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Abstract

As data mining techniques are being increasingly ap-
plied to non-traditional domains, existing approaches for
finding frequent itemsets cannot be used as they cannot
model the requirement of these domains. An alternate way
of modeling the objects in these data sets is to use graphs.
Within that model, the problem of finding frequent pat-
terns becomes that of discovering subgraphs that occur fre-
quently over the entire set of graphs. In this paper we
present a computationally efficient algorithm for finding all
Jfrequent subgraphs in large graph databases. We evalu-
ated the performance of the algorithm by experiments with
synthetic datasets as well as a chemical compound dataset.
The empirical results show that our algorithm scales lin-
early with the number of input transactions and it is able
to discover frequent subgraphs from a set of graph trans-
actions reasonably fast, even though we have to deal with
computationally hard problems such as canonical labeling
of graphs and subgraph isomorphism which are not neces-
sary for traditional frequent itemset discovery.

1. Introduction

Efficient algorithms for finding frequent itemsets—both
sequential and non-sequential—in very large transaction
databases have been one of the key success stories of data
mining research [2, 1, 22, 9, 3]. We can use these itemsets
for discovering association rules, for extracting prevalent
patterns that exist in the datasets, or for classification. Nev-
ertheless, as data mining techniques have been increasingly
applied to non-traditional domains, such as scientific, spa-
tial and relational datasets, situations tend to occur on which
we can not apply existing itemset discovery algorithms, be-
cause these problems are difficult to be adequately and cor-
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rectly modeled with the traditional market-basket transac-
tion approaches.

An alternate way of modeling the various objects is
to use undirected labeled graphs to model each one of
the object’s entities—items in traditional frequent itemset
discovery—and the relation between them. In particular,
each vertex of the graph will correspond to an entity and
each edge will correspond to a relation between two entities.
In this model both vertices and edges may have labels asso-
ciated with them which are not required to be unique. Using
such a graph representation, the problem of finding frequent
patterns then becomes that of discovering subgraphs which
occur frequently enough over the entire set of graphs.

The key advantage of graph modeling is that it allows

us to solve problems that we could not solve previously.
For instance, consider a problem of mining chemical com-
pounds to find recurrent substructures. We can achieve that
using a graph-based pattern discovery algorithm by creat-
ing a graph for each one of the compounds whose vertices
correspond to different atoms, and whose edges correspond
to bonds between them. We can assign to each vertex a
label corresponding to the atom involved (and potentially
its charge), and assign to each edge a label corresponding
to the type of the bond (and potentially information about
their relative 3D orientation). Once these graphs have been
created, recurrent substructures across different compounds
become frequently occurring subgraphs.
Related Work Developing algorithms that discover all
frequently occurring subgraphs in a large graph database is
particularly challenging and computationally intensive, as
graph and subgraph isomorphisms play a key role through-
out the computations.

The power of using graphs to model complex datasets
has been recognized by various researchers in chemical do-
main [18, 17, 5, 4], computer vision [12, 14], image and ob-
ject retrieval [6], and machine learning [10, 20]. In particu-
lar, Dehaspe et al. [5] applied Inductive Logic Programming
(ILP) to obtain frequent patterns in the toxicology evalua-
tion problem [18]. ILP has been actively used for predicting



carcinogenesis [17], which is able to find all frequent pat-
terns that satisfy a given criteria. It is not designed to scale

to large graph databases, however, and they did not report

any statistics regarding the amount of computation time re-
quired. Another approach that has been developed is using
a greedy scheme (20, 10] to find some of the most prevalent
subgraphs. These methods are not complete, as they may
not obtain all frequent subgraphs, although they are faster
than the ILP-based methods. Furthermore, these methods
can also perform approximate matching when discovering
frequent patterns, allowing them to recognize patterns that
have slight variations.

Recently, Inokuchi et al. [11] presented a computation-
ally efficient algorithm called AGM, that can be used to
find all frequent induced subgraphs in a graph database that
satisfy a certain minimum support constraint. A subgraph
Gs = (Vs,E;) of G = (V,E) is induced if E, contains
all the edges of E that connect vertices in V. AGM finds
all frequent induced subgraphs using an approach similar to
that used by Apriori [2], which extends subgraphs by adding
one vertex at each step. Experiments reported in [11] show
that AGM achieves good performance for synthetic dense
datasets, and it required 40 minutes to 8 days to find all fre-
quent induced subgraphs in a dataset containing 300 chem-
ical compounds, as the minimum support threshold varied
from 20% to 10%.

