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Abstract

In recent years we have seen a tremendous growth in the volume of text documents available on the Internet, digital

libraries, news sources, and company-wide intra-nets. Automatic text categorization, which is the task of assigning

text documents to pre-specified classes (topics or themes) of documents, is an important task that can help both in

organizing as well as in finding information on these huge resources. Similarity based categorization algorithms such

as k-nearest neighbor, generalized instance set and centroid based classification have been shown to be very effective

in document categorization. A major drawback of these algorithms is that they use all features when computing the

similarities. In many document data sets, only a small number of the total vocabulary may be useful for categorizing

documents. A possible approach to overcome this problem is to learn weights for different features (or words in

document data sets). In this report we present two fast iterative feature weight adjustment algorithms for the linear-

complexity centroid based classification algorithm. Our algorithms use a measure of the discriminating power of each

term to gradually adjust the weights of all features concurrently. We experimentally evaluate our algorithms on the

Reuters-21578 and OHSUMED document collections and compare it against Rocchio, Widrow-Hoff and SVM. We

also compared its performance in terms of classification accuracy on data sets with multiple classes. On these data

sets we compared its performance against traditional classifiers such as k-nn, Naive Bayesian and C4.5. Experiments

show that feature weight adjustment improves the performance of the centroid-based classifier by 2- 5% , substantially

outperforms Rocchio and Widrow-Hoff and is competitive with SVM. These algorithms also outperform traditional

classifiers such as k-nn, naive bayesian and C4.5 on the multi-class text document data sets.
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by Army High Performance Computing Research Center contract number DAAH04-95-C-0008. Access to computing facilities was provided by
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1 Introduction

We have seen a tremendous growth in the volume of online text documents available on the Internet, digital libraries,

news sources and company-wide intra-nets. It has been forecasted that these documents along with other unstructured

data will become the predominant data type stored online. Automatic text categorization [33, 43, 16] which is the

task of assigning text documents to pre-specified classes of documents, is an important task that can help people

find information from these huge resources. Text categorization presents huge challenges due to a large number of

attributes, attribute dependency, multi-modality and large training set.

The various document categorization algorithms that have been developed over the years [36, 1, 8, 11, 25, 16, 19,

2, 42, 20, 13] fall under two general categories. The first category contains traditional machine learning algorithms

such as decision trees, rule sets, instance-based classifiers, probabilistic classifiers, support vector machines, etc., that

have either been used directly or after being adapted for use in the context of document data sets. The second category

contains specialized categorization algorithms developed in the Information Retrieval community. Examples of such

algorithms include relevance feedback, linear classifiers, generalized instance set classifiers, etc.

A general class of algorithms that has been shown to produce good document categorization performance is simi-

larity based. This class contains algorithms such as k-nearest neighbor[42], generalized instance set[19] and centroid

based classifiers[12]. In these algorithms the class of a new document is determined by computing the similarity be-

tween the test document and individual instances or aggregates of the training set, and determining the class based on

the class distribution of the nearest instances or aggregates.

A major drawback of these algorithms is that they use all the features while computing the similarity between a test

document and the training set instances or aggregates. In many document data sets, only a relatively small number

of the total features may be useful in categorizing documents, and using all the features may affect performance. A

possible approach to overcome this problem is to learn weights for different features (i.e. words). In this approach, each

feature has a weight associated with it. A higher weight implies that this feature is more important for classification.

When the weights are either 0 or 1 this approach become the same as feature selection. We refer to such algorithms as

feature weight adjustment or just weight adjustment techniques.

This report presents two fast iterative feature weight adjustment algorithms for the linear-complexity centroid based

classification algorithm. These algorithms use a measure of the discriminating power of each term to gradually adjust

the weights of all features concurrently. Analysis shows that this approach gradually eliminates the least discriminating

features in each document thus improving its classification accuracy. We experimentally evaluate these algorithms on

the Reuters-21578 [24] and OHSUMED [14] document collection and compare its performance in terms of precision

and recall against Rocchio [32], Widrow-Hoff [39] and Support vector machines [35, 16]. We also compared its

performance in terms of classification accuracy on data sets with multiple classes. These data sets are described in

Section (6.3) and in [12]. On these data sets we compared its performance against traditional classifiers such as k-nn,

Naive Bayesian and C4.5. Experiments show that feature weight adjustment improves the performance of the centroid-

based classifier by 2- 5% , substantially outperforms Rocchio and Widrow-Hoff and is competitive with SVM. These

algorithms also outperform traditional classifiers such as k-nn, naive bayesian and C4.5 on text document data sets.

