
To appear in IEEE Transactions on Knowledge and Data Engineering 1

An Efficient Algorithm for
Discovering Frequent Subgraphs

Michihiro Kuramochi and George Karypis,Member, IEEE
Department of Computer Science

University of Minnesota
4-192 EE/CS Building, 200 Union St SE

Minneapolis, MN 55455

{kuram, karypis}@cs.umn.edu

Abstract— Over the years, frequent itemset discovery algo-
rithms have been used to find interesting patterns in various
application areas. However, as data mining techniques are being
increasingly applied to non-traditional domains, existing frequent
pattern discovery approach cannot be used. This is because
the transaction framework that is assumed by these algorithms
cannot be used to effectively model the datasets in these domains.
An alternate way of modeling the objects in these datasets is to
represent them using graphs. Within that model, one way of
formulating the frequent pattern discovery problem is as that of
discovering subgraphs that occur frequently over the entire set
of graphs. In this paper we present a computationally efficient
algorithm, called FSG, for finding all frequent subgraphs in large
graph datasets. We experimentally evaluate the performance
of FSG using a variety of real and synthetic datasets. Our
results show that despite the underlying complexity associated
with frequent subgraph discovery, FSG is effective in finding
all frequently occurring subgraphs in datasets containing over
200,000 graph transactions and scales linearly with respect to
the size of the dataset.

Index Terms— Data mining, scientific datasets, frequent pat-
tern discovery, chemical compound datasets.

I. I NTRODUCTION

EFFICIENT algorithms for finding frequent patterns—
both sequential and non-sequential—in very large

datasets have been one of the key success stories of data
mining research [1], [2], [20], [36], [41], [49]. Nevertheless, as
data mining techniques have been increasingly applied to non-
traditional domains, there is a need to develop efficient and
general-purpose frequent pattern discovery algorithms that are
capable of capturing the strong spatial, topological, geometric,
and/or relational nature of the datasets that characterize these
domains.

In recent years, labeled topological graphs have emerged
as a promising abstraction to capture the characteristics of
these datasets. In this approach, each object to be analyzed is
represented via a separate graph whose vertices correspond
to the entities in the object and the edges correspond to
the relations between them. Within that model, one way of

This work was supported by NSF CCR-9972519, EIA-9986042, ACI-
9982274 and ACI-0133464, by Army Research Office contract DA/DAAG55-
98-1-0441, and by Army High Performance Computing Research Center
contract number DAAH04-95-C-0008. Access to computing facilities was
provided by the Minnesota Supercomputing Institute.

formulating the frequent pattern discovery problem is as that
of discovering subgraphs that occur frequently over the entire
set of graphs.

The power of graphs to model complex datasets has been
recognized by various researchers [3], [6], [10], [14], [19],
[23], [26], [30], [37], [43], [46] as it allows us to represent
arbitrary relations among entities and solve problems that we
could not previously solve. For instance, consider the problem
of mining chemical compounds to find recurrent substructures.
We can achieve that using a graph-based pattern discovery
algorithm by creating a graph for each one of the compounds
whose vertices correspond to different atoms, and whose edges
correspond to bonds between them. We can assign to each ver-
tex a label corresponding to the atom involved (and potentially
its charge), and assign to each edge a label corresponding
to the type of the bond (and potentially information about
their relative 3D orientation). Once these graphs have been
created, recurrent substructures across different compounds
become frequently occurring subgraphs. In fact, within the
context of chemical compound classification, such techniques
have been used to mine chemical compounds and identify
the substructures that best discriminate between the different
classes [5], [11], [27], [42], and were shown to produce
superior classifiers than more traditional methods [21].

Developing algorithms that discover all frequently occurring
subgraphs in a large graph dataset is particularly challenging
and computationally intensive, as graph and subgraph isomor-
phisms play a key role throughout the computations. In this
paper we present a new algorithm, calledFSG, for finding
all connected subgraphs that appear frequently in a large
graph dataset. Our algorithm finds frequent subgraphs using
the level-by-level expansion strategy adopted by Apriori [2].
The key features ofFSG are the following: (i) it uses a
sparse graph representation that minimizes both storage and
computation; (ii) it increases the size of frequent subgraphs
by adding one edge at a time, allowing it to generate the
candidates efficiently; (iii) it incorporates various optimiza-
tions for candidate generation and frequency counting which
enables it to scale to large graph datasets; and (iv) it uses
sophisticated algorithms for canonical labeling to uniquely
identify the various generated subgraphs without having to
resort to computationally expensive graph- and subgraph-

To appear in IEEE Transactions on Knowledge and Data Engineering 2

isomorphism computations.
We experimentally evaluatedFSG on three types of

datasets. The first two datasets correspond to various chemical
compounds containing over 200,000 transactions and frequent
patterns whose size is large, and the third type corresponds to
various graph datasets that were synthetically generated using
a framework similar to that used for market-basket transaction
generation [2]. Our results illustrate thatFSG can operate on
very large graph datasets and find all frequently occurring
subgraphs in reasonable amount of time and scales linearly
with the dataset size. For example, in a dataset containing
over 200,000 chemical compounds,FSG can discover all
subgraphs that occur in at least 1% of the transactions in
approximately one hour. Furthermore, our detailed evaluation
using the synthetically generated graphs shows that for datasets
that have a moderately large number of different vertex and
edge labels,FSG is able to achieve good performance as the
transaction size increases.

The rest of the paper is organized as follows. Section II pro-
vides some definitions and introduces the notation that is used
in the paper. Section III formally defines the problem of fre-
quent subgraph discovery and discusses the modeling strengths
of the discovered patterns and the challenges associated with
finding them in a computationally efficient manner. Section IV
describes in detail the algorithm. Section V describes the vari-
ous optimizations that we developed for efficiently computing
the canonical label of the patterns. Section VI provides a
detailed experimental evaluation ofFSG on a large number of
real and synthetic datasets. Section VII describes the related
research in this area, and finally, Section VIII provides some
concluding remarks.

II. D EFINITIONS AND NOTATION

A graphG = (V, E) is made of two sets, the set of vertices
V and the set of edgesE. Each edge itself is a pair of
vertices, and throughout this paper we assume that the graph
is undirected, i.e., each edge is an unordered pair of vertices.
Furthermore, we will assume that the graph islabeled. That
is, each vertex and edge has a label associated with it that is
drawn from a predefined set of vertex labels (LV) and edge
labels (LE). Each vertex (or edge) of the graph is not required
to have a unique label and the same label can be assigned to
many vertices (or edges) in the same graph.

Given a graphG = (V,E), a graphGs = (Vs, Es) will be a
subgraphof G if and only if Vs ⊆ V andEs ⊆ E and it will
be aninduced subgraphof G if Vs ⊆ V andEs contains all the
edges ofE that connect vertices inVs. A graph isconnected
if there is a path between every pair of vertices in the graph.
Two graphsG1 = (V1, E1) andG2 = (V2, E2) areisomorphic
if they are topologically identical to each other, that is, there
is a mapping fromV1 to V2 such that each edge inE1 is
mapped to a single edge inE2 and vice versa. In the case of
labeled graphs, this mapping must also preserve the labels on
the vertices and edges. Anautomorphismis an isomorphism
mapping whereG1 = G2. Given two graphsG1 = (V1, E1)
andG2 = (V2, E2), the problem ofsubgraph isomorphismis
to find an isomorphism betweenG2 and a subgraph ofG1,

TABLE I

NOTATION USED THROUGHOUT THE PAPER

Notation Description
k-subgraph A connected subgraph withk edges

(also written as a size-k subgraph)
Gk, Hk (Sub)graphs of sizek
E(G) Edges of a (sub)graphG
V (G) Vertices of a (sub)graphG
cl(G) A canonical label of a graphG
a, b, c, e, f edges
u, v vertices
d(v) Degree of a vertexv
l(v) The label of a vertexv
l(e) The label of an edgee
H = G− e H is a graph obtained by the deletion of edgee ∈ E(G)
D A dataset of graph transactions
{D1,D2, . . . ,DN} Disjoint N partitions ofD

(for i andj, i 6= j, Di ∩ Dj = ∅ and
S

i Di = D)
T A graph transaction
C A candidate subgraph
Ck A set of candidates withk edges
C A set of all candidates
F A frequent subgraph
Fk A set of frequentk-subgraphs
F A set of all frequent subgraphs
k∗ The size of the largest frequent subgraph inD
LE A set of all edge labels inD
LV A set of all vertex labels inD

i.e., to determine whether or notG2 is included inG1. The
canonical labelof a graphG = (V, E), cl(G), is defined to be
a uniquecode(i.e., a sequence of bits, a string, or a sequence
of numbers) that is invariant on the ordering of the vertices
and edges in the graph [15]. As a result, two graphs will have
the same canonical label if they are isomorphic. Examples of
different canonical label codes and details on how they are
computed are presented in Section V. Both canonical labeling
and determining graph isomorphism are not known to be either
in P or in NP-complete [15].

