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Abstract—Over the years, frequent itemset discovery algo- formulating the frequent pattern discovery problem is as that

rithms have been used to find interesting patterns in various of discovering subgraphs that occur frequently over the entire
application areas. However, as data mining techniques are being set of graphs.

increasingly applied to non-traditional domains, existing frequent
pattern discovery approach cannot be used. This is because The power of graphs to model complex datasets has been

the transaction framework that is assumed by these algorithms recognized by various researchers [3], [6], [10], [14], [19],
cannot be used to effectively model the datasets in these domains[23], [26], [30], [37], [43], [46] as it allows us to represent
An alternate way of modeling the objects in these datasets is to grhitrary relations among entities and solve problems that we
represent them using graphs. Within that model, one way of 414 not previously solve. For instance, consider the problem

formulating the frequent pattern discovery problem is as that of f mini hemical ds to find t substruct
discovering subgraphs that occur frequently over the entire set O MiNING chemical compounds 1o find recurrent substructures.

of graphs. In this paper we present a computationally efficient We can achieve that using a graph-based pattern discovery
algorithm, called FSG, for finding all frequent subgraphs in large  algorithm by creating a graph for each one of the compounds

graph datasets. We experimentally evaluate the performance whose vertices correspond to different atoms, and whose edges
of FSG using a variety of real and synthetic datasets. Our ,respond to bonds between them. We can assign to each ver-

results show that despite the underlying complexity associated . . .
with frequent subgraph discovery, FSG is effective in finding tex a label corresponding to the atom involved (and potentially

all frequently occurring subgraphs in datasets containing over IitS charge), and assign to each edge a label corresponding
200,000 graph transactions and scales linearly with respect to to the type of the bond (and potentially information about

the size of the dataset. their relative 3D orientation). Once these graphs have been

Index Terms— Data mining, scientific datasets, frequent pat- created, recurrent substructures across different compounds
tern discovery, chemical compound datasets. become frequently occurring subgraphs. In fact, within the
context of chemical compound classification, such techniques

|. INTRODUCTION have been used to mine chemical compounds and identify

the substructures that best discriminate between the different

FFICIENT algorithms for finding frequent patterns—
. i L lasses [5], [11], [27], [42], and were shown to produce
both sequential and non-sequential—in _ very Iarg% erior classifiers than more traditional methods [21].

datasets have been one of the key success stories of &g%

mining research [1], [2], [20], [36], [41], [49]. Nevertheless, as be"e";p".‘g a'?o”thms thr?t dditsco"te.r all frftqulenlt'y ‘?]C"if”i”.g
data mining technigues have been increasingly applied to ngh-drapnhs in a farge grapn dataset 1s particuiarly chafienging
d computationally intensive, as graph and subgraph isomor-

traditional domains, there is a need to develop efficient and. | K le th hout th tati In thi
general-purpose frequent pattern discovery algorithms that Rrusms play a ety role rolug .f[)hu € lfgsmgufa |c;_nsd_ n this
capable of capturing the strong spatial, topological, geometrﬁJ per we present a new agonthm, ca » for finding

and/or relational nature of the datasets that characterize thgéeconnected subgraphs that_appear frequently in a Iarge
domains. graph dataset. Our algorithm finds frequent subgraphs using

In recent years, labeled topological graphs have emerg‘P& level-by-level expansion strategy adopted by Apriori [2].

as a promising abstraction to capture the characteristics (ﬁe key fear:ures oFSth.aret;h(ta fqllpwmg: S) tkl1t l{[ses a q
these datasets. In this approach, each object to be analyze%of’%rse gr_ap. representation that minimizes both storage an
represented via a separate graph whose vertices corresp put_atlon, (i) it increases the size .Of fr_equent subgraphs
to the entities in the object and the edges correspond b&s adding one edge at a time, allowing it to generate the

the relations between them. Within that model, one way §1and|dates eff'c'e”t'y; (il '.t Incorporates various o_ptlmlza}-
lons for candidate generation and frequency counting which

This work was supported by NSF CCR-9972519, EIA-9986042, ACknables it to scale to large graph datasets; and (iv) it uses

9982274 and ACI-0133464, t_)y Army Research Office contract DA/DAAG5550phiSticated algorithms for canonical Iabeling to uniquely
98-1-0441, and by Army High Performance Computing Research Cemﬁentify the various aenerated subaraphs without having to
contract number DAAH04-95-C-0008. Access to computing facilities wdl g grap g

provided by the Minnesota Supercomputing Institute. resort to computationally expensive graph- and subgraph-
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TABLE |

isomorphism computations.
NOTATION USED THROUGHOUT THE PAPER

We experimentally evaluatedSG on three types of
datasets. The first two datasets correspond to various chemical

I . A Notation Description
compounds containing over 200,000 transactions and frequeffpgrapn A connecied subgraph with edges
patterns whose size is large, and the third type corresponds tq . (also written as a siz&-subgraph)

H H S HY (Sub)graphs of sizé&
various graph _da_tasets that were synthetically generated using., Edges of a (sub)grapty
a framework similar to that used for market-basket transaction (c) Vertices of a (sub)graptiy
generation [2]. Our results illustrate thHa8G can operate on  ©(¢) ; " d(;aer;omcal label of a grapli
very large graph datasets and find all frequently occurring,,» vertices

P H P v) Degree of a vertex

sqbgraphs in reasgnable amount of t'lme and scales Imggr A The labol of & vertex
with the dataset size. For example, in a dataset containinge) The label of an edge

H ; H=G-e H is a graph obtained by the deletion of edge E(G)
over 200,000 chemical compoundsSG can discover all A dataset of graph transactions

subgraphs that occur in at least 1% of the transactions iQp.,D.,...,Dx} | Disjoint N partitions of D

approximately one hour. Furthermore, our detailed evaluatior), goérggﬁ‘fén;fctfof ND; =0andy; D; = D)

using the synthetically generated graphs shows that for datasets A candidate subgraph
. k : ;

that have a moderately large number of different vertex an@ ﬁzg g; ;ﬂ”c‘gggfgztévsm edges
edge labelsFSG is able to achieve good performance as ther A frequent subgraph
transaction size increases. F* A set of frequentk-subgraphs

. . . F A set of all frequent subgraphs

The rest of the paper is organized as follows. Section Il pro++ The size of the largest frequent subgraphZin

vides some definitions and introduces the notation that is usels A set of all edge labels iD

A set of all vertex labels irD

in the paper. Section Ill formally defines the problem of fre=—
guent subgraph discovery and discusses the modeling strengths
of the discovered patterns and the challenges associated vlvgh to determine whether or nét, is included inG,. The

finding them in a computationally efficient manner. Section Yanonical labelof a graphG = (V, E), cl(Q), is defined to be
describes in detail the algorithm. Section V describes the Vaéi'uniquecode(i e., a sequence c;f bi’ts a siring or a sequence
ous optimizations that we developed for efficiently computing numbers) that is invariant on the ordering of the vertices

the _canonical_label of the patterns. Section VI provides g, 4 edges in the graph [15]. As a result, two graphs will have
detailed experlmgntal evaluation E,SG ona Iarg(_a number of y,o same canonical label if they are isomorphic. Examples of
real and synthetic datasets. Section VII describes the relaﬁ‘?ﬁerent canonical label codes and details on how they are

rese?rc(;h in this aliea, and finally, Section VIl provides SOn?:%mputed are presented in Section V. Both canonical labeling
concluding remarks. and determining graph isomorphism are not known to be either

in P or in NP-complete [15].
Il. DEFINITIONS AND NOTATION The sizeof a graphG = (V, E) is defined to be equal to