The organization of the report is as follows. Section (2) describes some of the other classification schemes used

on text data while section (3) gives a brief overview of the centroid based classifier. Section (4) describes the two

weight adjustment schemes and discusses their computational complexity. Section (5) presents an analysis of the two

schemes. Section (6) documents the results of these schemes on various data sets as well as the performance of other

classifiers on the same data sets.
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2 Previous work

2.1 Linear Classifiers

Linear classifiers [25] are a family of text categorization learning algorithms that learn a feature weight vector w, for

every category. Weight learning techniques such as Rocchio [32] and Widrow-Hoff algorithm [39] are used to learn

the feature weight vector from the training samples. These weight learning algorithms adjust the feature weight vector

such that features or words that contribute significantly to the categorization have large values. In both Rocchio and

Widrow-Hoff the weight vector w is used for classification as follows. When a test document x is to be classified a

pre-defined threshold t is used. x is assigned to the positive class when w · x > t . Note that this concept of a weight

vector is very different from what we use

Rocchio Rocchio [32, 25] can be used as batch algorithm to learn a weight vector from an existing weight vector

and a set of training examples. The j th componentw j of the new vector is

w j = αw1, j + β
∑

i∈C di, j

nC
− γ

∑
i /∈C di, j

n − nC
(1)

where n is the number of training instances, C is the set of positive training instances, and nC is number of positive

training instances.

Usually rocchio uses only positive weights so all negative weights are reset to 0.

Widrow-Hoff The Widrow-Hoff algorithm [39, 10, 25] is an online algorithm which runs through the training

examples one at a time updating the weight vector.

The new weight vector 	wi+1 is computed from 	wi as follows.

wi+1, j = wi, j − 2η(wi · di − yi )di, j (2)

where yi is label of row di and is either 0 (negative class) or 1 (positive class). The parameter η controls how quickly

the weight vector can change and how much influence a new example has on it.

While it may seem that the final vector 	wn+1 should be used there are theoretical results [25] that suggest that a

better final weight vector is the average of all the weight vectors computed along the way.

	w = 1

n

n+1∑
i=1

	wi (3)

2.2 Support Vector Machines

Support Vector Machines (SVM) is a new learning algorithm proposed by Vapnik [35]. This algorithm was introduced

to solve two-class pattern recognition problem using the Structural Risk Minimization principle [35, 6]. Given a

training set in a vector space, this method finds the best decision hyper-plane that separates two classes. The quality of

a decision hyper-plane is determined by the distance (referred as margin) between two hyper-planes that are parallel

to the decision hyper-plane and touch the closest data points of each class. The best decision hyper-plane is the one

with the maximum margin. The SVM problem can be solved using quadratic programming techniques [35, 6]. SVM

extends its applicability on the linearly non-separable data sets by either using soft margin hyper-planes, or by mapping

the original data vectors into a higher dimensional space in which the data points are linearly separable. An efficient
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implementation of SVM and its application in text categorization of Reuters-21578 corpus is reported in [16]. We use

this implementation for our comparison purposes.

2.3 k Nearest Neighbor

k-nearest neighbor (k-NN) classification is an instance-based learning algorithm that has been applied to text catego-

rization since the early days of research [27, 15, 41, 5], and has been shown to produce better results when compared

against other machine learning algorithms such as C4.5 [31] and RIPPER [4]. In this classification paradigm, k nearest

neighbors of a test document are computed first. Then the similarities of this document to the k nearest neighbors are

aggregated according to the class of the neighbors, and the test document is assigned to the most similar class (as

measured by the aggregate similarity). A major drawback of the similarity measure used in k-NN is that it uses all

features equally in computing similarities. This can lead to poor similarity measures and classification errors, when

only a small subset of the words is useful for classification. To address this problem, a variety of techniques have been

developed for adjusting the importance of the various terms in a supervised setting. Examples of such techniques in-

clude preset weight adjustment using mutual information [9, 38, 37], RELIEF [17, 18], and variable-kernel similarity

metric learning [26].