Our Contribution In this paper we present a new algo-
rithm, named FSG, for finding all connected subgraphs that
appear frequently in a large graph database. Our algorithm
finds frequent subgraphs using the same level-by-level ex-
pansion adopted in Apriori [2]. The key features of FSG
are the following: (1) it uses a sparse graph representation
which minimizes both storage and computation, (2) it in-
creases the size of frequent subgraphs by adding one edge
at a time, allowing to generate the candidates efficiently, (3)
it uses simple algorithms of canonical labeling and graph
isomorphism which work efficiently for small graphs, and
(4) it incorporates various optimizations for candidate gen-
eration and counting which allow it to scale to large graph
databases.

We experimentally evaluated FSG on a large number of
synthetic graphs, that were generated using a framework
similar to that used for market-basket transaction genera-
tion [2]. For problems in which a moderately large number
of different types of entities and relations exist, FSG was
able to achieve good performance and to scale linearly with
the database size. In fact, FSG found all the frequent con-
nected subgraphs in less than 500 seconds from a synthetic
dataset consisting of 80000 graphs with a support threshold
of 2%. For problems where the number of edge and ver-
tex labels was small, the performance of FSG was worse,
as the exponential complexity of graph isomorphism dom-
inates the overall performance. We also evaluated the per-
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formance of FSG on the same chemical compound dataset
used by AGM. Our results show that FSG is able to find all
the frequent connected subgraphs using a 6.5% minimum
support in 600 seconds.

2. Frequent Subgraph Discovery

In our problem setting, we have a dataset of transactions
D. Each transaction ¢ € D is a labeled undirected graph'.
Edges and vertices have their labels. Given a minimum sup-
port 0%, we would like to find all connected undirected
subgraphs that occur in at least o|D| transactions. Table 1
shows the notation we use.

Table 1. Notation

Notation Description
D A dataset of graph transactions
t A transaction of a graph in D
k-(sub)graph | A (sub)graph with k edges
g* A k-subgraph
c*k A set of candidates with k edges
F* A set of frequent k-subgraphs
cl(g*) A canonical label of a k-graph ¢*

The key restriction in our problem statement is that we
are finding only subgraphs that are connected. This is mo-
tivated by the fact that the resulting frequent subgraphs
will be encapsulating relations (or edges) between some of
entities (or vertices) of various objects. Within this con-
text, connectivity is a natural property of frequent patterns.
An additional benefit of this restriction is that it reduces
the complexity of the problem, as we do not need to con-
sider disconnected combinations of frequent connected sub-
graphs.

In developing our frequent subgraph discovery algo-
rithm, we decided to follow the structure of the algorithm
Apriori used for finding frequent itemsets [2], because it
achieves the most effective pruning compared with other
algorithms such as GenMax, dEclat [22] and Tree Projec-
tion [1].

The high level structure of our algorithm FSG is shown
in Algorithm 1. Edges in the algorithm correspond to items
in traditional frequent itemset discovery. Namely, as these
algorithms increase the size of frequent itemsets by adding
a single item at a time, our algorithm increases the size of
frequent subgraphs by adding an edge one by one. FSG
initially enumerates all the frequent single and double edge
graphs. Then, based on those two sets, it starts the main
computational loop. During each iteration it first generates
candidate subgraphs whose size is greater than the previous
frequent ones by one edge (Line 5 of Algorithm 1). Next,
it counts the frequency for each of these candidates, and

!The algorithm presented in this paper can be easily extended to di-
rected graphs.



prunes subgraphs that do no satisfy the support constraint
(Lines 7-11). Discovered frequent subgraphs satisfy the
downward closure property of the support condition, which
allows us to effectively prune the lattice of frequent sub-
graphs.