The sizeof a graphG = (V, E) is defined to be equal to
|E|. Given a size-k connected graphG = (V,E), by adding an
edgewe will refer to the operation in which an edgee = (u, v)
is added to the graph so that the resulting size-(k + 1) graph
remains connected. Similarly, bydeleting an edgewe refer to
the operation in whiche = (u, v) such thate ∈ E is deleted
from the graph and the resulting size-(k − 1) graph remains
connected. Note that depending on the particular choice ofe,
the deletion of the edge may result in deleting at most one
of its incident vertices if that vertex has onlye as its incident
edge.

Finally, the notation that we will be using through-out the
paper is shown in Table I.

III. F REQUENTSUBGRAPH DISCOVERY—PROBLEM

DEFINITION

The problem of finding frequently occurring connected
subgraphs in a set of graphs is defined as follows:

Definition 1 (Subgraph Discovery):Given a set of graphs
D each of which is an undirected labeled graph, and a
parameterσ such that0 < σ ≤ 1, find all connected undirected
graphs that are subgraphs in at leastσ|D| of the input graphs.
We will refer to each of the graphs inD as agraph transaction
or simply transactionwhen the context is clear, toD as the
graph transaction dataset, and toσ as thesupport threshold.

To appear in IEEE Transactions on Knowledge and Data Engineering 3

There are two key aspects in the above problem statement.
First, we are only interested in subgraphs that are connected.
This is motivated by the fact that the resulting frequent
subgraphs will be encapsulating relations (or edges) between
some of the entities (or vertices) of various objects. Within this
context, connectivity is a natural property of frequent patterns.
An additional benefit of this restriction is that it reduces the
complexity of the problem, as we do not need to consider
disconnected combinations of frequent connected subgraphs.
Second, we allow the graphs to be labeled, and as discussed
in Section II, input graph transactions and discovered frequent
patterns can contain multiple vertices and edges carrying the
same label. This greatly increases our modeling ability, as it
allow us to find patterns involving multiple occurrences of the
same entities and relations, but at the same time makes the
problem of finding such frequently occurring subgraphs non-
trivial. This is because in such cases, any frequent subgraph
discovery algorithm needs to correctly identify how a partic-
ular subgraph maps to the vertices and edges of each graph
transaction, that can only be done by solving many instances
of the subgraph isomorphism problem, which has been shown
to be in NP-complete [16].

IV. FSG—FREQUENTSUBGRAPH DISCOVERY

ALGORITHM

In developing our frequent subgraph discovery algorithm,
we decided to follow the level-by-level structure of the Apri-
ori [2] algorithm used for finding frequent itemsets. The
motivation behind this choice is the fact that the level-by-level
structure of Apriori requires the smallest number of subgraph
isomorphism computations during frequency counting, as it al-
lows it to take full advantage of the downward closed property
of the minimum support constraint and achieves the highest
amount of pruning when compared with the most recently
developed depth-first-based approaches such as dEclat [49],
Tree Projection [1], and FP-growth [20]. In fact, despite the
extra overhead due to candidate generation that is incurred
by the level-by-level approach, recent studies have shown
that because of its effective pruning, it achieves comparable
performance with that achieved by the various depth-first-
based approaches, as long as the data set is not dense or the
support value is not extremely small [18], [22].

The overall flow of our algorithm, calledFSG, is similar
to that of Apriori, and works as follows.FSG starts by
enumerating all frequent single- and double-edge subgraphs.
Then, it enters its main computational phase, which consists
of a main iteration loop. During each iteration,FSG first
generates all candidate subgraphs whose size is greater than
the previous frequent ones by one edge, and then counts the
frequency for each of these candidates and prunes subgraphs
that do no satisfy the support constraint.FSG stops when
no frequent subgraphs are generated for a particular iteration.
Details on howFSG generates the candidates subgraphs, and
on how it computes their frequency are provided in Section IV-
A and Section IV-B, respectively.

To ensure that the various graph-related operations are
performed efficiently,FSG stores the various input graphs and

the various candidate and frequent subgraphs that it generates
using an adjacency list representation.

A. Candidate Generation

FSG generates candidate subgraphs of sizek+1 by joining
two frequent size-k subgraphs. In order for two such frequent
size-k subgraphs to be eligible for joining they must contain
the same size-(k − 1) connected subgraph. The simplest way
to generate the complete set of candidate subgraphs is to join
all pairs of size-k frequent subgraphs that have a common
size-(k − 1) subgraph. Unfortunately, the problem with this
approach is that a particular size-k subgraph, can have up to
k different size-(k− 1) subgraphs. As a result, if we consider
all such possible subgraphs and perform the resulting join
operations, we will end up generating the same candidate
pattern multiple times, and generating a large number of
candidate patterns that are not downward closed. The net effect
of this, is that the resulting algorithm spends a significant
amount of time identifying unique candidates and eliminating
non-downward closed candidates (both of which operations
are non-trivial as they require to determine the canonical
label of the generated subgraphs). Note that candidate gen-
eration approaches in the context of frequent itemsets, (e.g.,
Apriori [2]) do not suffer from this problem because they
use a consistent way to order the items within an itemset
(e.g., lexicographically). Using this ordering, they only join
two size-k itemsets if they have the same (k − 1)-prefix.
For example, a particular itemset{A,B, C,D} will only be
generated once (by joining{A,B, C} and{A,B, D}), and if
that itemset is not downward closed, it will never be generated
if only its {A,B, C} and{B, C,D} subsets were frequent.

Fortunately, the situation for subgraph candidate generation
is not as severe as the above discussion seems to indicate
and FSG addresses both of these problems by only joining
two frequent subgraphs if and only if they share a certain,
properly selected, size-(k−1) subgraph. Specifically, for each
frequent size-k subgraphFi, let P(Fi) = {Hi,1, Hi,2} be the
two size-(k−1) connected subgraphs ofFi such thatHi,1 has
the smallest canonical label andHi,2 has the second smallest
canonical label among the various connected size-(k−1) sub-
graphs ofFi. We will refer to these subgraphs as theprimary
subgraphsof Fi. Note that if every size-(k − 1) subgraph of
Fi is isomorphic to each other,Hi,1 = Hi,2 and |P(Fi)| = 1.
FSG will only join two frequent subgraphsFi andFj , if and
only if P(Fi)∩P(Fj) 6= ∅, and the join operation will be done
with respect to the common size-(k−1) subgraph(s). The proof
that this approach will correctly generate all valid candidate
subgraphs is presented in Appendix . This candidate generation
approach dramatically reduces the number of redundant and
non-downward closed patterns that are generated and leads to
significant performance improvements over the naive approach
(originally implemented in [29]).

The actual join operation of two frequent size-k subgraphs
Fi and Fj that have a common primary subgraphH is
performed by generating a candidate size-(k + 1) subgraph
that containsH plus the two edges that were deleted fromFi

and Fj to obtainH. However, unlike the joining of itemsets

To appear in IEEE Transactions on Knowledge and Data Engineering 4

b

a

a

ca

G5
1

a

a c

b
G4

1
a

a c

b
G4

2

+

ba

a c

G5
2

Join

(a) By vertex labeling

Join

G6
1

a

a

a

a

b

c

G6
2

a

a a

a

b c

b
G6

3

a

a

a

a

cG5
1

a

a a

a

b

G5
2

a

a a

a

c

+

(b) By multiple automorphisms of a single core

Fig. 1. Two cases of joining

in which two frequent size-k itemsets lead to a unique size-
(k + 1) itemset, the joining of two size-k subgraphs may
produce multiple distinct size-(k+1) candidates. This happens
for the following two reasons. First, the difference between the
common primary subgraph and the two frequent subgraphs
can be a vertex that has the same label. In this case, the
joining of such size-k subgraphs will generate two distinct
subgraphs of sizek + 1. Fig. 1(a) shows such an example, in
which the pair of graphsG4

a and G4
b generates two different

candidatesG5
a and G5

b . Second, the primary subgraph itself
may have multiple automorphisms, and each of them can lead
to a different size-(k + 1) candidate. In the worst case, when
the primary subgraph is an unlabeled clique, the number of
automorphisms isk!. An example for this case is shown in
Fig. 1(b), in which the primary subgraph—a square of four
vertices labeled witha—has four automorphisms resulting in
three different candidates of size six. Finally, in addition to
joining two different subgraphs,FSG also needs to perform
self join. This happens, for example, when the two graphs
Gk

i and Gk
j in Fig. 1 are identical. It is necessary because,

for example, consider graph transactions without any labels.
Then, there will be only one frequent size-1 subgraph and one
frequent size-2 subgraph regardless of the support threshold,
because those are the only allowed structures, and edges and
vertices do not have labels assigned. In general, whenever
|Fk| = 1, self join is necessary to obtain a set of valid(k+1)-
candidates.

B. Frequency Counting

The simplest way to determine the frequency of each can-
didate subgraph is to scan each one of the dataset transactions
and determine if it is contained or not using subgraph isomor-
phism. Nonetheless, having to compute these isomorphisms
is particularly expensive and this approach is not feasible for
large datasets. In the context of frequent itemset discovery
by Apriori, the frequency counting is performed substantially
faster by building a hash-tree of candidate itemsets and scan-
ning each transaction to determine which of the itemsets in
the hash-tree it supports. Developing such an algorithm for

frequent subgraphs, however, is challenging as there is no
natural way to build the hash-tree for graphs.