2.4 C4.5

A decision tree is a widely used classification paradigm in machine learning and data mining. The decision tree

model is built by recursively splitting the training set based on a locally optimal criterion until all or most of the

records belonging to each of the leaf nodes bear the same class label. C4.5 [31] is a widely used decision tree-based

classification algorithm that has been shown to produce good classification results, primarily on low dimensional data

sets. Unfortunately, one of the characteristics of document data sets is that there is a relatively large number of features

that characterize each class. Decision tree based schemes like C4.5 do not work very well in this scenario due to over-

fitting [5, 13]. The over-fitting occurs because the number of samples is relatively small with respect to the number

of distinguishing words, which leads to very large trees with limited generalization ability. The C4.5 results were

obtained using a locally modified version of the C4.5 algorithm capable of handling sparse data sets.

2.5 Naive Bayesian

The naive Bayesian (NB) algorithm has been widely used for document classification, and has been shown to produce

very good performance [22, 23, 21, 28]. For each document, the naive Bayesian algorithm computes the posterior

probability that the document belongs to different classes and assigns it to the class with the highest posterior proba-

bility. The posterior probability P(ck |di ) of class ck given a test document di is computed using Bayes rule

P(ck |di) = P(ck)P(di |ck)

P(di )
, (4)

and di is assigned to the class with the highest posterior probability, that is,

Class of di = arg max
1≤k≤N

{P(ck |di)} = arg max
1≤k≤N

{P(ck)P(di |ck)}, (5)

where N is the total number of classes. The naive Bayesian algorithm models each document di , as a vector in the

term space, i.e., di = (di1, di2, . . . , dim), where dij models the presence or absence of the j th term. Naive Bayesian
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computes the two quantities required in (5) as follows. The approximate class priors (P(ck)) are computed using the

maximum likelihood estimate

P(ck) =
∑|D|

i=1 P(ck |di )

|D| , (6)

where D is the set of training documents and |D| is the number of training documents in D. The P(di |ck) is computed

by assuming that when conditioned on a particular class ck , the occurrence of a particular value of dij is statistically

independent of the occurrence of any other value in any other term dij ′ . Under this assumption, we have that

P(di |ck) =
m∏

j=1

P(dij |ck), (7)

and because of this assumption this classifier is called “naive” Bayesian.

3 Centroid-Based Document Classifier

In the centroid-based classification algorithm, the documents are represented using the vector-space model [33]. In

this model, each document d is considered to be a vector in the term-space. In its simplest form, each document is

represented by the term-frequency (TF) vector 	dtf = (tf1, tf2, . . . , tfn), where tfi is the frequency of the i th term in the

document. A widely used refinement to this model is to weight each term based on its inverse document frequency

(IDF) in the document collection. The motivation behind this weighting is that terms appearing frequently in many

documents have limited discrimination power, and for this reason they need to be de-emphasized. This is commonly

done [33] by multiplying the frequency of each term i by log(N/df i ), where N is the total number of documents in

the collection, and dfi is the number of documents that contain the i th term (i.e., document frequency). This leads to

the tf-idf representation of the document, i.e., 	dtfidf = (tf1 log(N/df1), tf2 log(N/df2), . . . , tfn log(N/dfn)). Finally, in

order to account for documents of different lengths, the length of each document vector is normalized so that it is of

unit length, i.e., ‖ 	dtfidf‖2 = 1. In the rest of the paper, we will assume that the vector representation 	d of each document

d has been weighted using tf-idf and it has been normalized so that it is of unit length.

In the vector-space model, the similarity between two documents di and d j is commonly measured using the cosine

function [33], given by

cos( 	di , 	d j ) =
	di · 	d j

‖ 	di‖2 ∗ ‖ 	d j‖2
, (8)

where “·” denotes the dot-product of the two vectors. Since the document vectors are of unit length, the above formula

simplifies to cos( 	di , 	d j ) = 	di · 	d j .

Given a set S of documents and their corresponding vector representations, we define the centroid vector 	C to be

	C = 1

|S|
∑
d∈S

	d, (9)

which is nothing more than the vector obtained by averaging the weights of the various terms present in the documents

of S. We will refer to the S as the supporting set for the centroid 	C . Analogously to documents, the similarity between

two centroid vectors and between a document and a centroid vector are computed using the cosine measure. In the
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first case,

cos( 	Ci , 	C j ) =
	Ci · 	C j

‖ 	Ci‖2 ∗ ‖ 	C j‖2
, (10)

whereas in the second case,

cos( 	d, 	C) = 	d · 	C
‖ 	d‖2 ∗ ‖ 	C‖2

= 	d · 	C‖ 	C‖2
. (11)

Note that even though the document vectors are of length one, the centroid vectors will not necessarily be of unit

length.