Algorithm 1 fsg(D, o) (Frequent Subgraph)

: F! « detect all frequent I-subgraphs in D
F? « detect all frequent 2-subgraphs in D
k3
: while F¥=1 £ 9 do
Ck « fsg-gen(F*—1)
for each candidate ¢* € C* do

g% .count « 0

for each transaction t € D do

if candidate ¢* is included in transaction ¢ then
g” .count + g" .count + 1

F*¥ « {g* € C* | g*.count > o| D[}
k—k+1
: return F!,F2 .  Fk-2

R A ol e

In Section 2.1, we briefly review some background is-
sues regarding graphs. Section 2.2 contains details of can-
didate generation with pruning and Section 2.3 describes
frequency counting in FSG.

2.1. Graph Representation, Canonical Labeling
and Isomorphism

Sparse Graph Representation Our algorithm uses
sparse graph representation to store input transactions, in-
termediate candidates and frequent subgraphs. Each one
of the transactions, candidates and discovered frequent sub-
graphs is stored using adjacency-list representation, while
our canonical labeling described in Section 2.1 is based on
adjacency matrix representation. Thus, after determining
canonical label for a subgraph, we convert its canonical ad-
jacency matrix back into adjacency lists. This adjacency-list
representation saves memory when input transaction graphs
are sparse, and speeds up computation.

Canonical Labeling Because we deal with graphs, not
itemsets, there are many differences between our algorithm
and the traditional frequent itemset discovery. A difference
appears when we try to sort frequent objects. In the tra-
ditional frequent itemset discovery, we can sort itemsets
by lexicographic ordering. Clearly this is not applicable
to graphs. To get total order of graphs we use canonical
labeling. A canonical label is a unique code of a given
graph [16, 7]. A graph can be represented in many different
ways, depending on the order of its edges or vertices. Nev-
ertheless, canonical labels should be always the same no
matter how graphs are represented, as long as those graphs
have the same topological structure and the same labeling
of edges and vertices. By comparing canonical labels of
graphs, we can sort them in a unique and deterministic way,
regardless of the representation of input graphs. We denote
a canonical label of a graph g by cl(g). It is easy to see
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that computing canonical labels is equivalent to determin-
ing isomorphism between graphs, because if two graphs are
isomorphic with each other, their canonical labels must be
identical. Both canonical labeling and determining graph
isomorphism are not known to be either in P or in NP-
complete [7].

We use a straightforward way of determining a canoni-

cal label. Using a flattened representation of the adjacency
matrix of a graph, by concatenating rows or columns of an
adjacency matrix one after another we construct a list of in-
tegers. Regarding this list of integers as a string, we can
obtain total order of graphs by lexicographic ordering. To
compute a canonical label of a graph, we try all the permu-
tations of its vertices to see which ordering of vertices gives
the minimum adjacency matrix. To narrow down the search
space, we first partition the vertices by their degrees and la-
bels, which is a well-known technique called vertex invari-
ants [16]. Then, we try all the possible permutations of ver-
tices inside each partition. Once we determine the caninical
adjacency matrix, we convert our adjacency-list represen-
tation of the subgraph so that the ordering of vertices in
the canonical adjacency matrix is reflected. All compar-
isons of subgraphs are done with the canonically reordered
adjaceny-list representation. Further details can be found
in [13].
Isomorphism In our algorithm, we need to solve both
graph isomorphism and subgraph isomorphism. Graph iso-
morphism is a problem to determine whether given two
graphs g; and g are isomorphic, namely, to find a map-
ping from a set of vertices to another set. Automorphism is
a special case of graph isomorphism where g; = g2, which
means to find a mapping from a graph to itself. Subgraph
isomorphism is to find an isomorphism between g; and a
subgraph of go. In other words, it is to determine if a graph
is included in the other larger graph. A well-known algo-
rithm for subgraph isomorphism is proposed in [19]. As
suggested in [7], graph isomorphism can be directly solved
in practice, although it is not known to be either in P or in
NP-complete. On the other hand, subgraph isomorphism
has been proved to be in NP-complete [8). Thus, there is no
scalable algorithm to solve it. When the size of graphs is
small such as 10 vertices or less, however, it is also known
that subgraph isomorphism can be feasible even with a sim-
ple exhaustive search [7, 19].

We solve graph isomorphism by a simple way, which is,
starting from a single vertex in one graph, to try to find a
mapping to one of the vertices in the other graph, that is
consistent with the labeling. Then, we keep the same pro-
cess by adding vertices one by one until either we find a
complete mapping or we end up with exhausting the search
space. When we seek for the next mapping, we have to
be careful to keep the consistency of edge and vertex la-
bels. We can reduce the search space more if there are more



labels are assigned to edges and vertices, which leads to
restriction against mapping. This approach can solve both
graph and subgraph isomorphism.

