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Abstract

Over the years, frequent itemset discovery algorithms have been used to solve various interesting

problems. As data mining techniques are being increasingly applied to non-traditional domains, existing

approaches for �nding frequent itemsets cannot be used as they cannot model the requirement of these

domains. An alternate way of modeling the objects in these data sets, is to use a graph to model

the database objects. Within that model, the problem of �nding frequent patterns becomes that of

discovering subgraphs that occur frequently over the entire set of graphs. In this paper we present

a computationally eÆcient algorithm for �nding all frequent subgraphs in large graph databases. We

evaluated the performance of the algorithm by experiments with synthetic datasets as well as a chemical

compound dataset. The empirical results show that our algorithm scales linearly with the number of input

transactions and it is able to discover frequent subgraphs from a set of graph transactions reasonably fast,

even though we have to deal with computationally hard problems such as canonical labeling of graphs

and subgraph isomorphism which are not necessary for traditional frequent itemset discovery.

1 Introduction

EÆcient algorithms for �nding frequent itemsets|both sequential and non-sequential|in very large trans-
action databases have been one of the key success stories of data mining research [2, 1, 26, 12, 3, 24]. We
can use these itemsets for discovering association rules, for extracting prevalent patterns that exist in the
datasets, or for classi�cation. Nevertheless, as data mining techniques have been increasingly applied to
non-traditional domains, such as scienti�c, spatial and relational datasets, situations tend to occur on which
we can not apply existing itemset discovery algorithms, because these problems are diÆcult to be adequately
and correctly modeled with the traditional market-basket transaction approaches.

An alternate way of modeling the various objects is to use undirected labeled graphs to model each
one of object entities|items in traditional frequent itemset discovery|and the relation between them. In
particular, each vertex of a graph will correspond to an entity and each edge will correspond to a relation
between two entities. In this model both vertices and edges may have labels associated with them which are
not required to be unique. Using such a graph representation, a problem of �nding frequent patterns then
becomes that of discovering subgraphs which occur frequently enough over the entire set of graphs.

�This work was supported by NSF CCR-9972519, EIA-9986042, ACI-9982274, by Army Research OÆce contract
DA/DAAG55-98-1-0441, by the DOE ASCI program, and by Army High Performance Computing Research Center contract
number DAAH04-95-C-0008. Access to computing facilities was provided by the Minnesota Supercomputing Institute.



Modeling objects using graphs allows us to represent arbitrary relations among entities. For example,
we can convert a basket of items into a graph, or more speci�cally a clique, whose vertices correspond to
the basket's items, and all the items are connected to each other via an edge. Vertex labels correspond
to unique identi�ers of items, an edge between two vertices u and v represents the coexistence of u and v,
and each edge has a label made of the two vertex labels at its both ends. Subgraphs that occur frequently
over a large number of baskets will form patterns which include frequent itemsets in the traditional sense
when the subgraphs become cliques. The key advantage of graph modeling is that it allows us to solve
problems that we could not solve previously. For instance, consider a problem of mining chemical compounds
to �nd recurrent substructures. We can achieve that using a graph-based pattern discovery algorithm by
creating a graph for each one of the compounds whose vertices correspond to di�erent atoms, and whose
edges correspond to bonds between them. We can assign to each vertex a label corresponding to the atom
involved (and potentially its charge), and assign to each edge a label corresponding to the type of the bond
(and potentially information about their relative 3D orientation). Once these graphs have been created,
recurrent substructures across di�erent compounds become frequently occurring subgraphs.

1.1 Related Work

Developing algorithms that discover all frequently occurring subgraphs in a large graph database is par-
ticularly challenging and computationally intensive, as graph and subgraph isomorphisms play a key role
throughout the computations.

The power of using graphs to model complex datasets has been recognized by various researchers in
chemical domain [21, 20, 7, 5], computer vision [15, 16], image and object retrieval [6, 9], and machine
learning [13, 4, 23]. In particular, Dehaspe et al. [7] applied Inductive Logic Programming (ILP) to obtain
frequent patterns in the toxicology evaluation problem [21]. ILP has been actively used for predicting
carcinogenesis [20], which is able to �nd all frequent patterns that satisfy a given criteria. It is not designed
to scale to large graph databases, however, and they did not report any statistics regarding the amount of
computation time required. Another approach that has been developed is using a greedy scheme [23, 13] to
�nd some of the most prevalent subgraphs. These methods are not complete, as they may not obtain all
frequent subgraphs, although they are faster than the ILP-based methods. Furthermore, these methods can
also perform approximate matching when discovering frequent patterns, allowing them to recognize patterns
that have slight variations.