For this reason,FSG instead uses transaction identifier
(TID) lists, proposed by [13], [40], [47]. In this approach
for each frequent subgraphFSG keeps a list of transaction
identifiers that support it. Now whenFSG needs to compute
the frequency ofGk+1, it first computes the intersection of
the TID lists of its frequentk-subgraphs. If the size of the
intersection is below the support,Gk+1 is pruned, otherwise
FSG computes the frequency ofGk+1 using subgraph iso-
morphism by limiting the search only to the set of trans-
actions in the intersection of the TID lists. The advantages
of this approach are two-fold. First, in the cases where the
intersection of the TID lists is bellow the minimum support
level, FSG is able to prune the candidate subgraph without
performing any subgraph isomorphism computations. Second,
when the intersection set is sufficiently large,FSG only needs
to compute subgraph isomorphisms for those graphs that can
potentially contain the candidate subgraph and not for all the
graph transactions.

1) Reducing Memory Requirements of TID lists:The com-
putational advantages of TID lists come at the expense of
higher memory requirements for maintaining them. To address
this limitation we implemented a database-partitioning-based
scheme that was motivated by a similar scheme developed for
mining frequent itemsets [39]. In this approach, the database
is partitioned intoN disjoint partsD = {D1,D2, . . . ,DN}.
Each of these sub-databasesDi is mined to find a set of
frequent subgraphsFi, called local frequent subgraphs. The
union of the local frequent subgraphsC̄ =

⋃
i Fi, calledglobal

candidates, is determined and their frequency in the entire
database is computed by reading each graph transaction and
finding the set of subgraphs that it supports. The subset ofC̄
that satisfies the minimum support constraint is output as the
final set of frequent patternsF . Since the memory required for
storing the TID lists depends on the size of the database, their
overall memory requirements can be reduced by partitioning
the database in a sufficiently large number of partitions.

One of the problems with a naive implementation of the
above algorithm is that it can dramatically increase the num-
ber of subgraph isomorphism operations that are required to
determine the frequency of the global candidate set. In order to
address this problem,FSG incorporates three techniques: (i)
a priori pruning the number of candidate subgraphs that need
to be considered; (ii) using bitmaps to limit the frequency
counting of a particular candidate subgraph to only those
partitions that this frequency has not already being determined
locally; and (iii) taking advantage of the lattice structure ofC̄
to check each graph transaction only against the subgraphs that
are descendants of patterns that are already being supported
by that transaction. The net effect of these optimizations is
that, as shown in Section VI-A.1, theFSG’s overall run-time
increases slowly as the number of partitions increases.

The a priori pruning of the candidate subgraphs is achieved
as follows. For each partitionDi, FSG finds the set of
local frequent subgraphs and the set of local negative border

To appear in IEEE Transactions on Knowledge and Data Engineering 5

subgraphs1, and stores them into a fileSi along with their
associated frequencies. Then, it organizes the union of the
local frequent and local negative border subgraphs across the
various partitions into a lattice structure (calledpattern lattice),
by incrementally incorporating the information from each file
Si. Then, for each nodev of the pattern lattice it computes an
upper boundf∗(v) of its occurrence frequency by adding the
corresponding upper bounds for each one of theN partitions,
f∗(v) = f∗1 (v) + · · ·+ f∗P (v). For each partitionDi, f∗i (v) is
determined using the following equation:

f∗i (v) =
{

fi(v), if v ∈ Si

minu (f∗i (u)) , otherwise
,

wherefi(v) is the actual frequency of the pattern correspond-
ing to nodev in Di, andu is a connected subgraph ofv that
is smaller from it by one edge (i.e., it is its parent in the
lattice). Note that the variousf∗i (v) values can be computed
in a bottom-up fashion by a single scan ofSi, and used
directly to update the overallf∗(v) values. Now, given this
set of frequency upper bounds,FSG proceeds to prune the
nodes of the pattern lattice that are either infrequent or fail
the downward closure property.

V. CANONICAL LABELING

FSG relies on canonical labeling to efficiently check if
a particular pattern satisfies the downward closure property
of the support condition and to eliminate duplicate candidate
subgraphs. Developing algorithms that can efficiently compute
the canonical label of the various subgraphs is critical to ensure
that FSG can scale to very large graph datasets.

Recall from Section II that the canonical label of a graph
is nothing more than acodethat uniquely identifies the graph
such that if two graphs are isomorphic to each other, they
will be assigned the same code. A simple way of defining
the canonical label of a graph is as the string obtained
by concatenating the upper triangular entries of the graph’s
adjacency matrix when this matrix has been symmetrically
permuted so that this string becomes the lexicographically
largest (or smallest) over the strings that can be obtained from
all such permutations. This is illustrated in Fig. 2 that shows
a graphG3 and the permutation of its adjacency matrix2 that
leads to its canonical label “aaazyx”. In this code, “aaa” was
obtained by concatenating the vertex-labels in the order that
they appear in the adjacency matrix and “zyx” was obtained
by concatenating the columns of the upper triangular portion of
the matrix. Note that any other permutation ofG3’s adjacency
matrix will lead to a code that is lexicographically smaller (or
equal) to “aaazyx”. If a graph has|V | vertices, the complexity
of determining its canonical label using this scheme is in
O(|V |!) making it impractical even for moderate size graphs.

In practice, the complexity of finding the canonical label
of a graph can be reduced by using various heuristics to

1A local negative border subgraph is the one generated as a local candidate
subgraph but does not satisfy the minimum threshold for the partition.

2The symbolvi in the figure is a vertex ID, not a vertex label, and
blank elements in the adjacency matrix means there is no edge between the
corresponding pair of vertices. This notation will be used in the rest of the
section.

v2

v0 v1

x y

za

a

a

(a)G3

a

a

a

a a a

z

z

y

y

x

x

(b)

v0

v1

v2

v2v1v0

code= aaa zxy

a

a

a

a a a

y

y

x

z

z

x

(c)

v0

v1

v2

v2v0v1

code= aaa zyx

Fig. 2. Simple examples of codes and canonical adjacency matrices

narrow down the search space or by using alternate canonical
label definitions that take advantage of special properties that
may exist in a particular set of graphs [15], [31], [32]. In
particular, the Nauty program [31] developed by Brendan
McKay implements a number of such heuristics and has
been shown to scale reasonably well to moderate size graphs.
Unfortunately, Nauty does not allow graphs to have edge
labels and as such it cannot be used directly byFSG. As a
result we developed our own canonical labeling algorithm that
incorporates some of the existing heuristics extended to vertex-
and edge-labeled graphs as well as a number of new heuristics
that are well-suited for our particular problem. Details of our
canonical labeling algorithm are provided in the rest of this
section.

Note that our canonical labeling algorithm operates on the
adjacency matrix representation of a graph. For this reason,
FSG converts its internal adjacency list representation of
each candidate or frequent subgraph into its corresponding
adjacency matrix representation, prior to computing its canon-
ical label. Once the canonical label has been obtained, the
adjacency matrix representation is discarded.

A. Vertex Invariants

Vertex invariants [15] are some inherent properties of the
vertices that do not change across isomorphism mappings.
An example of such an isomorphism-invariant property is the
degree or label of a vertex, which remains the same regardless
of the mapping (i.e., vertex ordering). Vertex invariants can
be used to partition the vertices of the graph into equivalence
classes such that all the vertices assigned to the same partition
have the same values for the vertex invariants. Using these
partitions we can define the canonical label of a graph to be
the lexicographically largest code obtained by concatenating
the columns of the upper triangular adjacency matrix (as it was
done earlier), over all possible permutations of the vertices
subject to the constraint that the vertices of each one of the
partitions are numbered consecutively. Thus, the only modifi-
cation over our earlier definition is that instead of maximizing
over all permutations of the vertices, we only maximize over
those permutations that keep the vertices in each partition
together. Note that two graphs that are isomorphic will lead to
the same partitioning of the vertices and they will be assigned
the same canonical label.