A graphG = (V, E) is made of two sets, the set of vertice§E|' G|ven.a sizek connected g.rap'ﬁ - (.V’ E), by adding an
edgewe will refer to the operation in which an edge= (u, v)

V and the set of edge®&. Each edge itself is a pair of is ﬁldded to the graph so that the resulting gize- 1) graph

vertices, and throughout this paper we assume that the grag : S .
. . . X . . remains connected. Similarly, leleting an edgeve refer to
is undirected, i.e., each edge is an unordered pair of verucgjs

Furthermore, we will assume that the grapHabeled That € operation in which (“’U.) suc_h thate € E'is deIetgd
: ) o rom the graph and the resulting size— 1) graph remains
is, each vertex and edge has a label associated with it that is : ? .
. connected. Note that depending on the particular choice of
drawn from a predefined set of vertex labels/} and edge . . ;
: . the deletion of the edge may result in deleting at most one

labels Lg). Each vertex (or edge) of the graph is not required. &, . . . : P

. : f.its incident vertices if that vertex has ondyas its incident
to have a unique label and the same label can be aSS|gnee(§E}J)e

many vertices (or edges) in the same graph. : . . .

Given a graplG = (V. E), a graph(Z, — (V.. E,) will be a pal;zrailgy,s';]hoivrr:oitnat_:%r;l':ah?t we will be using through-out the
subgraphof G if and only if V; CV and E; C E and it will '
be aninduced subgrapbf G if V, C V andE, contains all the
edges ofF that connect vertices i,. A graph isconnected
if there is a path between every pair of vertices in the graph.
Two graphs?y = (V1, F1) andGs = (Va, Ey) areisomorphic The problem of finding frequently occurring connected
if they are topologically identical to each other, that is, thermubgraphs in a set of graphs is defined as follows:
is a mapping fromV; to V> such that each edge ik, is Definition 1 (Subgraph Discovery)aiven a set of graphs
mapped to a single edge i, and vice versa. In the case ofD each of which is an undirected labeled graph, and a
labeled graphs, this mapping must also preserve the labelspamameter such that) < o < 1, find all connected undirected
the vertices and edges. Aautomorphismis an isomorphism graphs that are subgraphs in at leadP| of the input graphs.
mapping wherez; = G». Given two graphgy; = (V4,E;) We will refer to each of the graphs i as agraph transaction
and G, = (Va, E»), the problem ofsubgraph isomorphisns  or simply transactionwhen the context is clear, t® as the
to find an isomorphism betweefi, and a subgraph off;, graph transaction datasetind too as thesupportthreshold.

IIl. FREQUENTSUBGRAPHDISCOVERY—PROBLEM
DEFINITION



To appear in IEEE Transactions on Knowledge and Data Engineering 3

There are two key aspects in the above problem statemehe various candidate and frequent subgraphs that it generates
First, we are only interested in subgraphs that are connectasing an adjacency list representation.
This is motivated by the fact that the resulting frequent
subgraphs will be encapsulating relations (or edges) betwegen
some of the entities (or vertices) of various objects. Within thé‘
context, connectivity is a natural property of frequent patterns.FSG generates candidate subgraphs of gizel by joining
An additional benefit of this restriction is that it reduces thtwo frequent sizé: subgraphs. In order for two such frequent
complexity of the problem, as we do not need to considsize® subgraphs to be eligible for joining they must contain
disconnected combinations of frequent connected subgraphs. same siz¢k — 1) connected subgraph. The simplest way
Second, we allow the graphs to be labeled, and as discusteg@enerate the complete set of candidate subgraphs is to join
in Section Il, input graph transactions and discovered frequeait pairs of sizek frequent subgraphs that have a common
patterns can contain multiple vertices and edges carrying $ige{k — 1) subgraph. Unfortunately, the problem with this
same label. This greatly increases our modeling ability, asaipproach is that a particular sizesubgraph, can have up to
allow us to find patterns involving multiple occurrences of thé different size¢k — 1) subgraphs. As a result, if we consider
same entities and relations, but at the same time makes @hesuch possible subgraphs and perform the resulting join
problem of finding such frequently occurring subgraphs nopperations, we will end up generating the same candidate
trivial. This is because in such cases, any frequent subgraptitern multiple times, and generating a large number of
discovery algorithm needs to correctly identify how a partissandidate patterns that are not downward closed. The net effect
ular subgraph maps to the vertices and edges of each grapthis, is that the resulting algorithm spends a significant
transaction, that can only be done by solving many instancasount of time identifying unique candidates and eliminating
of the subgraph isomorphism problem, which has been showpn-downward closed candidates (both of which operations
to be in NP-complete [16]. are non-trivial as they require to determine the canonical
label of the generated subgraphs). Note that candidate gen-
eration approaches in the context of frequent itemsets, (e.g.,
Apriori [2]) do not suffer from this problem because they
use a consistent way to order the items within an itemset

In developing our frequent subgraph discovery algorithnfe.g., lexicographically). Using this ordering, they only join
we decided to follow the level-by-level structure of the Apritwo size% itemsets if they have the samé  1)-prefix.
ori [2] algorithm used for finding frequent itemsets. Thé&or example, a particular items¢f, B, C, D} will only be
motivation behind this choice is the fact that the level-by-levglenerated once (by joiningA, B,C} and{A, B, D}), and if
structure of Apriori requires the smallest number of subgraphat itemset is not downward closed, it will never be generated
isomorphism computations during frequency counting, as it a-only its {4, B,C} and{B, C, D} subsets were frequent.
lows it to take full advantage of the downward closed property Fortunately, the situation for subgraph candidate generation
of the minimum support constraint and achieves the highéstnot as severe as the above discussion seems to indicate
amount of pruning when compared with the most recenthnd FSG addresses both of these problems by only joining
developed depth-first-based approaches such as dEclat [48b frequent subgraphs if and only if they share a certain,
Tree Projection [1], and FP-growth [20]. In fact, despite thproperly selected, sizg: — 1) subgraph. Specifically, for each
extra overhead due to candidate generation that is incurfeequent sizek subgraphF;, let P(F;) = {H, 1, H; >} be the
by the level-by-level approach, recent studies have showmo size{k —1) connected subgraphs 6 such that”; ; has
that because of its effective pruning, it achieves comparalthee smallest canonical label adé » has the second smallest
performance with that achieved by the various depth-firstanonical label among the various connected ékze-1) sub-
based approaches, as long as the data set is not dense ogithphs ofF;. We will refer to these subgraphs as {émary
support value is not extremely small [18], [22]. subgraphsof F;. Note that if every siz¢% — 1) subgraph of

The overall flow of our algorithm, calle8SG, is similar F; is isomorphic to each othefl; ; = H; » and|P(F;)| = 1.
to that of Apriori, and works as followsFSG starts by FSG will only join two frequent subgraphs; and F;, if and
enumerating all frequent single- and double-edge subgrapbsly if P(F;)NP(F;) # 0, and the join operation will be done
Then, it enters its main computational phase, which consistith respect to the common siZé—1) subgraph(s). The proof
of a main iteration loop. During each iteratioRSG first that this approach will correctly generate all valid candidate
generates all candidate subgraphs whose size is greater thargraphs is presented in Appendix . This candidate generation
the previous frequent ones by one edge, and then counts dipproach dramatically reduces the number of redundant and
frequency for each of these candidates and prunes subgraptis-downward closed patterns that are generated and leads to
that do no satisfy the support constraifSG stops when significant performance improvements over the naive approach
no frequent subgraphs are generated for a particular iterati¢originally implemented in [29]).
Details on howFSG generates the candidates subgraphs, andThe actual join operation of two frequent sizesubgraphs
on how it computes their frequency are provided in Section I\, and F; that have a common primary subgragh is
A and Section IV-B, respectively. performed by generating a candidate size+ 1) subgraph