2.2. Candidate Generation

In the candidate generation phase, we create a set of can-
didates of size k + 1, given frequent k-subgraphs. Can-
didate subgraphs of size k£ + 1 are generated by joining
two frequent k-subgraphs. In order for two such frequent
k-subgraphs to be eligible for joining they must contain
the same (k — 1)-subgraph. We will refer to this common
(k — 1)-subgraph among two k-frequent subgraphs as their
core.

Unlike the joining of itemsets in which two frequent k-
size itemsets lead to a unique (k + 1)-size itemset, the join-
ing of two subgraphs of size k can lead to multiple sub-
graphs of size k + 1. This is due to three reasons. First,
the resulting two (k + 1)-subgraphs produced by the join-
ing may differ in a vertex that has the same label in both
k-subgraphs. Figure 1(a) is such an example. This pair of
graphs g2 and gg generates two different candidates g5 and
gs. The second reason is because a core itself may have
multiple automorphisms and each automorphism can lead
to a different (k + 1)-candidate. An example for this case
is shown in Figure 1(b), in which the core—a square of 4
vertices labeled with vg—has more than one automorphism
which result in 3 different candidates of size 6. Finally, two
frequent subgraphs may have multiple cores as depicted by
Figure 1(c).
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Figure 1. Three different cases of candidate joining

The overall algorithm for candidate generation is shown
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in Algorithm 2. For each pair of frequent subgraphs that
share the same core, the fsg-join is called at Line 6 to gen-
erate all possible candidates of size k + 1. For each of the
candidates, the algorithm first checks if they are already in
C*+1, If they are not, then it verifies if all its k-subgraphs
are frequent. If they are, fsg-join then inserts it into C**1,
otherwise it discards the candidate (Lines 7-16). The algo-
rithm uses canonical labeling to efficiently check if a partic-
ular subgraph is already in C**! or not.

The key computational steps in candidate generation are
(1) core identification, (2) joining, and (3) using the down-
ward closure property of a support condition to eliminate
some of generated candidates. A straightforward way of
implementing these tasks is to use subgraph isomorphism,
graph automorphism and canonical labeling with binary
search, respectively. The amount of computation required
by the first step, however, can be substantially reduced by
keeping some information from the lattice of frequent sub-
graphs. Particularly, if for each frequent k-subgraph we
store the canonical labels of its frequent (k — 1)-subgraphs,
then the cores between two frequent subgraphs can be deter-
mined by simply computing the intersection of these lists.
Also to speed up the computation of the automorphism step
during joining, we save previous automorphisms associated
with each core and look them up instead of performing the
same automorphism computation again. The saved list of
automorphisms will be discarded once C'*+1 has been gen-
erated.

Note we need to perform self join, that is, two graphs g ¥
and gf in Algorithm 2 are identical. It is necessary because,
for example, consider transactions without any labels, that
is, each transaction in the input is an undirected and un-
labeled graph. Then, we will have only one frequent 1-
subgraph and one frequent 2-subgraph regardless of a sup-
port threshold, because those are the only allowed struc-
tures, and edges and vertices do not have labels assigned.
From those F'! and F'? where |F!| = |F?| = 1, to generate
larger graphs of C* and F* for k > 3, the only way is the
self join.

2.3. Frequency Counting

Once candidate subgraphs have been generated, FSG
computes their frequency. The simplest way of achieving
this is for each subgraph to scan each one of the transaction
graphs and determine if it is contained or not using sub-
graph isomorphism. Nonetheless, having to compute these
isomorphisms is particularly expensive and this approach is
not feasible for large datasets. In the context of frequent
itemset discovery by Apriori, the frequency counting is per-
formed substantially faster by building a hash-tree of can-
didate itemsets and scanning each transaction to determine
which of the itemsets in the hash-tree it supports. Develop-
ing such an algorithm for frequent subgraphs, however, is



Algorithm 2 fsg-gen(F*) (Candidate Generation)