If m is the number of partitions created by using ver-
tex invariants, containingp1, p2, . . . , pm vertices, respectively,
then the number of different permutations that we need to
consider is

∏m
i=1(pi!), which can be substantially smaller than

the |V |! permutations required by the earlier approach. We

To appear in IEEE Transactions on Knowledge and Data Engineering 6

x

(a)

y x
a

a b

a
a

a

a

a

p2

(d)

x

x

v2v1

v1

v2

y x

y

x

v3 v0

v3
v0

p0 p1

ba

a

b

code= aaab yx0x00

a

a

a

(c)

v1

v1

p0

a

a

bv2

v2
a b

x

x

p1 p2

v0
v3

x

y

yx

v0 v3

code= aaab xy0x00

a

b

a

a

abaa

x

x

(b)

v3

v0
v1
v2

v0 v1 v2 v3

y

xy

x

code= aaba y0x0x0

v0

v1

v2

v3

Fig. 3. A sample graph of size three and its adjacency matrices

have incorporated inFSG three types of vertex invariants
that utilize information about the degrees and labels of the
vertices, the labels and degrees of their adjacent vertices, and
information about their adjacent partitions.

a) Vertex Degrees and Labels:This invariant partitions
vertices into disjointed groups such that each partition contains
vertices with the same label and the same degree. Fig. 3
illustrates the partitioning induced by this set of invariants for
an example graph of size four. Based on their degree and their
labels, the vertices are partitioned into three groupsp0 = {v1},
p1 = {v0, v3} and p2 = {v2} as shown in Fig. 3(c). Fig. 3
shows the adjacency matrix corresponding to the partition-
constrained permutation that leads to the canonical label of
the graph. Using the partitioning based on vertex invariants,
we try only 1!× 2!× 1! = 2 permutations, although the total
number of permutations for four vertices is4! = 24.

b) Neighbor Lists: Invariants that lead to finer-grain
partitioning can be created by incorporating information about
the labels of the edges incident on each vertex, the degrees
of the adjacent vertices, and their labels. In particular, we
describe an adjacent vertexv by a tuple (l(e), d(v), l(v))
where l(e) is the label of the incident edgee, d(v) is the
degree of the adjacent vertexv, and l(v) is its vertex label.
Now, for each vertexu, we construct its neighbor listnl(u) that
contains the tuples for each one of its adjacent vertices. Using
these neighbor lists, we then partition the vertices into disjoint
sets such that two verticesu andv will be in the same partition
if and only if nl(u) = nl(v). Note that this partitioning
is performed within the partitions already computed by the
previous set of invariants.

Fig. 4 illustrates the partitioning produced by also incorpo-
rating theneighbor list invariant on the graph of Fig. 4(a).
Specifically, Fig. 4(b) shows the partitioning produced by the
vertex degrees and labels, and Fig. 4(c) shows the partitioning
that is produced by also incorporating neighboring lists. The
neighbor lists are shown in Fig. 4(d). For this example we
were able to reduce the number of permutations that needs to
be considered from4!× 2! to 2!.

c) Iterative Partitioning: Iterative partitioning general-
izes the idea of the neighbor lists, by incorporating the
partition information [15]. This time, instead of a tuple
(l(e), d(v), l(v)), we use a pair(p(v), l(e)) for representing
the neighbor lists wherep(v) is the identifier of a partition to
which a neighbor vertexv belongs andl(e) is the label of the
incident edge to the neighbor vertexv.

The effect of iterative partitioning is illustrated in Fig. 5.
In this example graph, all edges have the same labelx and
all vertices have the same labela. Initially the vertices are
partitioned into two groups only by their degrees, and in each

b

b

b

b

a

a

b b b b a a

y y y

y

y

y

y

y

y y

x

x

z

z

(c)

v5

v2

v4

v1

v3

v0

v2 v4 v1 v3 v0 v5

p0 p1 p2 p3 p4

code= bbbaa yyyyy000x0000z0

x

y

y y y

y
z

(a)

a

b

b b

a

b

b

b

b

b

a

a

b b b b a a

y y y

y

y

y

y

y

y y

x

x

z

z

p0 p1

(b)

v5

v1

v3

v2

v4

v2 v4 v1 v3 v0

v0

v5

code= bbbbaa yyyyy000x0000z0

(y, 3, b), (y, 3, b), (y, 3, b)

(y, 3, b), (y, 3, b), (y, 3, b)

(x, 1, a), (y, 3, b), (y, 3, b)

(y, 3, b), (y, 3, b), (z, 1, a)

(x, 3, b)

(z, 3, b)

(d)

v1 v4

v3v2

v5

v0

Fig. 4. Use of neighbor lists

xx x x

x xx

a a a a

a

a

a a

(a)

(p0, a)

(p0, a), (p1, a), (p1, a)

(p0, a)

(p0, a)

(p0, a)

(p0, a)

(p0, a), (p1, a), (p1, a)

(p0, a), (p0, a), (p1, a)

a a a a a a a a

v2
v3
v4
v5
v6
v7

a

a

a

a

a

a

a

a

v3 v4 v5 v6 v7

x

x

x

x

p0 p1

v0

v1

v2v1 v0

x

x

x

x x

x

x

x x

x

(b)
code= aaaaaaaa xx000x00x0x00000x00000x00000

a a a a a a a a

v2

v6
v7

a

a

a

a

a

a

a

a

v6 v7

x

x

(p1, a), (p1, a), (p2, a)

(p0, a), (p2, a), (p2, a)

p0 p1 p2

v0

v1

v1 v0

x

x

xx

x

x

x (p0, a), (p2, a), (p2, a)

(p1, a)

(p1, a)

(p1, a)

v4

v3

v5 x

x

x

v4v2 v3v5

x

x

(p1, a)

(p0, a)

(c)
code= aaaaaaaa xx0x0000x000x000x00000x00000

a a a a a a a a

v2

v6
v7

a

a

a

a

a

a

a

a

v6 v7

x

x

(p1, a), (p1, a), (p2, a)

(p0, a), (p3, a), (p3, a)

p0 p1

v0

v1

v1 v0

x

x

xx

x

x

x

(p1, a)

(p1, a)

(p1, a)

v4

v3

v5 x

x

x

v4v2 v3v5

x

x

(p1, a)

(p0, a)

p2 p3

(p0, a), (p3, a), (p3, a)

(d)

code= aaaaaaaa xx0x0000x000x000x00000x00000

v7 v3

v6

v2v0 v1

v5 v4

Fig. 5. An example of iterative partitioning

To appear in IEEE Transactions on Knowledge and Data Engineering 7

partition they are sorted by their neighbor lists (Fig. 5(b)).
The ordering of those partitions is based on the degrees and
the labels of each vertex and its neighbors. Then, we split the
first partition p0 into two, because the neighbor lists ofv1

is different from those ofv0 and v2. By renumbering all the
partitions, updating the neighbor lists, and sorting the vertices
based on their neighbor lists, we obtain the matrix as shown in
Fig. 5(c). Now, because the partitionp2 becomes non-uniform
in terms of the neighbor lists, we again dividep2 to factor out
v5, renumber partitions, update and sort the neighbor lists, and
sort vertices to obtain the matrix in Fig. 5(d).

B. Degree-based Partition Ordering

In addition to using the vertex invariants to compute a fine-
grain partitioning of the vertices, the overall run-time of the
canonical labeling can be further reduced by properly ordering
the various partitions. This is because, a proper ordering of the
partitions may allow us to quickly determine whether a set of
permutations can potentially lead to a code that is smaller than
the current best code or not; thus, allowing us to prune large
parts of the search space.

Recall from Section V-A that we obtain the code of a graph
by concatenating its adjacent matrix in a column-wise fashion.
As a result, when we permute the rows and the columns of a
particular partition, the code corresponding to the columns of
the preceding partitions is not affected. Now, while we explore
a particular set of within-partition permutations, if we obtain
a prefix of the final code that is larger than the corresponding
prefix of the currently best code, then we know that regardless
of the permutations of the subsequent partitions, this code
will never be smaller than the currently best code, and the
exploration of this set of permutations can be terminated. The
critical property that allows us to prune such unpromising
permutations is our ability to obtain abadcode prefix. Ideally,
we will like to order the partitions in a way such that the
permutations of the vertices in the initial partitions lead to
dramatically different code prefixes, which it turn will allow
us to prune parts of the search space. In general, the likelihood
of this happening depends on the density (i.e., the number
of edges) of each partition, and for this reason we sort the
partitions in decreasing order of the degree of their vertices.

C. Vertex Stabilization

Vertex stabilization is effective for finding isomorphism of
graphs with regular or symmetric structures [31]. The key idea
is to break the topological symmetry of a graph by forcing
a particular vertex into its own partition, when the iterative
partitioning leaves a large vertex partition which cannot be
decomposed into smaller partitions anymore.

For example, consider a cycleG = (V, E) of k edges where
all the edges and the vertices have the same label. Each vertex
is equivalent to any other since they are identical in terms of
their degree, label, neighbors, and resulting partitions. As a
result, a vertex cannot be distinguished from others and there
will be only a singe partition containing all thek vertices.
To obtain a canonical label under such a partitioning with the
iterative partitioning only, it would requireO(k!) operations.

Vertex stabilization breaks such a regular structure by as-
suming that a particular vertex in a large partition with many
equivalent verticesis different from the others. The selected
vertex forms a new singleton partition for itself, which triggers
for the rest of the vertices the successive iterative partitioning
the details of which are described in Section V-A.0.c. Because
we have chosen the vertex arbitrarily, we have to repeat
the same process for the remaining vertices in the original
partition. During the successive iterative partitioning, the ver-
tex stabilization may be applied repeatedly if the iterative
partitioning can not decompose a large partition effectively.

For example, in the case of a cycle withk edges, once a
particular vertexv is chosen from the initial partition with all
the k vertices, it breaks the symmetry and we immediately
obtain b(k − 1)/2c+ 1 partitions based on the distance from
v to each vertex. Thus, the necessary number of permutations
to compute the canonical label after this partitioning is(b(k−
1)/2c + 1)!. Because there arek such choices for the first
vertexv, the entire computational complexity for the canonical
labeling ofG is bounded byO(k(k/2)!) which is significantly
smaller thanO(k!). Note that the vertex stabilization is not
limited to cycles and that it is applicable to any types of graphs.