To ensure that the various graph-related operations dhat containsd plus the two edges that were deleted fréin
performed efficientlyFSG stores the various input graphs anénd F; to obtain H. However, unlike the joining of itemsets

Candidate Generation

IV. FSG—FREQUENTSUBGRAPHDISCOVERY
ALGORITHM
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N e . " . " . frequent subgraphs, however, is challenging as there is no
Join “ natural way to build the hash-tree for graphs.
+ =
M ZI @ IZE For this reasonFSG instead uses transaction identifier
Car et “e P st (TID) lists, proposed by [13], [40], [47]. In this approach
for each frequent subgraphSG keeps a list of transaction
(a) By vertex labeling identifiers that support it. Now whelRSG needs to compute
the frequency ofG**!, it first computes the intersection of
. . . . . the TID lists of its frequent:-subgraphs. If the size of the
u va P " a a intersection is below the suppoi&“*+! is pruned, otherwise
i + i o “ga FSG computes the frequency @#*+!' using subgraph iso-
¢ o “e 3 ‘o : a . , a morphism by limiting the search only to the set of trans-
e G3

actions in the intersection of the TID lists. The advantages
of this approach are two-fold. First, in the cases where the

6
Gl

(b) By multiple automorphisms of a single core intersection of the TID lists is bellow the minimum support
level, FSG is able to prune the candidate subgraph without
Fig. 1. Two cases of joining performing any subgraph isomorphism computations. Second,

when the intersection set is sufficiently larg&SG only needs
to compute subgraph isomorphisms for those graphs that can

in which two frequent size- itemsets lead to a unique sizepotentially contain the candidate subgraph and not for all the
(k + 1) itemset, the joining of two sizé- subgraphs may graph transactions.

produce multiple distinct sizék+1) candidates. This happens
for the following two reasons. First, the difference between the 1) Reducing Memory Requirements of TID list$e com-
common primary subgraph and the two frequent subgrapbigtational advantages of TID lists come at the expense of
can be a vertex that has the same label. In this case, thgher memory requirements for maintaining them. To address
joining of such sizek subgraphs will generate two distinctthis limitation we implemented a database-partitioning-based
subgraphs of sizé + 1. Fig. 1(a) shows such an example, irsccheme that was motivated by a similar scheme developed for
which the pair of graph&+2 and G} generates two different mining frequent itemsets [39]. In this approach, the database
candidatesG> and G}. Second, the primary subgraph itselfs partitioned intoV' disjoint partsD = {Di,Ds,...,Dn}.
may have multiple automorphisms, and each of them can Idadch of these sub-databasPs is mined to find a set of
to a different size + 1) candidate. In the worst case, wherirequent subgraphg;, called local frequent subgraphsThe
the primary subgraph is an unlabeled clique, the number @hion of the local frequent subgrapfis= | J; ;, calledglobal
automorphisms is!. An example for this case is shown incandidates is determined and their frequency in the entire
Fig. 1(b), in which the primary subgraph—a square of fou#atabase is computed by reading each graph transaction and
vertices labeled wittu—has four automorphisms resulting infinding the set of subgraphs that it supports. The subsét of
three different candidates of size six. Finally, in addition tthat satisfies the minimum support constraint is output as the
joining two different subgraphs;SG also needs to perform final set of frequent patterris. Since the memory required for
self join. This happens, for example, when the two grapiséoring the TID lists depends on the size of the database, their
G* and Gf in Fig. 1 are identical. It is necessary becaus@yerall memory requirements can be reduced by partitioning
for example, consider graph transactions without any labelBe database in a sufficiently large number of partitions.
Then, therg- will be only one frequent size-1 subgraph and onegne of the problems with a naive implementation of the
frequent size-2 subgraph regardiess of the support threshglye aigorithm is that it can dramatically increase the num-
becguse those are the only allowed structures, and edges of subgraph isomorphism operations that are required to
ve;tlces do not have labels assigned. In general, wheneygfermine the frequency of the global candidate set. In order to
77| = 1, self join is necessary to obtain a set of vallidt-1)-  aqqress this problenFSG incorporates three techniques: (i)
candidates. a priori pruning the number of candidate subgraphs that need
to be considered; (ii) using bitmaps to limit the frequency
B. Frequency Counting counting of a particular candidate subgraph to only those

The simplest way to determine the frequency of each Cﬁ%artitions that this frequency has not already being determined
t

didate subgraph is to scan each one of the dataset transac 8 %:Iy; l?nd (r']") tak|hn? advar:_tage Olf the I_att[[cti strugturecﬁf that
and determine if it is contained or not using subgraph isom&?—c eck each graph transaction only against the subgrapns tha

phism. Nonetheless, having to compute these isomorphis g descendants of patterns that are already being supported

is particularly expensive and this approach is not feasible f Y that transac.tlon. The net effect of t,hese opt|m|za_t|ons IS
large datasets. In the context of frequent itemset discové L, as shown in Section VI-A.1, tHéSG.S ove_raII run-time

by Apriori, the frequency counting is performed substantiall&/ creases slowly as the number of partitions increases.

faster by building a hash-tree of candidate itemsets and scanThe a priori pruning of the candidate subgraphs is achieved
ning each transaction to determine which of the itemsets as follows. For each partitiorD;, FSG finds the set of
the hash-tree it supports. Developing such an algorithm flmcal frequent subgraphs and the set of local negative border
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subgraphs and stores them into a fil§; along with their e oo
associated frequencies. Then, it organizes the union of the va|l z x| wvial| z y
local frequent and local negative border subgraphs across the vialz  y| wal|z @
various partitions into a lattice structure (calleattern lattice, vza|e y vzaly @

by incrementally incorporating the information from each file code= aaa zzy  code= aaa zyz
S;. Then, for each node of the pattern lattice it computes an @G° ®) ©

upper boundf*(v) of its occurrence frequency by adding the':i
corresponding upper bounds for each one of sheartitions,
f*(v) = ff(w) +---+ fH(v). For each partitiorD;, f*(v) is

g. 2. Simple examples of codes and canonical adjacency matrices

determined using the following equation: narrow down the search space or by using alternate canonical
. fi(v), if veds, label definitions that take advantage of special properties that
filv) = min, (f(u)), otherwise ’ may exist in a particular set of graphs [15], [31], [32]. In

. particular, the Nauty program [31] developed by Brendan
where f;(v) is the actual frequency of the pattern correspongfyecay implements a number of such heuristics and has
ing to nodev in D;, andw is a connected subgraph ofthat e shown to scale reasonably well to moderate size graphs.
is smaller from it by one edge (i.e., it is its parent in th¢ytortynately, Nauty does not allow graphs to have edge
!attlce). Note that thg vanou;ﬁi*(v') values can be computed|abe|S and as such it cannot be used directlyFSG. As a
in a bottom-up fashion by a single scan §f, and used |oqit we developed our own canonical labeling algorithm that
directly to update the overali*(v) values. Now, given this j,.ororates some of the existing heuristics extended to vertex-
set of frequency upper boundsSG proceeds to prune the 5ng eqge-labeled graphs as well as a number of new heuristics
nodes of the pattern lattice that are either infrequent or f@f|a¢ are well-suited for our particular problem. Details of our
the downward closure property. canonical labeling algorithm are provided in the rest of this

section.
V. CANONICAL LABELING Note that our canonical labeling algorithm operates on the

FSG relies on canonical labeling to efficiently check ifadjacency matrix representation of a graph. For this reason,
a particular pattern satisfies the downward closure propeftpG converts its internal adjacency list representation of
of the support condition and to eliminate duplicate candidag&ch candidate or frequent subgraph into its corresponding
subgraphs. Developing algorithms that can efficiently compua€jacency matrix representation, prior to computing its canon-
the canonical label of the various subgraphs is critical to ensu¢él label. Once the canonical label has been obtained, the
that FSG can scale to very large graph datasets. adjacency matrix representation is discarded.