The idea behind the centroid-based classification algorithm [12] is extremely simple. For each set of documents

belonging to the same class, we compute their centroid vectors. If there are k classes in the training set, this leads to k

centroid vectors { 	C1, 	C2, . . . , 	Ck}, where each 	Ci is the centroid for the i th class. The class of a new document x is

determined as follows. First we use the document-frequencies of the various terms computed from the training set to

compute the tf-idf weighted vector-space representation of x , and scale it so 	x is of unit length. Then, we compute the

similarity between 	x to all k centroids using the cosine measure. Finally, based on these similarities, we assign x to

the class corresponding to the most similar centroid. That is, the class of x is given by

arg max
j=1,...,k

(cos(	x, 	C j )). (12)

The computational complexity of the learning phase of this centroid-based classifier is linear on the number of

documents and the number of terms in the training set. The computation of the vector-space representation of the

documents can be easily computed by performing at most three passes through the training set. Similarly, all k

centroids can be computed in a single pass through the training set, as each centroid is computed by averaging the

documents of the corresponding class. Moreover, the amount of time required to classify a new document x is at most

O(km), where m is the number of terms present in x . Thus, the overall computational complexity of this algorithm is

very low, and is identical to fast document classifiers such as Naive Bayesian.

4 Weight Adjustment for Centroid based Classifier

In this section we present algorithms to improve the classification performance achieved by the centroid-based clas-

sifier by adjusting the weight of the various features. In the rest of this section we first present two iterative weight-

adjustment algorithms, and finally discuss how to improve the performance in the case of binary classification.

One approach to weight adjustment (and feature selection) is to choose a small number of features and adjust their

weights in order to improve classification accuracy. This approach has been shown to achieve poor results in the text

domain where the number of ’important’ features is usually quite large. With this in mind our approach performs a

simultaneous weight adjustment of all the features.

4.1 Fixed-Weight Adjustment Schemes

Any scheme that adjusts the weights of the various features (i.e., terms) has to perform two tasks. First, it must rank

the various features according to their discriminating power. Second, it must adjust the weight of the various features

in order to emphasize features with high discriminating power and/or de-emphasize features with none or limited

discriminating power.

Over the years, a number of schemes have been developed to measure the discriminating power of the various
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features such as information gain, entropy , gini index, and χ 2 statistic. In our algorithm, the discriminating power of

each feature is computed using a measure similar to the gini index, as follows. Let m be the number of different classes,

and let { 	C1, 	C2, . . . , 	Cm} be the centroid vectors of these classes. For each term i , let 	Ti = {C1,i ,C2,i , . . . ,Cm,i } be

the vector derived from the weight of the i th term in each one of the m centroids, and let 	T ′i = 	Ti/|| 	Ti ||1 be the

one-norm scaled version of 	Ti . The discriminating power of the i th term Pi is given by

Pi =
m∑

j=1

T 2
j,i , (13)

which is nothing more than the square of the length of the 	T ′i vector. Note that the value of Pi is always in the range

[1/m, 1]. The lowest value of Pi is achieved when T ′i,1 = T ′i,2 = · · · = T ′i,m i.e., a term is equally distributed amongst

all the classes; whereas the highest is achieved when the i th term occurs in only a single class. Thus, a value close to

one indicates that the term has a high discriminating power, whereas a value close to 1/m indicates that the terms has

little if any discriminating power. In the rest of this paper, we will refer to Pi as the purity of the i th term, and we will

refer to the vector 	P = {P1, P2, . . . , Pn} of the purities of all the n terms as the purity vector.

Having ranked the various terms using the purity as a measure of their discriminating power, the next step is to

adjust their weights so that terms with higher discriminating power become more important than terms with lower

discriminating power. A simple way of doing this, is to scale each one of the terms according to their purity. In

particular, each document vector 	d is transformed to a new vector 	d ′ = {P1d1, P2d2, . . . , Pi di , . . . Pndn}. Given this

set of transformed document vectors, the centroid classification algorithm will proceed to scale each document to be

of unit length, and then build a new set of centroid vectors for the various classes. A new document will be classified

by first scaling its terms according to the purity vector and then computing its similarity to the new set of centroids.