CH+1 ¢,
for each pair of g¥, g;-‘ € F*,i < j suchthat cl(gF) < cl(g;-“) do
for each edge e € gF do {create a (k — 1)-subgraph of g* by
removing an edge e}
k—1
9
if g:’ ~1 s included in gf then {g:c and g;F share the same core}
Th+l fsg-join(gf,gf)
for each g;-““ € Tkt do
{test if the downward closure property holds for d;'“}
flag « true
for each edge f; € g;-°+l do
hf it~ fi
if hf is connected and h¥ & F* then
flag « false
break
if flag = true then
Ck+1 . gk+1y {gk‘H}
return C*+1

+—gF—e

challenging as there is no natural way to build the hash-tree
for graphs. For this reason, FSG instead uses Transaction
ID (TID) lists, proposed by [23, 21, 22]. In this approach for
each frequent subgraph we keep a list of transaction iden-
tifiers that support it. Now when we need to compute the
frequency of g**!, we first compute the intersection of the
TID lists of its frequent k-subgraphs. If the size of the in-
tersection is below the support, g5+ is pruned, otherwise
we compute the frequency of g**! using subgraph isomor-
phism by limiting our search only to the set of transactions
in the intersection of the TID lists.

3. Experiments

We performed a set of experiments to evaluate the per-
formance of FSG. There are two types of datasets we used.
The first type was synthetically generated, and allowed us to
study the performance of FSG under different conditions.
The second type contains the molecular structures of chem-
ical compounds, which is used to evaluate the performance
of FSG for large graphs.

All experiments. were done on 650MHz Intel Pentium
IIT machines with,2GB main memory, running the Linux
operating system.

3.1. Synthetic Datasets

For the performance evaluation, we generate synthetic
datasets controlled'by a set of parameters shown in Table 2.
The basic idea behind our data generator is similar to the
one used in [2], but simpler.

First, we generate a set of |L| potentially frequent con-
nected subgraphs whose size is determined by Poisson dis-
tribution with mean |I|. For each frequent connected sub-
graph, its topology as well as its edge and vertex labels are
chosen randomly. It has a weight assigned, which becomes
a probability that the subgraph is selected to be included
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Table 2. Synthetic dataset parameters

Notation Parameter

D The total number of transactions

T The average size of transactions
(in terms of the number of edges)

H] The average size of potentially
frequent subgraphs
(in terms of the number of edges)

|Z) The number of potentially
frequent subgraphs

N The number of edge and vertex labels

in a transaction. The weights obey an exponential distribu-
tion with unit mean and the sum of the weights of all the
frequent subgraphs is normalized to 1. We call this set of
|L| frequent subgraphs a seed pool. The number of distinct
edge and vertex labels is controlled by the parameter N. In
particular, N is both the number of distinct edge labels as
well as the number of distinct vertex labels.

Next, we generate |D| transactions. The size of each
transaction is a Poisson random variable whose mean is
equal to |T'|. Then we select one of the frequent subgraphs
already generated from the seed pool, by rolling an |L|-
sided die. Each face of this die corresponds to the proba-
bility assigned to a potential frequent subgraph in the seed
pool. If the size of the selected seed fits in a transaction,
we add it. If the current size of a transaction does not reach
its selected size, we keep selecting and putting another seed
into it. When a selected seed exceeds the transaction size,
we add it to the transaction for the half of the cases, and
discard it and move onto the next transaction for the rest of
the half. The way we put a seed into a transaction is to find
a mapping so that the overlap between a seed and a transac-
tion is maximized.

In the following experiments, we use the combinations
of the parameters shown in Table 3.

Table 3. Parameter settings

Parameter Values
|D| 10000
|T| 5,10, 20,40
|| 3,5,7,10
|L| 200
N 3, 5,10, 20, 40

Table 4 shows the amount of time required by FSG to
find all the frequent subgraphs for various datasets in which
we changed N, |1}, |T|, and 0. In all of these experiments,
the number of transactions |D| was fixed to 10000 and the
number of potential frequent subgraphs |L| was set to 200.
If the average transaction size |T'| is smaller than that of
potential frequent subgraphs |I|, we omitted such combina-
tions because we can not generate transactions. In some



cases, we aborted computation because the running time
was too long or because the main memory was exhausted,
which are denoted by dashes in the table.