Recall from Section Il that the canonical label of a graph
is nothing more than aodethat uniquely identifies the grapha_ vertex Invariants

such that if two graphs are isomorphic to each other, they . . . .
will be assigned the same code. A simple way of definin Vertex invariants [15] are some inherent properties of the

the canonical label of a graph is as the string obtain%}rt&zsmﬂ::to?zugﬁta%hzggr]ﬁofcr:i?rj_i'ns\?an:igrrﬁh'fgn erp[ap;splphges.
by concatenating the upper triangular entries of the graph’s P P property

adjacency matrix when this matrix has been symmetricaﬁé?gree or label of a vertex, which remains the same regardless
f

. . . . the mapping (i.e., vertex ordering). Vertex invariants can
permuted so that this string becomes the lexicographica Y. - . ) .
| . . used to partition the vertices of the graph into equivalence
argest (or smallest) over the strings that can be obtained fr%rlglsses such that all the vertices assigned to the same partition
all such permutations. This is illustrated in Fig. 2 that ShOV\hS 9 P

a graphG® and the permutation of its adjacency makrikat ave the same values for the vertex invariants. Using these
leads to its canonical labek#iazya”. In this code, taa” was partitions we can define the canonical label of a graph to be

obtained by concatenating the vertex-labels in the order tth? lexicographically largest code obtained by concatenating
y g Qﬁle columns of the upper triangular adjacency matrix (as it was

they appear in the adjacency matrix and;#” was obtained %?ne earlier), over all possible permutations of the vertices
by concatenating the columns of the upper triangular portion . ' . )
y g PP 9 P subject to the constraint that the vertices of each one of the

the matrix. Note that any other permutation@t's adjacency artitions are numbered consecutively. Thus, the only modifi-
matrix will lead to a code that is lexicographically smaller (oP . : L Y- ' y mo
cation over our earlier definition is that instead of maximizing

) to ".Ifagraph h verti h mplexi . . .
equal) to aaazya”. If a graph hagV'| vertices, the complexity gver all permutations of the vertices, we only maximize over

of determining its canonical label using this scheme is If . . . .
9 g those permutations that keep the vertices in each partition

| L2 . .
O(|V]}) making it impractical even for moderate size graph 0gether. Note that two graphs that are isomorphic will lead to

In practice, the complexity of finding the canonical Iabet e same partitioning of the vertices and they will be assigned

of a graph can be reduced by using various heuristics 10 P ning y 9
the same canonical label.

1A local negative border subgraph is the one generated as a local candidatdf 7 is the number of partitions created by using ver-

subgraph but does not satisfy the minimum threshold for the partition.  tex invariants, containing,, ps, . . ., p,, Vertices, respectively,

2The symbolv; in the figure is a vertex ID, not a vertex label, andthen the number of different permutations that we need to
blank elements in the adjacency matrix means there is no edge between th

e . . rTm . .
corresponding pair of vertices. This notation will be used in the rest of ﬂgpnsmer 'SHizl(pf!)' which _Can be SUbStam"a”y smaller than
section. the |V|! permutations required by the earlier approach. We
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Vo v1 v2 VU3 vl vo V3 v2 V1 v3 Yo v2 vy U4 V1 V3 Vg Vs
a a b a a a a b a a a b
a b b b
vy a y vy a z yl|zx v] a y x|z
vz b vy
vy aly z vy al|x vy al|y
p vg b x vy aly vg a|x vg by Yy
@ 5 v a x vy b | vy b|a vibly vy
a
PO P1 P2 Po P1 P2 v3b|ly vy
code= aaba yO0x0x0 code= aaab zy0x00 code= aaab yz0xz00
@ (b) © (d) vy a x
vs a

Fig. 3. A sample graph of size three and its adjacency matrices

Po

(@)

have incorporated iFSG three types of vertex invariants
that utilize information about the degrees and labels of the va vy V1 V3 Vo Vs
vertices, the labels and degrees of their adjacent vertices, and b bbb

information about their adjacent partitions. iy : i Engzng Eyj Zi
a) Vertex Degrees and Label§his invariant partitions v? . Z » S (Z,,l,,a): (Z: . (1;: 5

vertices into disjointed groups such that each partition contains . , [, B (4,3,b), (4,3,b), (2, 1, a)

vertices with the same label and the same degree. Fig. 3 ., « « (z,3,b)

illustrates the partitioning induced by this set of invariants for vs @ 2 (2,3,b)

an example graph of size four. Based on their degree and their Po  P1 P2 P3 P4

labels, the vertices are partitioned into three graups: {v; }, code= bbbaa yyyyy0000000=0 @

p1 = {vo,v3} andps = {v2} as shown in Fig. 3(c). Fig. 3
shows the adjacency matrix corresponding to the partitioRig. 4. Use of neighbor lists
constrained permutation that leads to the canonical label of
the graph. Using the partitioning based on vertex invariants,
we try only 1! x 2! x 1! = 2 permutations, although the total
number of permutations for four vertices4s= 24.

b) Neighbor Lists: Invariants that lead to finer-grain
partitioning can be created by incorporating information about

V] vQ V2 V3 V4 U5 VG VT

the labels of the edges incident on each vertex, the degrees @ 4 a aaaaa

of the adjacent vertices, and their labels. In particular, we vrae) e @ (Po, @), (Po, @), (p1, @)

describe an adjacent vertex by a tuple (I(e), d(v), 1(v)) v e ve 7| o

where [(e) is the label of the incident edge d(v) is the v a - (»0, @)

degree of the adjacent vertex and(v) is its vertex label. v4 @ e (Po> @)

Now, for each vertex, we construct its neighbor lisfl(«) that ol oo

contains the tuples for each one of its adjacent vertices. Using vral = (v0 @)

these neighbor lists, we then partition the vertices into disjoint e a00000m00000

sets such that two verticesandwv will be in the same partition ®)

if and only if nl(u) = nl(v). Note that this partitioning w1 v o vs v v vG v

is performed within the partitions already computed by the @ aaaaaaa

previous set of invariants. vie| je wlw 1, 0), (P1,0), (p2, @)
Fig. 4 illustrates the partitioning produced by also incorpo- v e TR Bt

rating theneighbor listinvariant on the graph of Fig. 4(a). vs a|a (ro @)

Specifically, Fig. 4(b) shows the partitioning produced by the s ’ (P )

vertex degrees and labels, and Fig. 4(c) shows the partitioning el e Efiai

that is produced by also incorporating neighboring lists. The vr al |z (r1, )

neighbor lists are shown in Fig. 4(d). For this example we Po 71 P2

were able to reduce the number of permutations that needs to =« “eeaeeae #0z0000000200000000200000

be considered from! x 2! to 2!.