Recently, Inokuchi et al. [14] presented a computationally eÆcient algorithm called AGM, that can be
used to �nd all frequent induced subgraphs in a graph database that satisfy a certain minimum support
constraint. A subgraph Gs = (Vs; Es) of G = (V;E) is induced if Es contains all the edges of E that
connect vertices in Vs. AGM �nds all frequent induced subgraphs using an approach similar to that used by
Apriori [2], which extends subgraphs by adding one vertex at each step. Experiments reported in [14] show
that AGM achieves good performance for synthetic dense datasets, and it required 40 minutes to 8 days
to �nd all frequent induced subgraphs in a dataset containing 300 chemical compounds, as the minimum
support threshold varied from 20% to 10%.

1.2 Our Contribution

In this paper we present a new algorithm, named FSG, for �nding all connected subgraphs that appear
frequently in a large graph database. Our algorithm �nds frequent subgraphs using the same level-by-level
expansion adopted in Apriori [2]. The key features of FSG are the following: (1) it uses a sparse graph
representation which minimizes both storage and computation, (2) it increases the size of frequent subgraphs
by adding one edge at a time, allowing to generate the candidates eÆciently, (3) it uses simple algorithms
of canonical labeling and graph isomorphism which work eÆciently for small graphs, and (4) it incorporates
various optimizations for candidate generation and counting which allow it to scale to large graph databases.

We experimentally evaluated FSG on a large number of synthetic graphs, that were generated using
a framework similar to that used for market-basket transaction generation [2]. For problems in which a
moderately large number of di�erent types of entities and relations exist, FSG was able to achieve good
performance and to scale linearly with the database size. In fact, FSG found all the frequent connected
subgraphs in less than 500 seconds from a synthetic dataset consisting of 80000 graphs with a support
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threshold of 2%. For problems where the number of edge and vertex labels was small, the performance of
FSG was worse, as the exponential complexity of graph isomorphism dominates the overall performance. We
also evaluated the performance of FSG on the same chemical compound dataset used by AGM. Our results
show that FSG is able to �nd all the frequent connected subgraphs using a 6.5% minimum support in 600
seconds.

2 Frequent Subgraph Discovery

In our problem setting, we have a dataset of transactions D. Each transaction t 2 D is a labeled, or colored,
undirected graph1. Edges and vertices have their labels, or colors. Given a minimum support �%, we would
like to �nd all connected undirected subgraphs that frequently occur in at least �jDj transactions. Table 1
shows the notation we use.

Table 1: Notation

Notation Description
D A dataset of graph transactions
t A transaction of a graph in D

k-(sub)graph A (sub)graph with k edges
gk A k-subgraph
Ck A set of candidates with k edges
F k A set of frequent k-subgraphs

cl(gk) A canonical label of a k-graph gk

The key restriction in our problem statement is that we are �nding only subgraphs that are connected.
The motivation is primarily that the resulting frequent subgraphs will be encapsulating relations (or edges)
between some of entities (or vertices) of various objects. Within this context, connectivity is a natural
property of frequent patterns. An additional bene�t of this restriction is that it reduces the complexity of
the problem, as we do not need to consider disconnected combinations of frequent connected subgraphs.

In developing our frequent subgraph discovery algorithm, we decided to follow the structure of the algo-
rithm Apriori used for �nding frequent itemsets [2], because it achieves the most e�ective pruning compared
with other algorithms such as GenMax, dEclat [26] and Tree Projection [1].

The high level structure of our algorithm FSG is shown in Algorithm 1. Edges in the algorithm correspond
to items in traditional frequent itemset discovery. Namely, as these algorithms increase the size of frequent
itemsets by adding a single item at a time, our algorithm increases the size of frequent subgraphs by adding
an edge one by one. FSG initially enumerates all the frequent single and double edge graphs. Then, based
on those two sets, it starts the main computational loop. During each iteration it �rst generates candidate
subgraphs whose size is greater than the previous frequent ones by one edge (Line 5 of Algorithm 1). Next,
it counts the frequency for each of these candidates, and prunes subgraphs that do no satisfy the support
constraint (Lines 7{11). Discovered frequent subgraphs satisfy the downward closure property of the support
condition, which allows us to e�ectively prune the lattice of frequent subgraphs.