Once a partition becomes small enough, the straightforward
permutation can be simpler and faster than vertex stabilization,
in order to obtain a canonical label. Thus, our canonical
labeling algorithm applies vertex stabilization only if the size
of a vertex partition is greater than five.

For further details on vertex stabilization the readers should
refer to a textbook on permutation groups such as [12].

VI. EXPERIMENTAL EVALUATION

We experimentally evaluated the performance ofFSG using
actual graphs derived from the molecular structure of chemical
compounds, and graphs generated synthetically. The first type
of datasets allows us to evaluate the effectiveness ofFSG for
finding rather large patterns and its scalability to large real
datasets, whereas the second one, a set of synthetic datasets,
allows us to evaluate the performance ofFSG on datasets
whose characteristics (e.g., number of graph transactions,
average graph size, average number of vertex and edge labels,
and average length of patterns) differs dramatically; thus,
providing insights on how wellFSG scales with respect to
these characteristics. All experiments were done on dual AMD
Athlon MP 1800+ (1.53 GHz) machines with 2 Gbytes main
memory, running the Linux operating system. All the times
reported are in seconds.

A. Chemical Compound Datasets

We derived graph datasets from two publicly available
datasets of chemical compounds. The first dataset3 contains
340 chemical compounds and was originally provided for the
Predictive Toxicology Evaluation (PTE) Challenge [43], and
the second dataset4 contains 223,644 chemical compounds and

3ftp://ftp.comlab.ox.ac.uk/pub/Packages/ILP/Datasets/carcinogenesis/
progol/carcinogenesis.tar.Z

4http://dtp.nci.nih.gov/docs/3ddatabase/structuralinformation/
structuraldata.html

To appear in IEEE Transactions on Knowledge and Data Engineering 8

is available from the Developmental Therapeutics Program
(DTP) at National Cancer Institute. From the description of
chemical compounds in those two datasets, we created a
transaction for a compound, a vertex for an atom, an edge
for a bond. Each vertex has a vertex label assigned for its
atom type and each edge has an edge label assigned for its
bond type. In the PTE dataset there are 66 atom types and 4
bond types, and in the DTP dataset there are 104 atom types
and 3 bond types. Each graph transaction obtained from the
PTE and the DTP datasets has 27 and 22 edges on the average,
respectively.

d) Results:Table II shows the results byFSG on four
datasets derived from the PTE and DTP datasets. The first
dataset was obtained by using all the compounds of the PTE
dataset, whereas the remaining three datasets were obtained by
randomly selecting 50,000, 100,000, and 200,000 compounds
from the DTP dataset. There are three types of results shown
in the table, the run-time in seconds (t), the size of the largest
discovered frequent subgraph (k∗), and the total number of
frequent patterns (|F|) that were generated. The minimum
support threshold was ranging from 10% down to 1.0%.
Dashes in the table correspond to experiments that were
aborted due to high computational requirements. All the results
in this table were obtained using a single partition of the
dataset.

FSG is able to effectively operate on datasets containing
200,000 transactions and discover all frequent connected sub-
graphs which occur in 1% of the transactions in approximately
one hour. With respect to the number of transactions, the
run-time scales almost linearly. For instance, with the 2%
support, the run-time for 50,000 transactions is 263 seconds,
whereas the corresponding run-time for 200,000 transactions
is 1,343 seconds, an increase by a factor of 5.1. As the support
decreases, the run-time increases reflecting the increase of the
number of frequent subgraphs found from the input dataset.
For example, with 200,000 transactions, the run-time for the
1% support is 4.2 times longer than that for the 3% support,
and the number of found frequent subgraphs for the 1%
support was 8.2 times more than that for the 3% support.

Comparing the performance on the PTE and DTP-derived
datasets we notice that the run-time for the PTE dataset
dramatically increases as the minimum support decreases, and
eventually overtakes the run-time for most of the DTP-derived
datasets. This behavior is due to the maximum size and the
total number of frequent subgraphs that are discovered in this
dataset (both of which are shown in Table II). For lower
support values the PTE dataset contains both more and longer
frequent subgraphs than the DTP-derived datasets do. This is
due to the inherent characteristics of the PTE dataset because
it contains larger and more similar compounds. For example,
the PTE dataset contains 26 compounds with over 50 edges
and the largest compound has 214 edges. Despite that,FSG
requires 459 seconds for a support value of 2.0%, and is able
to discover patterns containing over 22 edges.

1) Reducing Memory Requirement of TID lists:To evaluate
the effectiveness of the database-partitioning-based approach
(described in Section IV-B.1) for reducing the amount of mem-
ory required by TID lists (TID list memory), we performed a

set of experiments in which we used two datasets derived from
the DTP dataset containing 100,000 and 200,000 chemical
compounds, respectively. For each dataset we usedFSG to
find all frequent patterns that occur in at least 1% of the
transactions by partitioning the dataset in 2, 3, 4, 5, 10, 20,
30, 40, and 50 partitions. These results are shown in Table III.
For each experiment, this table shows the total run-time, the
maximum amount of TID list memory, and the maximum
amount of memory required to store the pattern lattice (pattern
lattice memory).

From these results we can see that the database-partitioning-
based approach is quite effective in reducing the TID list
memory, because it decreases almost linearly as the number
of partitions. Moreover, the various optimizations described in
Section IV-B.1 are quite effective in limiting the degradation
in runtime of the resulting algorithm. For example, for the
200,000-compound dataset and 50 partitions, the runtime
increases only by a factor of 3.4 over that for a single
partition. Also, the pattern lattice memory increases slowly
as the number of partitions increases, and unless the number
of partitions is quite large, it is still dominated by the memory
required to store the TID lists. Note that these results suggest
that there is an optimal point for the number of partitions that
leads to the least amount of memory, as the pattern lattice
memory will eventually exceed the TID list memory as the
number of partitions increases.

B. Synthetic Datasets

To evaluate the performance ofFSG on datasets with dif-
ferent characteristics we developed a synthetic graph generator
which can control the number of transactions|D|, the average
number of edges in each transaction|T |, the average number of
edges|I| of the potentially frequent subgraphs, the number of
potentially frequent subgraphs|S|, the number of distinct edge
labels |LE |, and the number of distinct vertex labels|LV | of
the generated dataset. The design of our generator was inspired
by the synthetic transaction generator developed by the Quest
group at IBM and used extensively to evaluate algorithms that
find frequent itemsets [1], [2], [20].

The actual generator works as follows. First, it generates a
set of|S| potentially frequent connected subgraphs calledseed
patternswhose size is determined by Poisson distribution with
mean|I|. For each seed pattern, the topology and the labels
of the edges and the vertices are chosen randomly. Each seed
pattern has a weight assigned, which becomes a probability
that the seed pattern is selected to be included in a graph
transaction. The weights are calculated by dividing a random
variable which obeys an exponential distribution with unit
mean by the number of edges in the seed pattern, and the sum
of the weights of all the seed patterns is normalized to one.
We call this setS of seed patterns aseed pool. The reason that
we divide the exponential random variable by the number of
edges is to reduce the chance that larger weights are assigned
to larger seed patterns. Otherwise, once a large weight was
assigned to a large seed pattern, the resulting dataset would
contain an exponentially large number of frequent patterns.

Next, the generator creates|D| transactions. First, the gen-
erator determines the target size of each transaction, which is

To appear in IEEE Transactions on Knowledge and Data Engineering 9

TABLE II

RUN-TIME IN SECONDS FOR THEPTE AND DTP CHEMICAL COMPOUND DATASETS.

Support Run-timet[sec], Size of Largest Frequent Patternk∗, and Number of Frequent Patterns|F|
threshold PTE |D| = 340 DTP |D| = 50, 000 DTP |D| = 100, 000 DTP |D| = 200, 000

[%] t[sec] k∗ |F| t[sec] k∗ |F| t[sec] k∗ |F| t[sec] k∗ |F|
10.0 3 11 844 74 9 351 156 9 360 337 9 373
9.0 3 11 977 80 9 400 169 10 420 366 10 442
8.0 4 11 1323 87 11 473 184 11 490 401 11 512
7.0 4 12 1770 94 11 562 200 11 591 437 11 635
6.0 6 13 2326 109 12 782 230 12 813 503 12 860
5.0 9 14 3608 122 12 1017 259 12 1068 570 12 1140
4.0 16 15 5935 146 13 1523 316 13 1676 705 13 1855
3.0 60 22 22758 186 14 2705 398 14 2810 894 14 3004
2.0 459 25 136927 263 14 5295 571 14 5633 1343 15 6240
1.0 — — — 658 16 19373 1458 16 20939 3776 17 24683

Note. Dashes indicate the computation was aborted because of the too long run-time.
|D|: Number of transactions

TABLE III

RUN-TIME AND TID LIST MEMORY WITH PARTITIONING

Run-time [sec]
|D| Number of Partitions

1 2 3 4 5 10 20 30 40 50
100,000 1432 1878 2032 2189 2356 2924 3899 4842 6122 7459
200,000 3698 4494 5095 5064 5538 6418 7856 9516 11165 12670