v] v Vg U5 U3 V4 VG VT

) lterative Partitioning: Iterative partitioning general- @ aaaaaaa

izes the idea of the neighbor lists, by incorporating the R — (e @1 a) (2, 0)
partition information [15]. This time, instead of a tuple el TR B
(i(e),d(v),1(v)), we use a pairfp(v),i(e)) for representing vs alw 0. @)

the neighbor lists where(v) is the identifier of a partition to Vs @ ’ (1)

which a neighbor vertex belongs and(e) is the label of the I I EQ;

incident edge to the neighbor vertex vz al = (r1, )

The effect of iterative partitioning is illustrated in Fig. 5. o 0000000000
In this example graph, all edges have the same labeahd @

all vertices have the same label Initially the vertices are o o
partitioned into two groups only by their degrees, and in ea€ly- 5 An example of iterative partitioning

code= bbbbaa y(:lé’)gyyOOOzOOOOzO
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partition they are sorted by their neighbor lists (Fig. 5(b)). Vertex stabilization breaks such a regular structure by as-
The ordering of those partitions is based on the degrees auhing that a particular vertex in a large partition with many
the labels of each vertex and its neighbors. Then, we split tequivalent verticess different from the others. The selected

first partition poy into two, because the neighbor lists of vertex forms a new singleton partition for itself, which triggers

is different from those ofjy and v,. By renumbering all the for the rest of the vertices the successive iterative partitioning
partitions, updating the neighbor lists, and sorting the vertictee details of which are described in Section V-A.0.c. Because
based on their neighbor lists, we obtain the matrix as shownwe have chosen the vertex arbitrarily, we have to repeat
Fig. 5(c). Now, because the partitipn becomes non-uniform the same process for the remaining vertices in the original
in terms of the neighbor lists, we again divigle to factor out partition. During the successive iterative partitioning, the ver-
vs, renumber partitions, update and sort the neighbor lists, atedt stabilization may be applied repeatedly if the iterative

sort vertices to obtain the matrix in Fig. 5(d). partitioning can not decompose a large partition effectively.
For example, in the case of a cycle withedges, once a
B. Degree-based Partition Ordering particular vertexv is chosen from the initial partition with all

. . . . . the k vertices, it breaks the symmetry and we immediately
In addition to using the vertex invariants to compute a fine- ;. » :
. o . : obtain | (k — 1)/2] + 1 partitions based on the distance from
grain partitioning of the vertices, the overall run-time of the

canonical labeling can be further reduced by properly orderits to each vertex. Thus, the necessary number of permutations

) . : o L
the various partitions. This is because, a proper ordering of gecompute the canonical label after this pgrunomngUSc .
" . : 72] 4+ 1)!. Because there ark such choices for the first
partitions may allow us to quickly determine whether a set 0 . . ; .
: . . vertexv, the entire computational complexity for the canonical
permutations can potentially lead to a code that is smaller than . T
X . abeling of G is bounded byO(k(k/2)!) which is significantly
the current best code or not; thus, allowing us to prune large T
maller thanO(k!). Note that the vertex stabilization is not
parts of the search space.

Recall from Section V-A that we obtain the code of a graerHmlted 0 cyclg; and that itis applicable to any types_ of graphs.
T X o : -~ Once a partition becomes small enough, the straightforward
by concatenating its adjacent matrix in a column-wise fashion

As a result, when we permute the rows and the columns Opgrmutaﬂon can be simpler and faster than vertex stabilization,

. . . |nf order to obtain a canonical label. Thus, our canonical
particular partition, the code corresponding to the columns P

the preceding partitions is not affected. Now, while we explorgfbe“ng algonth_m applles vertex stapll|zat|on only if the size
of a vertex partition is greater than five.

a part.|cular set'of W|th|n-part|F|on permutations, if we obta!n For further details on vertex stabilization the readers should
a prefix of the final code that is larger than the correspondlngf :
réfer to a textbook on permutation groups such as [12].

prefix of the currently best code, then we know that regardless
of the permutations of the subsequent partitions, this code
will never be smaller than the currently best code, and the V1. EXPERIMENTAL EVALUATION
exploration of this set of permutations can be terminated. TheWe experimentally evaluated the performanc&8f using
critical property that allows us to prune such unpromisingctual graphs derived from the molecular structure of chemical
permutations is our ability to obtainkad code prefix. Ideally, compounds, and graphs generated synthetically. The first type
we will like to order the partitions in a way such that thef datasets allows us to evaluate the effectivenedsSé for
permutations of the vertices in the initial partitions lead tbinding rather large patterns and its scalability to large real
dramatically different code prefixes, which it turn will allowdatasets, whereas the second one, a set of synthetic datasets,
us to prune parts of the search space. In general, the likelihad®ws us to evaluate the performance B8G on datasets
of this happening depends on the density (i.e., the numb@hose characteristics (e.g., number of graph transactions,
of edges) of each partition, and for this reason we sort tAgerage graph size, average number of vertex and edge labels,
partitions in decreasing order of the degree of their vertice@nd average length of patterns) differs dramatically; thus,
providing insights on how welFSG scales with respect to
C. Vertex Stabilization these characteristics. All experiments were done on dual AMD
fAthIon MP 1800+ (1.53 GHz) machines with 2 Gbytes main

Vertex stabilization is effective for finding isomorphism Olhemory, running the Linux operating system. All the times
graphs with regular or symmetric structures [31]. The key id?@ported’ are in seconds '

is to break the topological symmetry of a graph by forcing
a particular vertex into its own partition, when the iterative ]
partitioning leaves a large vertex partition which cannot 8- Chemical Compound Datasets
decomposed into smaller partitions anymore. We derived graph datasets from two publicly available
For example, consider a cydle = (V, E) of k edges where datasets of chemical compounds. The first datasentains
all the edges and the vertices have the same label. Each veB4® chemical compounds and was originally provided for the
is equivalent to any other since they are identical in terms Bfedictive Toxicology Evaluation (PTE) Challenge [43], and
their degree, label, neighbors, and resulting partitions. Asttee second datasetontains 223,644 chemical compounds and
result, a vertex cannot be distinguished from others and there
will be only a singe partition containing all the vertices. 3ftp://ftp.;omlab.0>_<.ac.uk/pub/Packages/lLP/Datasets/carcinogenesis/
. : L . rogol/carcinogenesis.tar.Z
To obtain a canonical label under such a partitioning with tH)(':“‘http://dtp.nci.nih.gov/docs/?;dat.atb.atse/structum’zhformation/
iterative partitioning only, it would requir@(k!) operations. structuraldata.html
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is available from the Developmental Therapeutics Prograset of experiments in which we used two datasets derived from
(DTP) at National Cancer Institute. From the description dhe DTP dataset containing 100,000 and 200,000 chemical
chemical compounds in those two datasets, we createccaampounds, respectively. For each dataset we &®@ to
transaction for a compound, a vertex for an atom, an edfyjed all frequent patterns that occur in at least 1% of the
for a bond. Each vertex has a vertex label assigned for ftansactions by partitioning the dataset in 2, 3, 4, 5, 10, 20,
atom type and each edge has an edge label assigned foB@&s40, and 50 partitions. These results are shown in Table IlI.
bond type. In the PTE dataset there are 66 atom types anéiet each experiment, this table shows the total run-time, the
bond types, and in the DTP dataset there are 104 atom typssximum amount of TID list memory, and the maximum
and 3 bond types. Each graph transaction obtained from #®ount of memory required to store the pattern lattice (pattern
PTE and the DTP datasets has 27 and 22 edges on the averatfgge memory).
respectively. From these results we can see that the database-partitioning-
d) Results: Table Il shows the results blySG on four based approach is quite effective in reducing the TID list
datasets derived from the PTE and DTP datasets. The firgmory, because it decreases almost linearly as the number
dataset was obtained by using all the compounds of the P@Epartitions. Moreover, the various optimizations described in
dataset, whereas the remaining three datasets were obtaine8dstion IV-B.1 are quite effective in limiting the degradation
randomly selecting 50,000, 100,000, and 200,000 compoundsruntime of the resulting algorithm. For example, for the
from the DTP dataset. There are three types of results sho@®0,000-compound dataset and 50 partitions, the runtime
in the table, the run-time in seconds, (the size of the largest increases only by a factor of 3.4 over that for a single
discovered frequent subgraph*], and the total number of partition. Also, the pattern lattice memory increases slowly
frequent patterns|f|) that were generated. The minimumas the number of partitions increases, and unless the number
support threshold was ranging from 10% down to 1.096f partitions is quite large, it is still dominated by the memory
Dashes in the table correspond to experiments that weaesuired to store the TID lists. Note that these results suggest
aborted due to high computational requirements. All the resuttsat there is an optimal point for the number of partitions that
in this table were obtained using a single partition of thieads to the least amount of memory, as the pattern lattice
dataset. memory will eventually exceed the TID list memory as the