In Section 2.1, we briey review some background issues regarding graphs. Section 2.2 contains details of
candidate generation with pruning and Section 2.3 describes frequency counting in FSG.

2.1 Graph Representation, Canonical Labeling and Isomorphism

2.1.1 Sparse Graph Representation

Our algorithm uses sparse graph representation to store input transactions, intermediate candidates and
frequent subgraphs. This representation saves memory when input transaction graphs are sparse, and speeds
up computation.

1The algorithm presented in this paper can be easily extended to directed graphs.
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Algorithm 1 fsg(D; �) (Frequent Subgraph)

1: F 1  detect all frequent 1-subgraphs in D

2: F 2  detect all frequent 2-subgraphs in D

3: k  3
4: while F k�1 6= ; do
5: Ck  fsg-gen(F k�1)
6: for each candidate gk 2 Ck do

7: gk:count 0
8: for each transaction t 2 D do

9: if candidate gk is included in transaction t then

10: gk:count gk:count + 1
11: F k  fgk 2 Ck j gk:count � �jDjg
12: k  k + 1
13: return F 1; F 2; : : : ; F k�2

2.1.2 Canonical Labeling

Because we deal with graphs, not itemsets, there are many di�erences between our algorithm and the tradi-
tional frequent itemset discovery. A di�erence appears when we try to sort frequent objects. In the traditional
frequent itemset discovery, we can sort itemsets by lexicographic ordering. Clearly this is not applicable to
graphs. To get total order of graphs we use canonical labeling. A canonical label is a unique code of a given
graph [18, 10]. A graph can be represented in many di�erent ways, depending on the order of its edges or
vertices. Nevertheless, canonical labels should be always the same no matter how graphs are represented,
as long as those graphs have the same topological structure and the same labeling of edges and vertices.
By comparing canonical labels of graphs, we can sort them in a unique and deterministic way, regardless
of the representation of input graphs. We denote a canonical label of a graph g by cl(g). It is easy to see
that computing canonical labels is equivalent to determining isomorphism between graphs, because if two
graphs are isomorphic with each other, their canonical labels must be identical. Both canonical labeling and
determining graph isomorphism are not known to be either in P or in NP-complete [10]. A naive way of
determining a canonical label is to use a attened representation of the adjacency matrix of a graph. Namely,
by concatenating rows or columns of an adjacency matrix one after another we construct a list of integers.
By regarding this list of integers as a string, we can obtain total order of graphs by lexicographic ordering.
To compute a canonical label of a graph, we have to try all the permutations of its vertices to see which
order of vertices gives the minimum adjacency matrix. To narrow down the search space, we �rst partition
the vertices by their degrees and labels, which is a well-known technique called vertex invariants [18]. Then,
we try all the possible permutations of vertices inside each partition.

Let us take an example to see how we can reduce the search space of canonical labeling with vertex
invariants. Suppose we have a graph of size 3 as shown in Figure 1. Let a, b, c and d denote vertex
identi�ers, not labels. Two edges of g3 are labeled with e0, and the other has a label e1. Vertices a, b and
d have the same label v0, and only c is labeled with v1. Assume a canonical label of an adjacency matrix
is a string formed by concatenating columns in the upper triangle of an adjacency matrix from left to right.
Suppose the following is the initial adjacency matrix of the graph g3.

v0b

v0

v0
d

v1
c

e0e1

e0

a

Figure 1: Sample graph g3
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id a b c d

label v0 v0 v1 v0

a 0 e0 0 0
b e0 0 e0 e1
c 0 e0 0 0
d 0 e1 0 0

By looking at each vertex degree, we can partition them into two groups, one is for degree 1 and the other
for degree 2. Vertices a, c and d belong to the �rst, and b to the second.

id a c d b

label v0 v1 v0 v0
partition 0 1

a 0 0 0 e0
c 0 0 0 e0
d 0 0 0 e1
b e0 e0 e1 0

Next, by the vertex labels, we can split the �rst partition into two again, because v0 < v1 if we compare \v0"
with \v1" as strings.