Maximum amount of memory for storing TID lists [Mbytes]
|D| Number of Partitions

1 2 3 4 5 10 20 30 40 50
100,000 53.8 27.0 18.1 13.6 11.0 5.6 2.9 2.0 1.5 1.2
200,000 118 59.1 39.5 29.6 23.9 12.1 6.2 4.2 3.2 2.6

Maximum amount of memory for storing pattern lattice [Mbytes]
|D| Number of Partitions

1 2 3 4 5 10 20 30 40 50
100,000 1.4 1.5 1.5 1.6 1.9 2.5 3.2 3.8 4.3
200,000 1.7 1.8 1.8 1.8 2.0 2.4 2.8 3.2 3.6
Note. The two datasets are generated from the DTP dataset by sampling 100,000 and 200,000 chemical
compounds. The minimum supportσ = 1.0%
Pattern lattice memory is left blank for a single partition because the lattice is not built.
|D|: Number of transactions

a Poisson random variable whose mean is equal to|T |. Then,
the generator selects a seed pattern from the seed pool, by
rolling an |S|-sided die. Each face of this die corresponds to
the probability assigned to a seed pattern in the seed pool. If
the size of the selected seed pattern fits in the target transaction
size, the generator adds it to the transaction. If the size of the
current intermediate transaction does not reach its target size,
we keep selecting and putting another seed pattern into it.
When adding the selected seed pattern makes the intermediate
transaction size greater than the target transaction size, we
add it for the half of the cases, and discard it and move onto
the next transaction for the rest of the half. The generator
adds a seed pattern into a transaction by connecting randomly
selected pair of vertices, one from the transaction and the other
from the seed pattern.

a) Results:Using this generator, we obtained a number
of different datasets by varying the number of vertex labels
|LV |, the average size of the potentially frequent subgraphs
|I|, and the average size of each transaction|T |, while keeping
fixed the total number of transactions|D| = 10, 000, seed
patterns|S| = 200, and edge labels|LE | = 1 respectively. De-
spite our best efforts in designing the generator, we observed
that as both|T | and |I| increase, different datasets created
under the same parameter combination lead to different run-

0 5 10 15 20
10

−1

10
0

10
1

10
2

10
3

10
4

|L
v
|

R
un

ti
m

e
M

ed
ia

n[
s]

|I| = 5

0 5 10 15 20
10

−1

10
0

10
1

10
2

10
3

10
4

|L
v
|

R
un

ti
m

e
M

ed
ia

n[
s]

|I| = 7

0 5 10 15 20
10

−1

10
0

10
1

10
2

10
3

10
4

|L
v
|

R
un

ti
m

e
M

ed
ia

n[
s]

|I| = 9

|T| = 40
|T| = 30
|T| = 20
|T| = 10

|T| = 40
|T| = 30
|T| = 20
|T| = 10

|T| = 40
|T| = 30
|T| = 20
|T| = 10
|T| = 5

Fig. 6. Median of 10 run-times in seconds for synthetic data sets.|T | is
the average size of transactions,|I| is the average size of seed patterns, and
|LV | is the number of distinct vertex labels.

time because some may contain harder seed patterns (e.g.,
regular patterns with similar labels) than others do. To reduce
this variability, we created ten different datasets for each
parameter combination with different seeds for the pseudo
random number generator and runFSG on all of them. The
median of these run-times for each of the ten datasets is shown
in Fig. 6. Note that these results were obtained using 2% as
the minimum support threshold.

In general, theFSG’s run-time decreases as the number of
vertex labels|LV | increases, whereas it increases when the
average size of the seed patterns|I| or the average transaction

To appear in IEEE Transactions on Knowledge and Data Engineering 10

size|T | increases. These trends are consistent with the inherent
characteristics of the datasets because of the following reasons:
(i) As the number of vertex labels increases, the space of pos-
sible automorphisms and subgraph isomorphisms decreases—
leading to faster candidate generation and frequency counting.
(ii) As the size of the average seed pattern increases, because
of the combinatorial nature of the problem, the total number
of frequent patterns to be found from the dataset increases
exponentially—increasing the overall run-time. (iii) As the size
of the average transaction|T | increases frequency counting by
subgraph isomorphism becomes expensive, regardless of the
size of candidate subgraphs. Moreover, the total number of
frequent patterns to be found from the dataset also increases
because more seed patterns can be put into each transaction.
Both of these factors contribute in increasing the overall run-
time.

VII. R ELATED WORK

Over the years, a number of different algorithms have been
developed to find frequent patterns corresponding to frequent
subgraphs in graph datasets. Developing such algorithms
is particularly challenging and computationally intensive, as
graph and subgraph isomorphisms play a key role throughout
the computations. For this reason, a considerable amount of
work has been focused on approximate algorithms [23], [28],
[35], [46] that use various heuristics to prune the search
space. However, a number of exact algorithms have been
developed [5], [10], [17], [24], [25], [45] that guarantee to find
all subgraphs that satisfy certain minimum support or other
constraints.

Probably the most well-known heuristic-based approach
is the SUBDUE system, originally developed in 1994, but
has been improved over the years [8], [23]. SUBDUE finds
patterns which can effectively compress the original input
data based on the minimum description length principle, by
substituting those patterns with a single vertex. To narrow
the search-space and improve its computational efficiency,
SUBDUE uses a heuristic beam search approach, which quite
often results in failing to find subgraphs that are frequent.
Nevertheless, despite its heuristic nature, its computational
performance is considerably worse compared to some of the
recent frequent subgraph discovery algorithms. Experiments
reported in [17] for the PTE dataset [43], show that SUBDUE
spends about 80 seconds on a Pentium III 900 MHz computer
to find five most frequent substructures. In contrast, theFSG
algorithm developed by our group [29], takes only 20 seconds
on Pentium III 450 MHz to find all 3,608 frequent subgraphs
that occur in at least 5% of the compounds.

A number of approaches for finding commonly occurring
subgraphs have been developed in the context of inductive
logic programming (ILP) systems [19], [33], [34], [38], [44],
as graphs can be easily expressed using first-order logic. Each
vertex and edge is represented as a predicate and a subgraph
corresponds to a conjunction of such predicates. The goal of
ILP-based approaches is to induce a set of rules capable of
correctly classifying a set of positive and negative examples.
In the case of graphs modeled by ILP systems, these rules

usually correspond to subgraphs. Most ILP-based approaches
are greedy in nature and use various heuristics to prune the
space of possible hypotheses. Thus, they tend to find subgraphs
that have high support and can act as good discriminators
between classes. However, they are not guaranteed to discover
all frequent subgraphs. A notable exception is the ILP system
WARMR developed by Dehaspe and De Raedt [9] capable
of finding all frequently occurring subgraphs. WARMR is not
specialized for handling graphs, however, it does not employ
any graph-specific optimizations and as such, it has high
computational requirements.

In the last three years, three different algorithms have
been developed capable of finding all frequently occurring
subgraphs with reasonable computational efficiency. These are
AGM by Inokuchi et al. [24], [25], the chemical substructure
discovery algorithm developed by Borgelt and Berthold [5],
and the gSpan algorithm developed by Yan and Han [45].
Among them, the early version of AGM [24] was developed
prior to FSG, whereas the other algorithms were developed
after the initial development ofFSG [29].

AGM initially developed to find frequently induced sub-
graphs [24] and later extended to find arbitrary frequent sub-
graphs [25] discovers the frequent subgraphs using a breadth-
first approach, and grows the frequent subgraphs one-vertex-
at-a-time. To distinguish a subgraph from another, it uses
a canonical labeling scheme based on the adjacency matrix
representation. Experiments reported in [24] show that AGM
achieves good performance for synthetic dense datasets, and
it required 40 minutes to 8 days to find all frequent induced
subgraphs in the PTE dataset, as the minimum support thresh-
old varied from 20% to 10%. Their modified algorithm [25]
uses previously found embeddings of a frequent pattern in
a transaction to save the subgraph isomorphism computation
and improves the performance significantly at the expense of
increased memory requirements.

The chemical substructure mining algorithm developed by
Borgelt and Berthold [5], finds frequent substructures (con-
nected subgraphs) using a depth-first approach similar to
that used by dEclat [49] in the context of frequent itemset
discovery. In this algorithm, once a frequent subgraph has
been identified, it then proceeds to explore the input dataset for
frequent subgraphs all of which contain the frequent subgraph.
To reduce the number of subgraph isomorphism operations, it
keeps the embeddings of previously discovered subgraphs and
tries to extend the embeddings by one edge which is similar
to the modified version of AGM [25]. In addition, since all the
embeddings of the frequent subgraph are known, they project
the original dataset into a smaller one by removing edges and
vertices that are not used by any embeddings. Nevertheless,
despite these optimizations, the reported speed of the algorithm
is slower than that achieved byFSG. This is primarily due to
two reasons. First, their candidate subgraph generation scheme
does not ensure that the same subgraph is generated only
once, as a result, they end up generating and determining
the frequency of the same subgraph multiple times. Second,
in chemical datasets, the same subgraph tends to have many
embeddings (in the range of 20–200), as a result the cost of
keeping track of them outweighs any benefits.