Since the purity values are always less or equal to one, the weight of the various terms in each transformed document
	d ′ will always be equal or smaller than their original weights. However, as will be discussed in section (5), the re-

normalization operation performed by the centroid classification algorithm causes the purest terms in each document

to actually gain weight, achieving the desired feature weight adjustments.

Unfortunately, this simple scheme has two drawbacks. The first is that this weight adjustment approach may

cause too steep of a change in the weights of terms. When this happens the weight of a document tends to get

concentrated into a very small number of terms. As a result there could a loss of information that can negatively affect

the classification performance. The second is that in some cases, this simple one step processes may not sufficiently

change the weights of the various terms. Consequently, the new representation will be similar to the original one, with

almost no change in the classification accuracy. For this reason, our weight adjustment algorithm adopts a somewhat

different approach that attempts to address these problems.

Our algorithms solve the first problem by changing the weights of the various features by a smaller factor than that

indicated by their purity. In particular, for each term i , we scale its weight by P 1/δ
i , where δ > 1. Since, the purities

are less than one, P1/δ
i will be closer to one, thus leading to smaller changes. To address the second problem, we

perform the weight-adjustment operation multiple times. For each data set, we use the classification accuracy on a

portion of the training set (i.e., validation set) in order to determine how many times to perform the weight adjustment.

The weight-adjustment process is stopped when the classification performance on the validation set starts to decrease.

The details of the algorithm are shown in Figure 1.

Once the number of weight adjustment iterations l has been computed, a new test document d is classified by first

adjusting the weights of its terms by going through the same sequence of l weight adjustment iterations, and then
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1. Split the training set T into training T ′ and validation V
2. Compute the accuracy on V of the centroid classifier built on T ′
3. Compute 	P using the documents in T ′
4. l = 0
5. For each document di ∈ T
6. For each term j

7. di, j = P1/δ
j di, j

8. Scale di so that ||di ||2 = 1
9. Compute the accuracy on V of the centroid classifier built on T ′
10. If accuracy does not decrease
11. l = l + 1
12. Goto 5

Figure 1: The fixed weight adjustment algorithm.

using the centroid classification algorithm on the weight-adjusted training set to determine its class. This process can

be speeded up by using the fact that applying l iterations of weight-adjustment followed by unit-length scaling is the

same as applying a single weight-adjustment in which the weight of each term j is multiplied by Pl/δ
j , followed by a

single unit-length scaling (see Appendix A for a proof).

Computational Complexity Any algorithm must be reasonably efficient to be of practical significance. One of

the major advantages of the centroid-based classifier is that it is a linear-time classifier [12] which outperforms other

more complex algorithms. In this section we discuss the effect of the feature weight adjustment algorithm on the

computational complexity of the centroid-based algorithm. Both the fixed feature weight adjustment scheme and the

centroid-based algorithms iterate over the document-term matrix. This matrix is a sparse matrix and is usually stored

in a sparse representation. These representations have both space and time complexities of O (nnz), where nnz is the

number of non-zeros in the document-term matrix. Such a representation of the document-term matrix is assumed in

the following analysis.

With the fixed feature-weight adjustment step the classifier’s learning stage consists of three steps. In the first step,

the optimum number of iterations l is to be determined. In this step, weight adjustment is applied to some of the

documents while the other documents are classified. Applying weights to a document and normalizing it is linear in

the number of terms in the document, as is classifying a document. Each iteration is therefore O (nnz). From this, it is

reasonable to assume that the determining l is O (nnz * l). Experimental observation indicate the l is a small constant

(usually l ≤ 20). Assuming constant l, the complexity of this step can be rewritten as O (nnz).

The second step consists of applying the weight vector l times to the complete training set. However as discussed in

the previous section this can be done in 1 iteration through the document-term matrix. Using this optimization means

the second step has complexity O (nnz).

The final step consists of computing the centroids of the transformed data set. The complexity of this step has been

shown to be O (nnz) [12]. Putting the complexities of the three steps together, the overall complexity of the learning

phase is O (nnz).