id d a c b

label v0 v0 v1 v0
partition 0 1 2

d 0 0 0 e1
a 0 0 0 e0
c 0 0 0 e0
b e1 e0 e0 0

There is no further partitioning possible by this simple vertex invariant scheme based on degrees and labels.
Thus, we will exhaustively test all the possible permutations of vertices within each partition, and obtain two
di�erent permutations of the vertices as shown below. The matrix at the right gives a label of \000e0e1e0",
while the left one has a label of \000e1e0e0".

id d a c b

label v0 v0 v1 v0
partition 0 1 2

d 0 0 0 e1
a 0 0 0 e0
c 0 0 0 e0
b e0 e1 e0 0

id a d c b

label v0 v0 v1 v0
partition 0 1 2

a 0 0 0 e0
d 0 0 0 e1
c 0 0 0 e0
b e0 e1 e0 0

Because e0 < e1 and \000e0e1e0" < \000e1e0e0" by string comparison, the label of the right matrix becomes
canonical and its adjacency matrix is the canonical representation of g3, that is, cl(g3) = 000e0e1e0. By
partitioning based on vertex invariants, we only tried 2 permutations in the last step, although the total
number of permutations for 4 vertices was 4! = 24.

Suppose we have a graph with M vertices. By vertex invariants, also suppose we can create N partitions
of the vertices, and each partition size is given by pi for i = 1; 2; : : : ; N . Clearly

PN

i=1 pi = M . Then, the

reduced search space becomes
QN

i=1(pi!), although the original was M !. Of course, vertex invariants do not
asymptotically change the computational complexity of canonical labeling [10]. For example, if a given graph
is regular, we can not create �ne partitions and vertex invariants do not reduce the search space.

2.1.3 Isomorphism

In our algorithm, we need to solve both graph isomorphism and subgraph isomorphism. Graph isomorphism
is a problem to determine whether given two graphs g1 and g2 are isomorphic, namely, to �nd a mapping

5



from a set of vertices to another set. Automorphism is a special case of graph isomorphism where g1 = g2,
which means to �nd a mapping from a graph to itself. Subgraph isomorphism is to �nd an isomorphism
between g1 and a subgraph of g2. In other words, it is to determine if a graph is included in the other larger
graph. A well-known algorithm for subgraph isomorphism is proposed in [22]. As suggested in [10], graph
isomorphism can be directly solved in practice, although it is not known to be either in P or in NP-complete.
On the other hand, subgraph isomorphism has been proved to be in NP-complete [11]. Thus, there is no
scalable algorithm to solve it. When the size of graphs is small such as 10 vertices or less, however, it is also
known that subgraph isomorphism can be feasible even with a simple exhaustive search [10, 22].

A natural way to solve graph isomorphism is, starting from a single vertex in one graph, to try to �nd a
mapping to one of the vertices in the other graph, that is consistent with the labeling. Then, we keep the same
process by adding vertices one by one until either we �nd a complete mapping or we end up with exhausting
the search space. When we seek for the next mapping, we have to be careful to keep the consistency of
edge and vertex labels. We can reduce the search space more if there are more labels are assigned to edges
and vertices, which leads to restriction against mapping. This approach can solve both graph and subgraph
isomorphism.

2.2 Candidate Generation

In the candidate generation phase, we create a set of candidates of size k + 1, given frequent k-subgraphs.
Candidate subgraphs of size k + 1 are generated by joining two frequent k-subgraphs. In order for two such
frequent k-subgraphs to be eligible for joining they must contain the same (k � 1)-subgraph. We will refer
to this common (k � 1)-subgraph among two k-frequent subgraphs as their core.

Unlike the joining of itemsets in which two frequent k-size itemsets lead to a unique (k + 1)-size itemset,
the joining of two subgraphs of size k can lead to multiple subgraphs of size k+1. This is due to three reasons.
First, the resulting two (k + 1)-subgraphs produced by the joining may di�er in a vertex that has the same
label in both k-subgraphs. Figure 2(a) is such an example. This pair of graphs g4a and g4b generates two
di�erent candidates g5a and g5b . The second reason is because a core itself may have multiple automorphisms
and each automorphism can lead to a di�erent (k + 1)-candidate. An example for this case is shown in
Figure 2(b), in which the core|a square of 4 vertices labeled with v0|has more than one automorphism
which result in 3 di�erent candidates of size 6. Finally, two frequent subgraphs may have multiple cores as
depicted by Figure 2(c).