FSG is able to effectively operate on datasets containingimber of partitions increases.

200,000 transactions and discover all frequent connected sub-

graphs which occur in 1% of the transactions in approximates Synthetic Datasets

one hour. With respect to the number of transactions, theTo evaluate the performance BSG on datasets with dif-
run-time scales almost linearly. For instance, with the 2%rent characteristics we developed a synthetic graph generator
support, the run-time for 50,000 transactions is 263 secondsich can control the number of transactidfy, the average
whereas the corresponding run-time for 200,000 transactiansmber of edges in each transactj@, the average number of

is 1,343 seconds, an increase by a factor of 5.1. As the suppaities 7| of the potentially frequent subgraphs, the number of
decreases, the run-time increases reflecting the increase ofggbgentially frequent subgraphs|, the number of distinct edge
number of frequent subgraphs found from the input datasktbels|Lz|, and the number of distinct vertex labéky | of

For example, with 200,000 transactions, the run-time for thie generated dataset. The design of our generator was inspired
1% support is 4.2 times longer than that for the 3% suppoly the synthetic transaction generator developed by the Quest
and the number of found frequent subgraphs for the 1§boup at IBM and used extensively to evaluate algorithms that
support was 8.2 times more than that for the 3% support. find frequent itemsets [1], [2], [20].

Comparing the performance on the PTE and DTP-derivedThe actual generator works as follows. First, it generates a
datasets we notice that the run-time for the PTE dataseit of|S| potentially frequent connected subgraphs cadleed
dramatically increases as the minimum support decreases, patternswhose size is determined by Poisson distribution with
eventually overtakes the run-time for most of the DTP-derivadean|I|. For each seed pattern, the topology and the labels
datasets. This behavior is due to the maximum size and thfethe edges and the vertices are chosen randomly. Each seed
total number of frequent subgraphs that are discovered in thigttern has a weight assigned, which becomes a probability
dataset (both of which are shown in Table II). For lowethat the seed pattern is selected to be included in a graph
support values the PTE dataset contains both more and longansaction. The weights are calculated by dividing a random
frequent subgraphs than the DTP-derived datasets do. Thigasiable which obeys an exponential distribution with unit
due to the inherent characteristics of the PTE dataset becausan by the number of edges in the seed pattern, and the sum
it contains larger and more similar compounds. For examplf, the weights of all the seed patterns is normalized to one.
the PTE dataset contains 26 compounds with over 50 edd#s call this setS of seed patterns seed poalThe reason that
and the largest compound has 214 edges. DespiteEB&, we divide the exponential random variable by the number of
requires 459 seconds for a support value of 2.0%, and is abliges is to reduce the chance that larger weights are assigned
to discover patterns containing over 22 edges. to larger seed patterns. Otherwise, once a large weight was

1) Reducing Memory Requirement of TID lis® evaluate assigned to a large seed pattern, the resulting dataset would
the effectiveness of the database-partitioning-based approaohtain an exponentially large number of frequent patterns.
(described in Section IV-B.1) for reducing the amount of mem- Next, the generator creat¢®| transactions. First, the gen-
ory required by TID lists (TID list memory), we performed aerator determines the target size of each transaction, which is
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TABLE I
RUN-TIME IN SECONDS FOR THEPTEAND DTP CHEMICAL COMPOUND DATASETS

Support Run-time¢[sec], Size of Largest Frequent Pattéth, and Number of Frequent Patterfi&|
threshold PTE D[] = 340 DTP [D] = 50,000 | DTP|D| = 100,000 | DTP[D] = 200, 000
[9%6] t[sec] k¥ [FT T t[sec] 0 [FT | t[sec] N [FT | tlsec] k™ [F]

10.0 3 11 844 74 9 351 156 9 360 337 9 373
9.0 3 11 977 80 9 400 169 10 420 366 10 442
8.0 4 11 1323 87 11 473 184 11 490 401 11 512
7.0 4 12 1770 94 11 562 200 11 591 437 11 635
6.0 6 13 2326 109 12 782 230 12 813 503 12 860
5.0 9 14 3608 122 12 1017 259 12 1068 570 12 1140
4.0 16 15 5935 146 13 1523 316 13 1676 705 13 1855
3.0 60 22 22758 186 14 2705 398 14 2810 894 14 3004
2.0 459 25 136927 263 14 5295 571 14 5633 | 1343 15 6240
1.0 — — — 658 16  19373| 1458 16  20939| 3776 17 24683

Note. Dashes indicate the computation was aborted because of the too long run-time.

|D]: Number of transactions

TABLE Il
RUN-TIME AND TID LIST MEMORY WITH PARTITIONING

Run-time [sec]
|D] Number of Partitions
1 2 3 4 5 10 20 30 40 50
100,000 | 1432 | 1878 | 2032 | 2189 | 2356 | 2924 | 3899 | 4842 6122 7459
200,000 | 3698 | 4494 | 5095 | 5064 | 5538 | 6418 | 7856 | 9516 | 11165 | 12670

Maximum amount of memory for storing TID lists [Mbytes]

2l Number of Partitions
1 2 3 4 5 10 20 30 40 50
100,000 | 53.8 27.0 18.1 13.6 11.0 5.6 2.9 2.0 15 12
200,000 118 59.1 39.5 29.6 23.9 12.1 6.2 4.2 3.2 2.6

Maximum amount of memory for storing pattern lattice [Mbytes]

| D] Number of Partitions
1 2 3 4 5 10 20 30 40 50
100,000 1.4 15 15 1.6 1.9 25 3.2 3.8 4.3
200,000 1.7 1.8 1.8 1.8 2.0 2.4 2.8 3.2 3.6

Note. The two datasets are generated from the DTP dataset by sampling 100,000 and 200,000 chemical
compounds. The minimum suppart= 1.0%

Pattern lattice memory is left blank for a single partition because the lattice is not built.