By looking at the table, we can observe a number of in-
teresting points regarding the performance of FSG for dif-
ferent types of datasets. First, as the number of edge and
vertex labels N increases, the amount of time required by
FSG decreases. For example, when 0 = 2%, N = 3,
|I| = 3 and |T| = 10, it takes 143 seconds, while the run-
ning time drops to 16 seconds for N = 20. This is because
as the number of edge and vertex labels increases there are
fewer automorphisms and subgraph isomorphisms, which
leads to fast candidate generation and frequency counting.
Also by having more edge and vertex labels, we can effec-
tively prune the search space of isomorphism because they
work as constraints when we seek for a mapping of vertices.
Second, as the size of the average transaction |T'| increases
the overall running time increases as well. The relative in-
crease is higher when NV is small than when N is large. For
example, going from |T'| = 5 to [T} = 40 under the set-
ting of N = 5, |I|] = 3 and o0 = 2%, the running time
increases by a factor of 20, whereas for the same set of pa-
rameters when N = 40, the increase is only by a factor
of 4. The reason for that is again having many edge and
vertex labels effectively decreases the number of isomor-
phisms and the search space. With small N and large |T,
we can not narrow down efficiently the search space of sub-
graph isomorphism for frequency counting and the running
time increases drastically. Third, as |I| increases the overall
running time also increases. Again the relative increase is
smaller for larger values of N and smaller values of |T'| by
the same reason described above.

To determine the scalability of FSG against the number
of transactions we performed an experiment in which we
used [D] = 10000, 20000, 40000 and 80000 with |L| =
200, |I| = 5 and |T| ranging from 5 to 40. These results
are shown in Figure 2. As we can see from the figure, FSG
scales linearly with the number of transactions.

3.2. Chemical Compound Dataset

We obtained a chemical dataset from [15]. This was
originally provided for the Predictive Toxicology Evalua-
tion Challenge [18], which contains information on 340
chemical compounds in two separated files. The first file
named atoms.pl contains definitions of atoms in com-
pounds. For example, “atm(dl,d1,, ¢,22, —0.133)” means
that a chemical compound d1 has an atom whose identi-
fier is dl;, of element carbon, of type 22 and with par-
tial charge —0.133. The other file bonds.pl provides
bonding information between atoms. A line in the file
“bond(d1,d1,,dls,7)”, for instance, states that in the com-
pound d1 its atoms d1; and d1, are connected by a type 7
bond. There are 4 different types of bonds and 24 different
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atoms, and there are 66 atom types.

We converted the data into graph transactions. Each
compound becomes a transaction. Thus, there are 340 trans-
actions in total. Each vertex corresponds to an atom, whose
label is made of a pair of the atom element and the atom
type. We did not include partial charge to vertex labels be-
cause those values were not discretized. Each edge is placed
for every bond. Edge label directly corresponds to the bond
type. By the conversion, there are 4 edge labels and 66 ver-
tex labels produced in total. The average transaction size
was 27.4 in terms of the number of edges, and 27.0 in terms
of the number of vertices. Because the number of edges is
very close to that of vertices, this dataset is sparse. There
are 26 transactions that have more than 50 edges and ver-
tices. The largest transaction contains 214 edges and 214
vertices.

The experimental results by FSG for finding frequent
subgraphs are shown in Figure 3. Figure 3(a) shows the
running time required for different values of support thresh-
old and Figure 3(b) displays the number of discovered fre-
quent subgraphs on those support levels. With ¢ = 7%, the
largest frequent subgraph discovered has 13 vertices.

With the support threshold o below 10%, both the run-
ning time and the number of frequent subgraphs increase
exponentially. FSG does well even for 7% support as it
requires 600 seconds. AGM, a frequent induced subgraph
discovery algorithm, required about 8 days for 10% and 40
minutes for 20% with almost the same dataset on 400MHz
PC [11].

Comparing the performance of FSG on this dataset
against those on the synthetic datasets, we can see that it
requires more time for this chemical dataset, once we take
into account of the difference in the number of transactions.
This is because in the chemical dataset, edge and vertex
labels have non-uniform distribution. As we decrease the
minimum support, larger frequent subgraphs start to appear
which generally contain only carbon and hydrogen and a



Table 4. Running times in seconds for synthetic data sets. We omitted parameter combinations where |I| > [T,
because transaction size is too small for potential frequent subgraphs. A dash in the table means we had to abort the
\computation for the set of parameters because of either memory exhaustion or taking too long time.