To appear in IEEE Transactions on Knowledge and Data Engineering 11

gSpan [45] finds the frequently occurring subgraphs also
following a depth-first approach. Unlike the algorithm by
Borgelt and Berthold, every time a candidate subgraph is
generated, its canonical label is computed. If the computed
label is the minimum one, the candidate is saved for further
exploration of the depth search. If not, the candidate is
discarded because there must be another path to the same
candidate. By doing so, gSpan avoids redundant candidate
generation. To ensure that these subgraph comparisons are
done efficiently, they use a canonical labeling scheme based
on depth-first traversals. In addition, gSpan does not keep
the information about all previous embeddings of frequent
subgraphs which saves the memory usage. However, all em-
beddings are identified on the fly, and use them to project the
dataset in a fashion similar to that used by [5]. According
to the reported performance in [45], gSpan andFSG are
comparable on the PTE dataset, whereas gSpan performs better
thanFSG on synthetic datasets.

In addition to the work on frequent subgraph discovery,
researchers has recently focused on the related but different
problem of mining trees to discover frequently occurring sub-
trees. In particular, two similar algorithms have been recently
developed by Asai et al. [4] and Zaki [48] that operate on
rooted ordered trees and find all frequent subtrees. A rooted
ordered tree is a tree in which one of its vertices is designated
as its root and the order of branches from every vertex is
specified. Because rooted ordered subtrees are in a special
class of graphs, the inherent computational complexity of the
problem is dramatically reduced as both graph and subgraph
isomorphism problems for trees can be solved in polynomial
time. Cong et al. [7] also proposed an algorithm to find
frequent subtrees from a set of tree transactions, which allows
wildcards on edge- and vertex-labels. Their algorithm first
finds a set of frequent paths which may contain wildcards,
allowing inexact match on both the structure as well as the
edge and vertex labels.

VIII. C ONCLUSIONS

In this paper we presented an algorithm,FSG, for finding
frequently occurring subgraphs in large graph datasets, that
can be used to discover recurrent patterns in scientific, spatial,
and relational datasets. Such patterns can play an important
role for understanding the nature of these datasets and can be
used as input to other data-mining tasks [11]. Our detailed
experimental evaluation shows thatFSG can scale reasonably
well to very large graph datasets provided that the graphs
contain a sufficiently many different labels of edges and
vertices. Key elements toFSG’s computational scalability are
the highly efficient canonical labeling algorithm and candidate
generation scheme, and its use of a TID list based approach
for frequency counting. These three features combined, allow
FSG to uniquely identify the various generated subgraphs,
generate candidate patterns with limited degree of redundancy,
and to quickly prune most of the infrequent subgraphs without
having to resort to computationally expensive graph and sub-
graph isomorphism computations. Furthermore, we presented
and evaluated a database-partitioning-based approach that sub-

stantially reducesFSG’s memory requirement for storing TID
lists with only a moderate increase in run-time.

APPENDIX

Correctness ofFSG’s Candidate Generation
Let C denote a connected size-(k + 1) subgraph which is

to be generated as a valid candidate. A size-(k + 1) subgraph
is a valid candidateif each of its connected size-k subgraphs
is frequent. LetF(C) = {Fi} and H(C) = {Hi} denote
sets of all connected size-k and size-(k − 1) subgraphs ofC,
respectively. For eachFi ∈ F(C), let ci be the edge ofC such
thatFi = C−ci. Likewise, for eachHi ∈ H(C), let ai andbi

be the edges ofC such thatHi = C − ai− bi. LetH+(C) =
{H+

i } be the set of connected size-(k − 1) subgraphs ofC
such that for eachH+

i , there exists a pair of edgesa+
i andb+

i

that belong toC so thatH+
i = C−a+

i − b+
i and bothC−a+

i

and C − b+
i are connected. Note thatH+(C) ⊆ H(C) and

it contains only those size-(k − 1) subgraphs ofH(C) that
regardless of the order in which the two edges are removed,
the intermediate size-k subgraph remains connected. LetH∗ ∈
H+(C) denote a(k − 1)-subgraph whose canonical label is
the smallest among all the(k − 1)-subgraphs inH+(C). We
will refer to H∗ as thepivotal coreof C. Let a∗ andb∗ be the
edges deleted fromC to obtainH∗, and we refer toa∗ and
b∗ as thepivotal edges. Let F−a∗ and F−b∗ denoteC − a∗

and C − b∗, respectively. We will refer toF−a∗ and F−b∗

as theprimary frequent size-k subgraphs ofC. Note that by
construction, we have thatF−a∗ ∈ F(C), F−b∗ ∈ F(C), and
that H∗ is a connected size-(k − 1) subgraph of bothF−a∗

andF−b∗ .
Lemma 1:Given a connected size-(k + 1) valid candidate

subgraphC, let H∗, a∗, b∗ be the pivotal core and pivotal
edges ofC, respectively, and letF−a∗ and F−b∗ be the
primary size-k subgraphs ofC. Then, in each of the two
primary size-k subgraphs ofC, there exists at most one
connected size-(k − 1) subgraph whose canonical label is
smaller than that of the pivotal coreH∗.

Proof: We prove the lemma only forF−a∗ and the same
proof holds forF−b∗ .

Let H ′ be a connected size-(k−1) subgraph ofF−a∗ such
thatcl(H ′) < cl(H∗). Note that sinceF−b∗ ∈ F(C), we have
that H ′ ∈ H(C). Let a′ and b′ be the two edges ofC that
were deleted to obtainH ′, that is,H ′ = C − a′ − b′. From
the definition ofH∗, we have thatH ′ 6∈ H+(C), otherwise
we would have thatH∗ = H ′. Without loss of generality, we
assume thatC−a′ is connected and thatC−b′ is disconnected.

Now, sinceF−a∗ is a connected size-k subgraph ofC that
containsH ′, we know thatF−a∗ will be either C − a′ or
C−b′. However, becauseC−b′ is disconnected, we have that
F−a∗ = C − a′, and becauseF−a∗ was initially obtained by
deletinga∗, we have thata′ = a∗. Thus,H ′ can be written as

H ′ = C − a∗ − b′, (1)

wherea∗ is independent ofH ′. Moreover, becauseC − b′ is
disconnected,b′ must be a cut-edge that separatesa∗ from the
rest of the graph.

Given the above, we can now show by contradiction that
there exists only one connected size-(k−1) subgraph ofF−a∗

To appear in IEEE Transactions on Knowledge and Data Engineering 12

whose canonical label is smaller thanH∗. Assume that there
exist two distinct connected size-(k − 1) subgraphs,H ′

i and
H ′

j , such thatcl(H ′
i) < cl(H∗) and cl(H ′

j) < cl(H∗). Let
H ′

i = C − a′i− b′i andH ′
j = C − a′j − b′j , and without loss of

generality, assume thatC − a′i andC − a′j are connected, and
C − b′i andC − b′j are disconnected. Then, from Equation (1)
we have that

H ′
i = C − a′i − b′i = C − a∗ − b′i

H ′
j = C − a′j − b′j = C − a∗ − b′j .

In order forH ′
i 6= H ′

j , we must have thatb′i 6= b′j . However,
because bothb′i and b′j are cut-edges separatinga∗ from the
rest of the graph, and becausea∗ can have only one such
cut-edge (otherwise it cannot be separated by a single-edge
deletion), we have thatb′i = b′j . This is a contradiction, and
thusH ′

i = H ′
j .

Using the above lemma, we can now prove the main
theorem that shows thatFSG’s candidate generation approach,
described in Section IV-A is correct.

Theorem 1:Given a connected size-(k +1) valid candidate
subgraphC, there exists a pair of connected size-k frequent
subgraphsFi and Fj such thatP(Fi) ∩ P(Fj) 6= ∅ that can
be joined with respect to their common primary subgraph to
obtainC.

Proof: Let H∗ = C−a∗−b∗ be the pivotal core ofC, and
let F−a∗ = C−a∗ andF−b∗ = C−b∗. Since from Lemma 1
there exists at most one such common connected size-(k −
1) subgraph shared byF−a∗ and F−b∗ that has a smaller
canonical label thanH∗, it follows that H∗ ∈ P(F−a∗)
and H∗ ∈ P(F−b∗); thus, H∗ ∈ P(F−a∗) ∩ P(F−b∗).
Consequently,Fi = F−a∗ and Fj = F−b∗ are the desired
size-k frequent subgraphs ofC, and H∗ is their common
primary subgraph that leads toC.

REFERENCES

[1] R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad. A tree projection
algorithm for generation of frequent item sets.Journal of Parallel and
Distributed Computing, 61(3):350–371, 2001.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining association rules.
In J. B. Bocca, M. Jarke, and C. Zaniolo, editors,Proc. of the 20th
Int. Conf. on Very Large Data Bases (VLDB), pages 487–499. Morgan
Kaufmann, September 1994.

[3] Y. Amit and A. Kong. Graphical templates for model registration.IEEE
Transactions on Pattern Analysis and Machine Intelligence, 18(3):225–
236, 1996.