|D]: Number of transactions

a Poisson random variable whose mean is equél’toThen, e

the generator selects a seed pattern from the seed pool, by, Tl

rolling an |S|-sided die. Each face of this die corresponds to z | EI B

the probability assigned to a seed pattern in the seed pool. If: * % | |17 A\AA:*‘ e
the size of the selected seed pattern fits in the target transaction ™| ..~ = -7) v s 1 20 R
size, the generator adds it to the transaction. If the size of the | e “ 2] w o | [T T
current intermediate transaction does not reach its target size, . i LA m

we keep selecting and putting another seed pattern into it. ° ° & * * R R T
When adding the selected seed pattern makes the intermediate ) ) , ) )

. . . . Fig. 6. Median of 10 run-times in seconds for synthetic data $&tsis
transaction size greater than the target transaction size, t}’\\geaverage size of transactiong| is the average size of seed patterns, and
add it for the half of the cases, and discard it and move onto, | is the number of distinct vertex labels.
the next transaction for the rest of the half. The generator
adds a seed pattern into a transaction by connecting randomly
selected pair of vertices, one from the transaction and the ottiere because some may contain harder seed patterns (e.g.,
from the seed pattern. regular patterns with similar labels) than others do. To reduce

a) Results:Using this generator, we obtained a numbehis variability, we created ten different datasets for each
of different datasets by varying the number of vertex labefmrameter combination with different seeds for the pseudo
|Lv|, the average size of the potentially frequent subgraptendom number generator and r&SG on all of them. The
|7], and the average size of each transacfionwhile keeping median of these run-times for each of the ten datasets is shown
fixed the total number of transactio®| = 10,000, seed in Fig. 6. Note that these results were obtained using 2% as
patterngS| = 200, and edge labeld. | = 1 respectively. De- the minimum support threshold.
spite our best efforts in designing the generator, we observedn general, the=SG'’s run-time decreases as the number of
that as both|T'| and |I| increase, different datasets createdertex labels|Ly | increases, whereas it increases when the
under the same parameter combination lead to different riaverage size of the seed pattefhisor the average transaction
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size|T| increases. These trends are consistent with the inheraatially correspond to subgraphs. Most ILP-based approaches
characteristics of the datasets because of the following reasars: greedy in nature and use various heuristics to prune the
(i) As the number of vertex labels increases, the space of pgpace of possible hypotheses. Thus, they tend to find subgraphs
sible automorphisms and subgraph isomorphisms decreasdsat have high support and can act as good discriminators
leading to faster candidate generation and frequency countibgtween classes. However, they are not guaranteed to discover
(ii) As the size of the average seed pattern increases, becaals&requent subgraphs. A notable exception is the ILP system
of the combinatorial nature of the problem, the total numb&ARMR developed by Dehaspe and De Raedt [9] capable
of frequent patterns to be found from the dataset increas#dinding all frequently occurring subgraphs. WARMR is not
exponentially—increasing the overall run-time. (iii) As the sizepecialized for handling graphs, however, it does not employ
of the average transactid®| increases frequency counting byany graph-specific optimizations and as such, it has high
subgraph isomorphism becomes expensive, regardless of ¢cbmputational requirements.
size of candidate subgraphs. Moreover, the total number ofin the last three years, three different algorithms have
frequent patterns to be found from the dataset also increabeen developed capable of finding all frequently occurring
because more seed patterns can be put into each transactiohgraphs with reasonable computational efficiency. These are
Both of these factors contribute in increasing the overall ruAGM by Inokuchi et al. [24], [25], the chemical substructure
time. discovery algorithm developed by Borgelt and Berthold [5],
and the gSpan algorithm developed by Yan and Han [45].
Among them, the early version of AGM [24] was developed
prior to FSG, whereas the other algorithms were developed
Over the years, a number of different algorithms have beafter the initial development dFSG [29].
developed to find frequent patterns corresponding to frequeniAGM initially developed to find frequently induced sub-
subgraphs in graph datasets. Developing such algorithgraphs [24] and later extended to find arbitrary frequent sub-
is particularly challenging and computationally intensive, agraphs [25] discovers the frequent subgraphs using a breadth-
graph and subgraph isomorphisms play a key role throughdiust approach, and grows the frequent subgraphs one-vertex-
the computations. For this reason, a considerable amountapf-time. To distinguish a subgraph from another, it uses
work has been focused on approximate algorithms [23], [2&], canonical labeling scheme based on the adjacency matrix
[35], [46] that use various heuristics to prune the searg¢bpresentation. Experiments reported in [24] show that AGM
space. However, a number of exact algorithms have besgthieves good performance for synthetic dense datasets, and
developed [5], [10], [17], [24], [25], [45] that guarantee to findt required 40 minutes to 8 days to find all frequent induced
all subgraphs that satisfy certain minimum support or otheubgraphs in the PTE dataset, as the minimum support thresh-
constraints. old varied from 20% to 10%. Their modified algorithm [25]
Probably the most well-known heuristic-based approacises previously found embeddings of a frequent pattern in
is the SUBDUE system, originally developed in 1994, bui transaction to save the subgraph isomorphism computation
has been improved over the years [8], [23]. SUBDUE findsnd improves the performance significantly at the expense of
patterns which can effectively compress the original inpiticreased memory requirements.
data based on the minimum description length principle, by The chemical substructure mining algorithm developed by
substituting those patterns with a single vertex. To narroBorgelt and Berthold [5], finds frequent substructures (con-
the search-space and improve its computational efficienexected subgraphs) using a depth-first approach similar to
SUBDUE uses a heuristic beam search approach, which quhiat used by dEclat [49] in the context of frequent itemset
often results in failing to find subgraphs that are frequerdiscovery. In this algorithm, once a frequent subgraph has
Nevertheless, despite its heuristic nature, its computatiomaen identified, it then proceeds to explore the input dataset for
performance is considerably worse compared to some of irequent subgraphs all of which contain the frequent subgraph.
recent frequent subgraph discovery algorithms. Experimenis reduce the number of subgraph isomorphism operations, it
reported in [17] for the PTE dataset [43], show that SUBDUEkeeps the embeddings of previously discovered subgraphs and
spends about 80 seconds on a Pentium 11l 900 MHz computees to extend the embeddings by one edge which is similar
to find five most frequent substructures. In contrast,RB&  to the modified version of AGM [25]. In addition, since all the
algorithm developed by our group [29], takes only 20 secondmbeddings of the frequent subgraph are known, they project
on Pentium Il 450 MHz to find all 3,608 frequent subgraphthe original dataset into a smaller one by removing edges and
that occur in at least 5% of the compounds. vertices that are not used by any embeddings. Nevertheless,
A number of approaches for finding commonly occurringespite these optimizations, the reported speed of the algorithm
subgraphs have been developed in the context of inductigeslower than that achieved 3&G. This is primarily due to
logic programming (ILP) systems [19], [33], [34], [38], [44],two reasons. First, their candidate subgraph generation scheme
as graphs can be easily expressed using first-order logic. Edoles not ensure that the same subgraph is generated only
vertex and edge is represented as a predicate and a subgoape, as a result, they end up generating and determining
corresponds to a conjunction of such predicates. The goaltbé frequency of the same subgraph multiple times. Second,
ILP-based approaches is to induce a set of rules capableiothemical datasets, the same subgraph tends to have many
correctly classifying a set of positive and negative examplesmbeddings (in the range of 20-200), as a result the cost of
In the case of graphs modeled by ILP systems, these rukesping track of them outweighs any benefits.

VII. RELATED WORK
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gSpan [45] finds the frequently occurring subgraphs alstantially reduce§SG’s memory requirement for storing TID

following a depth-first approach. Unlike the algorithm byists with only a moderate increase in run-time.