While classifying, the feature-weight vector is applied to the tf-idf representation , 	x of the test document to produce
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the transformed test vector 	x ′. This step is O(|	x ′|) where |	x ′| is the number of terms in the document. Classifying this

document using the centroid-based algorithm has complexity O(k ∗ |	x ′|) where k is the number of classes (and hence

the number of centroids).

Thus the fixed feature-weight adjustment does not affect the linear time complexity of the centroid-based scheme.

This is important as the speed of the algorithm is one of its primary advantages.

4.2 Variable-Weight Adjustment

In the algorithm in Section (4.1) the feature-weight vector is computed once at from the original document-term matrix.

After each application of the weight vector, the matrix changes. Both the centroid and the purity information change as

a result. In this section, we present an algorithm which uses this changed purity information to recalculate the weight

vector at each iteration. Since the weight vector changes at each iteration, this algorithm is called the variable-weight

feature adjustment algorithm (VWA for short). This algorithm is summarized in Figure 2.

1. Split the training set T into training T ′ and validation V
2. Compute the accuracy on V of the centroid classifier built on T ′
3. l = 0
4. Compute 	Pl using the documents in T ′
5. For each document di ∈ T
6. For each term j
7. di, j = (Pl

j )
1/δdi, j

8. Scale di so that ||di ||2 = 1
9. Compute the accuracy on V of the centroid classifier built on T ′
10. If accuracy does not decrease
11. l = l + 1
12. Goto 4

Figure 2: The variable weight adjustment algorithm.

For a test document x, with its tf-idf representation 	x = {x1, x2, . . . , xt }, we compute the transformed test document

as

	x ′ = {x1w1, x2w2, . . . , xtwt } (14)

This represents the test document in the transformed space and is used in computing similarity with the centroids. This

weight vector can be computed during step 2 of the learning phase without any added complexity as

	w = {w1, . . . , wt } = {(P1
1 )

1/δ · (P2
1 )

1/δ . . . (Pl
1)

1/δ, . . . , (P1
t )

1/δ · (P2
t )

1/δ . . . (Pl
t )

1/δ} (15)

This is a result of applying a weight (i.e., multiplying each term and re-normalizing) being associative. (See

Appendix A) We can track this vector by using a single vector initialized to 1 and updating it while computing purities

in step (4) in Figure 2.
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Computational Complexity Since the algorithm described is a modification of the algorithm in section (4.1),

analysis here is based on the analysis in section (4.1). The main difference in the two algorithms is that once the

optimum number of iterations l has been determined in the FWA algorithm, the training set can be weighted in one

iteration. In the VWA algorithm, the weights are recomputed at the end of each iteration so l iterations need to be

performed. As a result the complexity of this step becomes O (l * nnz) from O (nnz). However with the assumption

that l is a constant, this revised algorithm does not affect the linear time complexity of the centroid-based algorithm.

Computing the transformed test has complexity on the order of the number of terms in the test document. Again this

does not affect the time complexity of the classification of the phase of the centroid-based classifier which remains

O(k ∗ |	x ′|).

4.3 Binary Classification

A common classification problem in information retrieval is that of developing a classifier that can correctly identify

documents that belong to a particular target class from a large collection of documents. This is a typical binary

classification problem in which we try to develop a model for the target class versus the rest. The weight adjustment

scheme that we described in the previous sections can be directly used in this kind of problems. However, the centroid

scheme does best when each class contains related documents. The negative class i.e., rest is however too diffuse for

this. As a result instances of the negative class tend to get classified as positive. We propose the following solution to

handle this. We cluster the negative set into k clusters. While computing the centroids and the purity we treat this as

a k + 1 class problem. When classifying, we compute the similarity of the document to the k negative clusters. We

take the largest value amongst these, and treat it as the similarity of the document to the negative set. The similarity of

the document to the positive set is directly computed from the centroid of the positive class. Similarly if we find that a

class has a multi-modal distribution we can run a clustering algorithm to identify sub-classes within it. We could then

treat each of these sub-classes as a separate class.