The overall algorithm for candidate generation is shown in Algorithm 2. For each pair of frequent sub-
graphs that share the same core, the fsg-join is called at Line 6 to generate all possible candidates of size
k + 1. For each of the candidates, the algorithm �rst checks if they are already in Ck+1. If they are not,
then it veri�es if all its k-subgraphs are frequent. If they are, fsg-join then inserts it into Ck+1, otherwise it
discards the candidate (Lines 7{16). The algorithm uses canonical labeling to eÆciently check if a particular
subgraph is already in Ck+1 or not.

The key computational steps in candidate generation are (1) core identi�cation, (2) joining, and (3)
using the downward closure property of a support condition to eliminate some of generated candidates. A
straightforward way of implementing these tasks is to use subgraph isomorphism, graph automorphism and
canonical labeling with binary search, respectively. The amount of computation required by the �rst step,
however, can be substantially reduced by keeping some information from the lattice of frequent subgraphs.
Particularly, if for each frequent k-subgraph we store the canonical labels of its frequent (k � 1)-subgraphs,
then the cores between two frequent subgraphs can be determined by simply computing the intersection of
these lists. Also to speed up the computation of the automorphism step during joining, we save previous
automorphisms associated with each core and look them up instead of performing the same automorphism
computation again. The saved list of automorphisms will be discarded once Ck+1 has been generated.

Note we need to perform self join, that is, two graphs gki and gkj in Algorithm 2 are identical. It is
necessary because, for example, consider transactions without any labels, that is, each transaction in the
input is an undirected and unlabeled graph. Then, we will have only one frequent 1-subgraph and one
frequent 2-subgraph regardless of a support threshold, because those are the only allowed structures, and
edges and vertices do not have labels assigned. From those F 1 and F 2 where jF 1j = jF 2j = 1, to generate
larger graphs of Ck and F k for k � 3, the only way is the self join.
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Figure 2: Three di�erent cases of candidate joining

2.3 Frequency Counting

Once candidate subgraphs have been generated, FSG computes their frequency. The simplest way of achieving
this is for each subgraph to scan each one of the transaction graphs and determine if it is contained or not
using subgraph isomorphism. Nonetheless, having to compute these isomorphisms is particularly expensive
and this approach is not feasible for large datasets. In the context of frequent itemset discovery by Apriori,
the frequency counting is performed substantially faster by building a hash-tree of candidate itemsets and
scanning each transaction to determine which of the itemsets in the hash-tree it supports. Developing such
an algorithm for frequent subgraphs, however, is challenging as there is no natural way to build the hash-tree
for graphs. For this reason, FSG instead uses Transaction ID (TID) lists, proposed by [8, 19, 27, 25, 26]. In
this approach for each frequent subgraph we keep a list of transaction identi�ers that support it. Now when
we need to compute the frequency of gk+1, we �rst compute the intersection of the TID lists of its frequent
k-subgraphs. If the size of the intersection is below the support, gk+1 is pruned, otherwise we compute the
frequency of gk+1 using subgraph isomorphism by limiting our search only to the set of transactions in the
intersection of the TID lists.
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Algorithm 2 fsg-gen(F k) (Candidate Generation)

1: Ck+1  ;;
2: for each pair of gki ; g

k
j 2 F

k; i � j such that cl(gki ) � cl(gkj ) do

3: for each edge e 2 gki do fcreate a (k � 1)-subgraph of gki by removing an edge eg
4: gk�1i  gki � e

5: if gk�1i is included in gkj then fgki and gkj share the same coreg

6: T k+1  fsg-join(gki ; g
k
j )

7: for each gk+1j 2 T k+1 do

8: ftest if the downward closure property holds for gk+1j g
9: ag true
10: for each edge fl 2 g

k+1
j do

11: hkl  gk+1j � fl

12: if hkl is connected and hkl 62 F
k then

13: ag false
14: break

15: if ag = true then
16: Ck+1  Ck+1 [ fgk+1g
17: return Ck+1

Algorithm 3 fsg-join(gk1 ; g
k
2 ; h

k�1) (Join)