"vl N I T Running Time [sec] N (I 7] Running Time [sec] N Iy T Running Time [sec]
c=2% ]| c=1% c0=2% | c=1% c=2% | e =1%
N2 3 5 18 24 3 3 5 12 22 5 3 5 10 12
10 143 434 10 30 40 10 20 25
20 — _— 20 112 390 20 53 71
40 — — 40 5817 — 40 196 279
2 5 5 27 52 3 5 5 18 32 5 5 5 24 44
10 251 2246 10 51 102 10 55 80
20 — — 20 189 736 20 124 174
40 — — 40 6110 — 40 340 617
2 7 10 557 6203 3 7 10 66 4512 5 7 10 208 770
20 — — 20 1953 — 20 772 1333
40 — — 40 — — 40 2531 3143
2 10 10 — —_ 3 10 10 8290 —_ 5 10 10 10914 —_
20 e o 20 — — 20 — —_
N T T Running Time [sec] N I 7] Running Time (sec] N I (T Running Time [sec)
c=2% | 0 =1% c=2% | c=1% c=2% | e =1%
10 3 5 9 17 20 3 5 9 16 40 3 5 20 22
10 16 25 10 16 28 10 27 44
20 35 40 20 34 38 20 44 47
40 87 98 40 78 85 40 84 89
10 5 5 10 18 20 5 5 10 19 40 5 5 20 28
10 20 51 10 20 51 10 29 60
20 47 119 20 48 117 20 55 131
40 188 246 40 182 233 40 177 234
10 7 10 190 816 20 7 10 193 804 40 7 10 197 1236
20 866 1506 20 884 1667 20 861 5273
40 2456 3199 40 2524 3271 40 2456 9183
10 10 10 10785 _ 20 10 10 10520 —_ 40 10 10 9687 —
20 — —_ 20 — — 20 — —

single bonding type. Essentially with ¢ < 10%, this dataset
becomes similar to the synthetic datasets where N = 2.

3.3. Summary of Discussions

We summarize the characteristics of FSG performance.
"First, FSG works better on graph datasets with more edge
and vertex labels. During both candidate generation and
frequency counting, what FSG essentially does is to solve
graph or subgraph isomorphism. Without labels assigned,
determining isomorphism of graphs is more difficult to
solve, because we can not use labeling information as con-
straints to narrow down the search space of vertex mapping.
We can confirm it by comparing the results in Table 4 with
various values of the number of edge and vertex labels, V.
Second, the running time depends heavily on the size of
frequent subgraphs to be discovered. If input transactions
contain many large frequent patterns such as more than 10
edges, the situation corresponds to the parameter setting of
|I] = 10, where FSG will not be likely to finish its compu-
tation in a reasonable amount of time. The same thing hap-
pened with the chemical dataset with a support threshold
less than 10%. If we compare Figure 3(a) and Figure 3(b),
we notice the running time increases at a higher rate than
the number of discovered subgraphs does, as we decrease
the minimum support. With a lower support criteria, we
start getting larger frequent subgraphs and both candidate
generation and frequency counting become much more ex-
pensive. On the other hand, as for the cases of [I| < 5 in
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Table 4, FSG runs fast. The result of the chemical dataset
is consistent with it. For example, if we use ¢ = 10% for
the chemical dataset, FSG spends 28 seconds to get 882 fre-
quent subgraphs in total. The largest frequent graphs among
them have 11 edges, and there are only 10 such frequent 11-
subgraphs discovered.

Another important factor is the size of a transaction. If
the average size of transactions becomes large, frequency
counting by subgraph isomorphism becomes expensive re-
gardless of the size of candidate subgraphs. Traditional fre-
quent itemset finding algorithms are free from this problem.
They can perform frequency counting simply by taking the
intersection of itemsets and transactions.

As of the number of transactions, FSG requires running
time proportional to the size of inputs under the same set of
parameters. This is the same as frequent itemset discovery
algorithms.

4. Conclusion

In this paper we presented an algorithm, FSG, for
finding frequently occurring subgraphs in large graph
databases, that can be used to discover recurrent patterns in
scientific, spatial, and relational datasets. Our experimen-
tal evaluation shows that FSG can scale reasonably well to
very large graph databases provided that graphs contain a
sufficiently many different labels of edges and vertices.
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