at each step (i.e., Ri

will be halved), effectively increasing the number of points

in the dynamic-programming matrix to be estimated within a

confined band. The first iteration can be assumed to have the

initial seed as the main diagonal with a band size covering the

entire dynamic-programming matrix.

5 Results

We performed a comprehensive study to evaluate the accu-

racy of the alignments obtained by the scoring scheme de-

rived from the estimated frmsd values against those obtained

by the prof and ss scoring schemes and their combinations.

These results are summarized in Figures 1 and 2, which show

the accuracy performance of the different scoring schemes

on the ce ref and mus ref datasets, respectively. The align-

ment accuracy is assessed using the average CS scores across

the entire dataset and at the different pairwise sequence iden-

tity segments. To better illustrate the differences between the

schemes, the results are presented relative to the CS score ob-

tained by the prof alignment and are shown on a log
2

scale.

Analyzing the performance of the different scoring

schemes we see that most of those that utilize predicted in-

formation about the protein structure (ss, frmsd, and combi-

nations involving them and prof) lead to substantial improve-

ments over the prof scoring scheme for the low sequence

identity segments. However, the relative advantage of these

schemes somewhat diminishes for the segments that have

higher pairwise sequence identities. In fact, in the case of

the 12%–30% segment for mus ref, most of these schemes

perform worse than prof. This result is not surprising, and

confirms our earlier discussion in Section 1.

Comparing the ss and frmsd scoring schemes, we see that

the latter achieves consistently and substantially better per-

formance across the two datasets and sequence identity seg-

ments. For instance, for the first segment of ce ref (sequence

identities in the range of 6%–12%), frmsd’s CS score is 20%

higher than that achieved by the ss scoring scheme. In the first

segment of mus ref dataset (sequence identity in the range of

0%–6%), frmsd’s CS score is 33% higher than achieved by

the ss scoring scheme, and is 19% higher for the second seg-

ment (sequence identity in the range of 6%–12%).

Comparing most of the schemes based on frmsd and its

combinations with the other scoring schemes we see that for

the segments with low sequence identities they achieve the
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Figure 2: Relative CS Scores on the mus_ref dataset. For each segment we display the range of percent sequence identity, the

number of pairs in the segment, and the average CS score of the baseline prof scheme.

best results. Among them, the frmsd +prof scheme achieves

the best results for ce ref, whereas the frmsd +prof +ss per-

forms the best for mus ref. For the first segments of ce ref

and mus ref, both of these schemes perform 6.1% and 27.8%

better than prof +ss, respectively, which is the best non-frmsd-

based scheme. Moreover, for many of these segments, the

performance achieved by frmsd alone is comparable to that

achieved by the prof +ss scheme. Also, comparing the re-

sults obtained by frmsd and frmsd +ss we see that by adding

information about the predicted secondary structure the per-

formance does improve. In the case of the segments with

somewhat higher sequence identities, the relative advantage

of frmsd +prof diminishes and becomes comparable to prof

+ss.

Finally, comparing the overall performance of the various

schemes on the ce ref and mus ref datasets, we see that frmsd

+prof is the overall winner as it performs the best for ce ref

and similar to the best for mus ref.

5.1 Comparison to Other Alignment Schemes

Since the ce ref dataset has been previously used to evaluate

the performance of various scoring schemes we can directly

compare the results obtained here with those presented in [5].

In particular, according to that study, the best PSI-BLAST-

profile based scheme achieved a CS score of 0.805, which

is considerably lower than the CS scores of 0.854 and 0.845

obtained by the frmsd +prof and prof +ss, respectively.

Also, to ensure that the CS scores achieved by our

schemes on the mus ref dataset are reasonable, we com-

pared them against the CS scores obtained by the state-of-

the-art CONTRALIGN [3] and ProbCons [4] schemes. These

schemes were run locally using the default parameters. CON-

TRALIGN and ProbCons achieved average CS scores of

0.197 and 0.174 across the 190 alignments, respectively. In

comparison the frmsd scheme achieved an average CS score

of 0.299, whereas frmsd +prof achieved an average CS score

of 0.337.

5.2 Optimization Performance

We also performed a sequence of experiments to evaluate the

extent to which the two runtime optimization methods dis-

cussed in Section 4.3 can reduce the number of positions

whose fRMSD needs to be estimated while still leading to

high-quality alignments. These results are shown in Fig. 3,

which shows the CS scores obtained by the frmsd scoring

scheme on the ce ref dataset as a function of the percentage

of the residue-pairs whose fRMSD scores were actually esti-

mated. Also, the figure shows the average CS score achieved

by the original (not sampled) frmsd scheme.

These results show that both the seeded and iterative sam-

pling procedures generate alignments close to the alignment

generated from the original complete scheme. The average

CS scores of the seeded and iterative sampling alignment by

computing just 6% of the original frmsd matrix is 0.822 and

0.715, respectively. The average CS score of the original

frmsd scheme is 0.828. Hence, we get competitive scores by
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Figure 3: Speedup using the Seeding and Sampling Alignment Procedure on the ce_ref dataset.

our sampling procedures for almost a 20 fold speedup. The

seeded based technique shows better performance compared

to the iterative sampling technique.

6 Conclusion

In this paper we evaluated the effectiveness of using estimated

fRMSD scores to aid in the alignment of protein sequences.

Our results showed that the structural information encoded in

these estimated scores are substantially better than the corre-

sponding information in predicted secondary structures and

when coupled with existing state-of-the-art profile scoring

schemes, they lead to considerable improvements in aligning

protein pairs with very low sequence identities.

This approach of estimating the fragment-level RMSD is

of similar spirit to learning a profile-profile scoring function

to differentiate related and unrelated residue pairs using arti-

ficial neural networks [19]. The results reported [19] found

that the use of resulting profile-profile scoring functions did

not assist in fold recognition.
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