1: M  detect all automorphisms of hk�1

2: fdetermine an edge e1 2 g
k
1 that does not appear in hk�1g

3: e1  NULL
4: for each edge ei 2 gk1 do
5: if ei 62 hk�1 then
6: e1  ei
7: break

8: fdetermine an edge e2 2 gk2 that does not appear in hk�1g
9: e2  NULL
10: for each edge ei 2 g

k
2 do

11: if ei 62 hk�1 then
12: e2  ei
13: break

14: G generate all possible graphs of size k + 1 from gk1 and gk2 , using M

3 Experiments

We performed a set of experiments to evaluate the performance of FSG. There are two types of datasets we
used. The �rst type was synthetically generated, and allowed us to study the performance of FSG under
di�erent conditions. The second type contains the molecular structures of chemical compounds, which is
used to evaluate the performance of FSG for large graphs.

All experiments were done on 650MHz Intel Pentium III machines with 2GB main memory, running the
Linux operating system.

3.1 Synthetic Datasets

For the performance evaluation, we generate synthetic datasets controlled by a set of parameters shown in
Table 2. The basic idea behind our data generator is similar to the one used in [2], but simpler.

First, we generate a set of jLj potentially frequent connected subgraphs whose size is determined by
Poisson distribution with mean jI j. For each frequent connected subgraph, its topology as well as its edge
and vertex labels are chosen randomly. It has a weight assigned, which becomes a probability that the
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Table 2: Synthetic dataset parameters

Notation Parameter
jDj The total number of transactions
jT j The average size of transactions

(in terms of the number of edges)
jI j The average size of potentially frequent subgraphs

(in terms of the number of edges)
jLj The number of potentially frequent subgraphs
N The number of edge and vertex labels

subgraph is selected to be included in a transaction. The weights obey an exponential distribution with unit
mean and the sum of the weights of all the frequent subgraphs is normalized to 1. We call this set of jLj
frequent subgraphs a seed pool. The number of distinct edge and vertex labels is controlled by the parameter
N . In particular, N is both the number of distinct edge labels as well as the number of distinct vertex labels.

Next, we generate jDj transactions. The size of each transaction is a Poisson random variable whose
mean is equal to jT j. Then we select one of the frequent subgraphs already generated from the seed pool, by
rolling an jLj-sided die. Each face of this die corresponds to the probability assigned to a potential frequent
subgraph in the seed pool. If the size of the selected seed �ts in a transaction, we add it. If the current size
of a transaction does not reach its selected size, we keep selecting and putting another seed into it. When a
selected seed exceeds the transaction size, we add it to the transaction for the half of the cases, and discard
it and move onto the next transaction for the rest of the half. The way we put a seed into a transaction is
to �nd a mapping so that the overlap between a seed and a transaction is maximized.

In the following experiments, we use the combinations of the parameters shown in Table 3.

Table 3: Parameter settings

Parameter Values
jDj 10000
jT j 5; 10; 20; 40
jI j 3; 5; 7; 10
jLj 200
N 3; 5; 10; 20; 40

Table 4 shows the amount of time required by FSG to �nd all the frequent subgraphs for various datasets
in which we changed N , jI j, jT j, and �. In all of these experiments, the number of transactions jDj was �xed
to 10000 and the number of potential frequent subgraphs jLj was set to 200. If the average transaction size
jT j is smaller than that of potential frequent subgraphs jI j, we omitted such combinations because we can
not generate transactions. In some cases, we aborted computation because the running time was too long or
because the main memory was exhausted, which are denoted by dashes in the table.

By looking at the table, we can observe a number of interesting points regarding the performance of FSG
for di�erent types of datasets. First, as the number of edge and vertex labels N increases, the amount of time
required by FSG decreases. For example, when � = 2%, N = 3, jI j = 3 and jT j = 10, it takes 143 seconds,
while the running time drops to 16 seconds for N = 20. This is because as the number of edge and vertex
labels increases there are fewer automorphisms and subgraph isomorphisms, which leads to fast candidate
generation and frequency counting. Also by having more edge and vertex labels, we can e�ectively prune
the search space of isomorphism because they work as constraints when we seek for a mapping of vertices.
Second, as the size of the average transaction jT j increases the overall running time increases as well. The
relative increase is higher when N is small than when N is large. For example, going from jT j = 5 to jT j = 40
under the setting of N = 5, jI j = 3 and � = 2%, the running time increases by a factor of 20, whereas for
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the same set of parameters when N = 40, the increase is only by a factor of 4. The reason for that is again
having many edge and vertex labels e�ectively decreases the number of isomorphisms and the search space.
With small N and large jT j, we can not narrow down eÆciently the search space of subgraph isomorphism
for frequency counting and the running time increases drastically. Third, as jI j increases the overall running
time also increases. Again the relative increase is smaller for larger values of N and smaller values of jT j by
the same reason described above.