[4] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto, and S. Arikawa.
Efficient substructure discovery from large semi-structured data. InProc.
of the 2nd SIAM International Conference on Data Mining (SDM’02),
pages 158–174, 2002.

[5] C. Borgelt and M. R. Berthold. Mining molecular fragments: Finding
relevant substructures of molecules. InProc. of 2002 IEEE International
Conference on Data Mining (ICDM), 2002.

[6] C.-W. K. Chen and D. Y. Y. Yun. Unifying graph-matching problem with
a practical solution. InProc. of International Conference on Systems,
Signals, Control, Computers, September 1998.

[7] G. Cong, L. Yi, B. Liu, and K. Wang. Discovering frequent substructures
from hierarchical semi-structured data. InProc. of the 2nd SIAM
International Conference on Data Mining (SDM-2002), 2002.

[8] D. J. Cook and L. B. Holder. Graph-based data mining.IEEE Intelligent
Systems, 15(2):32–41, 2000.

[9] L. Dehaspe and L. De Raedt. Mining association rules in multiple
relations. In S. Ďzeroski and N. Lavrǎc, editors, Proc. of the 7th
International Workshop on Inductive Logic Programming, volume 1297,
pages 125–132. Springer-Verlag, 1997.

[10] L. Dehaspe, H. Toivonen, and R. D. King. Finding frequent substructures
in chemical compounds. In R. Agrawal, P. Stolorz, and G. Piatetsky-
Shapiro, editors,Proc. of the 4th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (KDD-98), pages
30–36. AAAI Press, 1998.

[11] M. Deshpande, M. Kuramochi, and G. Karypis. Automated approaches
for classifying structures. InProc. of the 2nd Workshop on Data Mining
in Bioinformatics (BIOKDD ’02), 2002.

[12] J. D. Dixon and B. Mortimer. Permutation Groups, volume 163 of
Graduate Texts in Mathematics. Springer-Verlag, 1996.

[13] B. Dunkel and N. Soparkar. Data organizatinon and access for efficient
data mining. InProc. of the 15th IEEE International Conference on
Data Engineering, March 1999.

[14] D. Dupplaw and P. H. Lewis. Content-based image retrieval with scale-
spaced object trees. In M. M. Yeung, B.-L. Yeo, and C. A. Bouman,
editors, Proc. of SPIE: Storage and Retrieval for Media Databases,
volume 3972, pages 253–261, 2000.

[15] S. Fortin. The graph isomorphism problem. Technical Report TR96-20,
Department of Computing Science, University of Alberta, 1996.

[16] M. R. Garey and D. S. Johnson.Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman and Company, New
York, 1979.

[17] S. Ghazizadeh and S. Chawathe. SEuS: Structure extraction using
summaries. InProc. of the 5th International Conference on Discovery
Science, 2002.

[18] B. Goethals.Efficient Frequent Pattern Mining. PhD thesis, University
of Limburg, Diepenbeek, Belgium, December 2002.

[19] J. Gonzalez, L. B. Holder, and D. J. Cook. Application of graph-based
concept learning to the predictive toxicology domain. InProc. of the
Predictive Toxicology Challenge Workshop, 2001.

[20] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. InProc. of ACM SIGMOD Int. Conf. on Management of
Data, Dallas, TX, May 2000.

[21] C. Hansch, P. P. Maolney, T. Fujita, and R. M. Muir. Correlation
of biological activity of phenoxyacetic acids with hammett substituent
constants and partition coefficients.Nature, 194:178–180, 1962.

[22] J. Hipp, U. G̈untzer, and G. Nakhaeizadeh. Algorithms for association
rule mining–a general survey and comparison.SIGKDD Explorations,
2(1):58–64, July 2000.

[23] L. B. Holder, D. J. Cook, and S. Djoko. Substructure discovery in
the SUBDUE system. InProc. of the AAAI Workshop on Knowledge
Discovery in Databases, pages 169–180, 1994.

[24] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for
mining frequent substructures from graph data. InProc. of the 4th Eu-
ropean Conference on Principles and Practice of Knowledge Discovery
in Databases (PKDD’00), pages 13–23, Lyon, France, September 2000.

[25] A. Inokuchi, T. Washio, K. Nishimura, and H. Motoda. A fast algorithm
for mining frequent connected subgraphs. Technical Report RT0448,
IBM Research, Tokyo Research Laboratory, 2002.

[26] H. Kälviäinen and E. Oja. Comparisons of attributed graph matching
algorithms for computer vision. InProc. of STEP-90, Finnish Artificial
Intelligence Symposium, pages 354–368, Oulu, Finland, June 1990.

[27] R. D. King, S. H. Muggleton, A. Srinivasan, and M. J. E. Sternberg.
Structure-activity relationships derived by machine learning: The use of
atoms and their bond connectivities to predict mutagenicity by inductive
logic programming. InProc. of the National Academy of Sciences,
volume 93, pages 438–442, 1996.

[28] S. Kramer, L. De Raedt, and C. Helma. Molecular feature mining in
HIV data. In Proc. of the 7th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD-01), pages 136–143,
2001.

[29] M. Kuramochi and G. Karypis. Frequent subgraph discovery. In
Proc. of 2001 IEEE International Conference on Data Mining (ICDM),
November 2001.

[30] T. K. Leung, M. C. Burl, and P. Perona. Finding faces in cluttered
scenes using random labeled graph matching. InProc. of the 5th IEEE
International Conference on Computer Vision, June 1995.

[31] B. D. McKay. Nauty users guide. http://cs.anu.edu.au/ bdm/nauty/.
[32] B. D. McKay. Practical graph isomorphism.Congressus Numerantium,

30:45–87, 1981.
[33] S. H. Muggleton. Inverse entailment and Progol.New Generation

Computing, Special issue on Inductive Logic Programming, 13(3–
4):245–286, 1995.

[34] S. H. Muggleton. Scientific knowledge discovery using Inductive Logic
Programming.Communications of the ACM, 42(11):42–46, 1999.

To appear in IEEE Transactions on Knowledge and Data Engineering 13

[35] C. R. Palmer, P. B. Gibbons, and C. Faloutsos. ANF: A fast and
scalable tool for data mining in massive graphs. InProc. of the 8th
ACM SIGKDD Internal Conference on Knowlege Discovery and Data
Mining (KDD’2002), Edmonton, AB, Canada, July 2002.

[36] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and
M.-C. Hsu. PrefixSpan: Mining sequential patterns efficiently by prefix-
projected pattern growth. InProc. of 2001 International Conference on
Data Engineering (ICDE’01), pages 215–226, 2001.

[37] E. G. M. Petrakis and C. Faloutsos. Similarity searching in medical
image databases.Knowledge and Data Engineering, 9(3):435–447,
1997.

[38] J. R. Quinlan. Learning logical definitions from relations.Machine
Learning, 5:239–266, 1990.

[39] A. Savasere, E. Omiecinski, and S. B. Navathe. An efficient algorithm
for mining association rules in large databases. InProc. of the 21st Int.
Conf. on Very Large Data Bases (VLDB), pages 432–444, 1995.

[40] P. Shenoy, J. R. Haritsa, S. Sundarshan, G. Bhalotia, M. Bawa, and
D. Shah. Turbo-charging vertical mining of large databases. InProc. of
ACM SIGMOD Int. Conf. on Management of Data, pages 22–33, May
2000.

[41] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations
and performance improvements. InProc. of the 5th International
Conference on Extending Database Technology (EDBT), volume 1057,
pages 3–17, 1996.

[42] A. Srinivasan and R. D. King. Feature construction with inductive logic
programming: a study of quantitative predictions of biological activity
aided by structural attributes.Data Mining and Knowledge Discovery,
3(1):37–57, 1999.

[43] A. Srinivasan, R. D. King, S. H. Muggleton, and M. Sternberg. The
predictive toxicology evaluation challenge. InProc. of the 15th Inter-
national Joint Conference on Artificial Intelligence (IJCAI), pages 1–6.
Morgan-Kaufmann, 1997.

[44] A. Srinivasan, R. D. King, S. H. Muggleton, and M. J. E. Sternberg.
Carcinogenesis predictions using ILP. In S. Džeroski and N. Lavrǎc,
editors, Proc. of the 7th International Workshop on Inductive Logic
Programming, volume 1297, pages 273–287. Springer-Verlag, 1997.

[45] X. Yan and J. Han. gSpan: Graph-based substructure pattern mining. In
Proc. of 2002 IEEE International Conference on Data Mining (ICDM),
2002.

[46] K. Yoshida and H. Motoda. CLIP: Concept learning from inference
patterns.Artificial Intelligence, 75(1):63–92, 1995.

[47] M. J. Zaki. Scalable algorithms for association mining.IEEE Transac-
tions on Knowledge and Data Engineering, 12(2):372–390, 2000.

[48] M. J. Zaki. Efficiently mining frequent trees in a forest. InProc. of the
8th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD-2002), July 2002.

[49] M. J. Zaki and K. Gouda. Fast vertical mining using diffsets. Technical
Report 01-1, Department of Computer Science, Rensselaer Polytechnic
Institute, 2001.