Borgelt and Berthold, every time a candidate subgraph is

generated, its canonical label is computed. If the computed APPENDIX

label is the minimum one, the candidate is saved for further Correctness oESG’s Candidate Generation

exploration of the depth search. If not, the candidate isLet C' denote a connected sizé-+ 1) subgraph which is
discarded because there must be another path to the sasige generated as a valid candidate. A gize- 1) subgraph
candidate. By doing so, gSpan avoids redundant candidiiesvalid candidateif each of its connected sizesubgraphs
generation. To ensure that these subgraph comparisons igrerequent. LetF(C) = {F;} and H(C) = {H;} denote
done efficiently, they use a canonical labeling scheme basgsis of all connected sizeand sizetk — 1) subgraphs of’,

on depth-first traversals. In addition, gSpan does not keggspectively. For each; € F(C), letc; be the edge of' such
the information about all previous embeddings of frequettiat F; = C — ;. Likewise, for eachl; ¢ H(C), let a; andb;

subgraphs which saves the memory usage. However, all &sa-the edges of’ such thatH; = C' —a; — b;. Let HT(C) =

beddings are identified on the fly, and use them to project tlpej;r} be the set of connected size— 1) subgraphs of”

dataset in a fashion similar to that used by [5]. Accordinguch that for eaclﬂj, there exists a pair of edge$ andb;r

to the reported performance in [45], gSpan &R8G are that belong toC' so thatH;" = C —aj —b;" and bothC — a;

comparable on the PTE dataset, whereas gSpan performs beiteyC — b are connected. Note that*(C) C H(C) and

than FSG on synthetic datasets. it contains only those sizg: — 1) subgraphs ofH(C) that

In addition to the work on frequent subgraph discoveryegardless of the order in which the two edges are removed,
researchers has recently focused on the related but differétr intermediate sizé-subgraph remains connected. &t €
problem of mining trees to discover frequently occurring sul{*(C) denote a(k — 1)-subgraph whose canonical label is
trees. In particular, two similar algorithms have been recentliye smallest among all thg — 1)-subgraphs i (C). We
developed by Asai et al. [4] and Zaki [48] that operate owill refer to H* as thepivotal coreof C. Leta* andb* be the
rooted ordered trees and find all frequent subtrees. A rootedges deleted front' to obtain H*, and we refer taz* and
ordered tree is a tree in which one of its vertices is designatedas thepivotal edgesLet F~¢ and F—*" denoteC — a*
as its root and the order of branches from every vertex asd C' — b*, respectively. We will refer taf’~%" and F~*"
specified. Because rooted ordered subtrees are in a spessatheprimary frequent sizek subgraphs of”. Note that by
class of graphs, the inherent computational complexity of thenstruction, we have th& <" ¢ F(C), F~* ¢ F(C), and
problem is dramatically reduced as both graph and subgraplat H* is a connected sizgt — 1) subgraph of bothF—*
isomorphism problems for trees can be solved in polynomiahd F—°",
time. Cong et al. [7] also proposed an algorithm to find Lemma 1:Given a connected sizg:+ 1) valid candidate
frequent subtrees from a set of tree transactions, which allogibgraphC, let H*, a*, b* be the pivotal core and pivotal
wildcards on edge- and vertex-labels. Their algorithm firgtdges ofC, respectively, and let"~*" and F~%" be the
finds a set of frequent paths which may contain wildcardgrimary sizek subgraphs ofC. Then, in each of the two
allowing inexact match on both the structure as well as tipggimary sizek subgraphs ofC, there exists at most one
edge and vertex labels. connected siz€k — 1) subgraph whose canonical label is
smaller than that of the pivotal cord*.

Proof: We prove the lemma only faF —*" and the same
proof holds forF—?".

In this paper we presented an algorithR§G, for finding Let H' be a connected sizg:— 1) subgraph ofF —¢" such
frequently occurring subgraphs in large graph datasets, thi@tcl(H’) < cl(H*). Note that since"—*" € F(C), we have
can be used to discover recurrent patterns in scientific, spatiabt H’ € H(C). Let o’ and ¥’ be the two edges of’ that
and relational datasets. Such patterns can play an importaete deleted to obtaid’, that is, H' = C — o’ — b’. From
role for understanding the nature of these datasets and canHeedefinition of H*, we have thatd’ ¢ H*(C), otherwise
used as input to other data-mining tasks [11]. Our detailege would have thafi* = H’. Without loss of generality, we
experimental evaluation shows tHeBG can scale reasonablyassume that'—a’ is connected and that—b' is disconnected.
well to very large graph datasets provided that the graphsNow, sinceF~" is a connected sizé-subgraph ofC' that
contain a sufficiently many different labels of edges ancbntains H’, we know thatF—¢" will be either C — a’ or
vertices. Key elements 86SG’s computational scalability are C —¥'. However, becaus€ — ' is disconnected, we have that
the highly efficient canonical labeling algorithm and candidate—*" = C' — «/, and becausé& —*" was initially obtained by
generation scheme, and its use of a TID list based approaigietinga*, we have that’ = a*. Thus,H’ can be written as
for frequency counting. These three features combined, allow H —C—a—1 1)
FSG to uniquely identify the various generated subgraphs, ’
generate candidate patterns with limited degree of redundanefierea* is independent off’. Moreover, becaus€ — b’ is
and to quickly prune most of the infrequent subgraphs withodisconnectedy’ must be a cut-edge that separatégrom the
having to resort to computationally expensive graph and sulest of the graph.
graph isomorphism computations. Furthermore, we presentediven the above, we can now show by contradiction that
and evaluated a database-partitioning-based approach that thére exists only one connected size- 1) subgraph of"~*"

VIIl. CONCLUSIONS
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whose canonical label is smaller tha&f*. Assume that there [10]
exist two distinct connected siZé-— 1) subgraphsH; and

H?, such thatcl(H;) < cl(H*) and cl(H}) < cl(H™). Let

H; = C —aj;—b; andH} = C' — a; — b’;, and without loss of
generality, assume that — a; andC — o’ are connected, and [11]
C - b} andC —b’; are disconnected. Then, from Equation (1)
we have that [12]

H! =
’
sz

C—a,—b,=

; C—a* -0
C—d V)=

C—a*—b;-.

(13]

In order for H; # H}, we must have thal; # b’. However, [14]

because botlb/ and b; are cut-edges separatrrag from the
rest of the graph, and becausgé can have only one such
cut-edge (otherwise it cannot be separated by a single-e
deletion), we have thal; = 0. This is a contradiction, and [1¢]
thus H; = H;. [ |

Using the above lemma, we can now prove the matn
theorem that shows th&SG’s candidate generation approach,
described in Section IV-A is correct.

Theorem 1:Given a connected sizg:+ 1) valid candidate [18]
subgraphC, there exists a pair of connected skzdrequent [19]
subgraphsF; and F; such thatP(F;) N P(F;) # 0 that can
be joined with respect to their common primary subgraph to
obtain C.. 2

Proof: Let H* = C'—a*—b* be the pivotal core of’, and

let F~¢" = C—qa* andF~*" = C' —b*. Since from Lemma 1 [21]
there exists at most one such common connected (&ize-

1) subgraph shared by'—¢" and F~*" that has a smaller [22]
canonical label thand*, it follows that H* € P(F~%)
and H* € P(F~"); thus, H* € P(F~*) N P(F).
Consequently,F; = F~* and F; = F~" are the desired
size« frequent subgraphs of’, and H* is their common
primary subgraph that leads (. ]

(23]
(24]
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