To determine the scalability of FSG against the number of transactions we performed an experiment in
which we used jDj = 10000, 20000, 40000 and 80000 with jLj = 200, jI j = 5 and jT j ranging from 5 to 40.
These results are shown in Figure 3. As we can see from the �gure, FSG scales linearly with the number of
transactions.

Table 4: Running times in seconds for synthetic data sets. We omitted parameter combinations where
jI j > jT j, because transaction size is too small for potential frequent subgraphs. A dash in the table means
we had to abort the computation for the set of parameters because of either memory exhaustion or taking
too long time.

N jIj jT j Running Time [sec]
� = 2% � = 1%

2 3 5 18 24
10 143 434
20 | |
40 | |

2 5 5 27 52
10 251 2246
20 | |
40 | |

2 7 10 557 6203
20 | |
40 | |

2 10 10 | |
20 | |

N jIj jT j Running Time [sec]
� = 2% � = 1%

3 3 5 12 22
10 30 40
20 112 390
40 5817 |

3 5 5 18 32
10 51 102
20 189 736
40 6110 |

3 7 10 66 4512
20 1953 |
40 | |

3 10 10 8290 |
20 | |

N jIj jT j Running Time [sec]
� = 2% � = 1%

5 3 5 10 12
10 20 25
20 53 71
40 196 279

5 5 5 24 44
10 55 80
20 124 174
40 340 617

5 7 10 208 770
20 772 1333
40 2531 3143

5 10 10 10914 |
20 | |

N jIj jT j Running Time [sec]
� = 2% � = 1%

10 3 5 9 17
10 16 25
20 35 40
40 87 98

10 5 5 10 18
10 20 51
20 47 119
40 188 246

10 7 10 190 816
20 866 1506
40 2456 3199

10 10 10 10785 |
20 | |

N jIj jT j Running Time [sec]
� = 2% � = 1%

20 3 5 9 16
10 16 28
20 34 38
40 78 85

20 5 5 10 19
10 20 51
20 48 117
40 182 233

20 7 10 193 804
20 884 1667
40 2524 3271

20 10 10 10520 |
20 | |

N jIj jT j Running Time [sec]
� = 2% � = 1%

40 3 5 20 22
10 27 44
20 44 47
40 84 89

40 5 5 20 28
10 29 60
20 55 131
40 177 234

40 7 10 197 1236
20 861 5273
40 2456 9183

40 10 10 9687 |
20 | |

3.2 Chemical Compound Dataset

We obtained a chemical dataset from [17]. This was originally provided for the Predictive Toxicology Evalu-
ation Challenge [21], which contains information on 340 chemical compounds in two separated �les. The �rst
�le named atoms.pl contains de�nitions of atoms in compounds. For example, \atm(d1; d11; c; 22;�0:133)"
means that a chemical compound d1 has an atom whose identi�er is d11, of element carbon, of type 22 and
with partial charge �0:133. The other �le bonds.pl provides bonding information between atoms. A line
in the �le \bond(d1; d11; d12; 7)", for instance, states that in the compound d1 its atoms d11 and d12 are
connected by a type 7 bond. There are 4 di�erent types of bonds (1,2,3 and 7) and 24 di�erent atoms (As,
Ba, Br, C, Ca, Cl, Cu, F, H, Hg, I, K, Mn, N, Na, O, P, Pb, S, Se, Sn, Te, Ti and Zn). Also there are 66
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Figure 3: Scalability on the number of transaction

atom types.
We converted the data into graph transactions. Each compound becomes a transaction. Thus, there are

340 transactions in total. Each vertex corresponds to an atom, whose label is made of a pair of the atom
element and the atom type. We did not include partial charge to vertex labels because those values were not
discretized. Each edge is placed for every bond. Edge label directly corresponds to the bond type. By the
conversion, there are 4 edge labels and 66 vertex labels produced in total. The average transaction size was
27.4 in terms of the number of edges, and 27.0 in terms of the number of vertices. Because the number of
edges is very close to that of vertices, this dataset is sparse. There are 26 transactions that have more than
50 edges and vertices. The largest transaction contains 214 edges and 214 vertices.

The experimental results by FSG for �nding frequent subgraphs are shown in Figure 4. Figure 4(a) shows
the running time required for di�erent values of support threshold and Figure 4(b) displays the number
of discovered frequent subgraphs on those support levels. With � = 7%, the largest frequent subgraph
discovered has 13 vertices.

With the support threshold � below 10%, both the running time and the number of frequent subgraphs
increase exponentially. FSG does well even for 7% support as it requires 600 seconds. AGM, a frequent
induced subgraph discovery algorithm, required about 8 days for 10% and 40 minutes for 20% with almost
the same dataset on 400MHz PC [14].

Comparing the performance of FSG on this dataset against those on the synthetic datasets, we can see
that it requires more time for this chemical dataset, once we take into account of the di�erence in the number
of transactions. This is because in the chemical dataset, edge and vertex labels have non-uniform distribution.
As we decrease the minimum support, larger frequent subgraphs start to appear which generally contain only
carbon and hydrogen and a single bonding type. Essentially with � < 10%, this dataset becomes similar to
the synthetic datasets where N = 2.

3.3 Summary of Discussions

We summarize the characteristics of FSG performance. First, FSG works better on graph datasets with more
edge and vertex labels. During both candidate generation and frequency counting, what FSG essentially does
is to solve graph or subgraph isomorphism. Without labels assigned, determining isomorphism of graphs is
more diÆcult to solve, because we can not use labeling information as constraints to narrow down the search
space of vertex mapping. We can con�rm it by comparing the results in Table 4 with various values of the
number of edge and vertex labels, N .

Second, the running time depends heavily on the size of frequent subgraphs to be discovered. If input
transactions contain many large frequent patterns such as more than 10 edges, the situation corresponds to
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Figure 4: Performance with the chemical compound dataset

the parameter setting of jI j = 10, where FSG will not be likely to �nish its computation in a reasonable
amount of time. The same thing happened with the chemical dataset with a support threshold less than
10%. If we compare Figure 4(a) and Figure 4(b), we notice the running increases more exponentially than the
number of discovered subgraphs does, as we decrease the minimum support. With a lower support criteria, we
start getting larger frequent subgraphs and both candidate generation and frequency counting become much
heavier. On the other hand, as for the cases of jI j � 5 in Table 4, FSG runs fast. The result of the chemical
dataset is consistent with it. For example, if we use � = 10% for the chemical dataset, FSG spends 28 seconds
to get 882 frequent subgraphs in total. The largest frequent graphs among them have 11 edges, and there are
only 10 such frequent 11-subgraphs discovered. Note that AGM discovered about 160000 induced subgraphs
under almost the same condition. The reason of this di�erence is because AGM considers all the possible
combinations of frequent induced subgraphs, while FSG only generates frequent connected subgraphs. Once
we discovered frequent connected subgraphs, however, we can acquire disconnected ones by transforming
input graph transactions into basket transactions where items correspond to discovered frequent subgraphs
and perform traditional frequent itemset discovery.

Another important factor is the size of a transaction. If the average size of transactions becomes larger,
frequency counting by subgraph isomorphism becomes heavier regardless of the size of candidate subgraphs.
Traditional frequent itemset �nding algorithms are free from this problem. They can perform frequency
counting simply by taking the intersection of itemsets and transactions.

As of the number of transactions, FSG requires running time proportional to the size of inputs under the
same set of parameters. This is the same as frequent itemset discovery algorithms.

4 Conclusion

In this paper we presented an algorithm, FSG, for �nding frequently occurring subgraphs in large graph
databases, that can be used to discover recurrent patterns in scienti�c, spatial, and relational datasets. Our
experimental evaluation shows that FSG can scale reasonably well to very large graph databases provided
that graphs contain a suÆciently many di�erent labels of edges and vertices.
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