5 Analysis

We first present a model of how the weight adjustment process affects the documents. Consider the terms in a doc-

ument sorted according to decreasing purity. When we apply the weight adjustment scheme to this document and

re-normalize it, every term will gain some weight from the terms having less purity than it and lose some weight to

purer terms. Consider the initial document vector as {d1, d2, . . . , dt }, where
∑

d2
i = 1. Let us apply a weight vector

	w = {w1, w2, . . . , wt }. We assume without loss of generality that wt ≤ . . . ≤ w2 ≤ w1 ≤ 1. Then the new document

vector 	d ′ is given by
	d ′ = {d ′1, d ′2, . . . , d ′t } (16)

where

d ′i =
wi · di√∑
(w j · d j )2

(17)

We rewrite this as

d ′i =
di√

L ′i + d2
i + G′i

(18)
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where p j = w j
wi

, L ′i =
∑i−1

j=1(p j d j )
2, p j ≥ 1 and G ′i =

∑t
j=i+1(p j d j )

2, p j ≤ 1. Also let Li = ∑i−1
j=1 d2

j and

Gi =∑t
j=i+1 d2

j . Thus L ′i ≥ Li and G ′i ≤ Gi

We also know that Li + d2
i + Gi = 1. If L ′i − Li > Gi − G′i , then the denominator in (18) is greater than 1, thus

d ′i < di i.e. it loses weight. On the other hand if L ′i − Li < Gi −G′i the denominator in (18) is less than 1 and d ′i > di .

Thus even though all weights are less than or equal to 1 a term can actually gain weight.

We assume the weights remain constant through each iteration. An impure term may gain weight due to the

presence of other terms of even lesser purity. However as more iterations are performed, the weight transfer process

causes these terms to have lesser weight and thus reduces the weight transfer into higher terms. As a result of this

process, initially only the terms having the lowest purity in the document will lose weight. As these lose weight, terms

which are more pure will no longer be able to compensate their loss of weight from these terms and will also start

losing weight. Thus the weight of each term will have a curve that looks like Figure 3 (B). The term having the low

purity (Figure 3(A)) does not show the initial increase while the purest term (Figure 3(C)) does not exhibit the final

falling part. The figures shows the change in the weight of a 3 terms with different purities in the same document for

10 iterations.
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Figure 3: Column weight against number of iterations

We assume the following document model. Consider k classes C1 . . .Ck . Each class has a specialized vocabulary

Vi . In addition there is a general vocabulary G. This model is illustrated in Figure 4. We assume the most general

case that ∀i, Vi
⋂

G �= ∅ and ∀i, j, Vi
⋂

Vj �= ∅. Consider the set of words G − (V1
⋃
. . .
⋃

Vk). It is a reasonable

assumption to make that the words belonging to this class do not have any affinity to a particular class. Thus these

terms will have a purity close to 1
k . As we perform the weight adjustment process, these terms will tend to go to zero

first. Since these terms do not have any discriminant ability, there is no loss of information by weight transfer out of

these terms. The next terms that would tend to go to zero would be those that occur about equally in k − 1 of the

classes. Thus this process removes terms in increasing order of discriminating ability. The process should stopped

when the new representation starts losing terms which are important for discriminating between classes. This is why

the validation portion of the training set is needed.

The algorithm in section (4.2) updates the purity vector after each iteration. The analysis is more complicated

in this case. Each time the weight vector is applied the change of weights of terms in centroids is related to term

dependencies. Consider two terms A and B which are perfectly correlated. This would mean their tf-idf values in each

document vector are the same, and hence so are the centroid values, C1,A = C1,B,C2,A = C2,B, . . . ,Ck,A = Ck,B as

well as the purities PA = PB . Now when we apply the weight vector, and re-normalize we know that there is some

11



Class 1 Class 2

Vocabulary1 Vocabulary2

               General Vocabulary

Class k

Vocabularyk

Figure 4: Document Model

weight transfer from A to each term and vice-versa. It is easy to see that the weight transfer from A to B is canceled

by the weight transfer from B to A. If A and B were not correlated then there would be a net transfer from one to

the other. Thus term dependencies affect the weight transfer within a document and as a result affect weights in the

centroids. Recomputing the purity after each iteration uses these changed weights. We hypothesize that this allows

the scheme to capture some information about the dependencies which caused the weight change in the first place.

6 Experimental Setup and Results

In this section we experimentally evaluate the effect of using feature weight adjustment schemes on the classification

accuracy of a centroid based classifier. Three different sets of experiments are presented. The first two experiments

focus on evaluating the accuracy of the classifier on data sets with multiple labels per document, by considering binary

classification for each class. The third evaluates the classifier as a k way classifier.

In our experiments, we compared the performance of our weight adjustment schemes against the performance

achieved by the following classifiers. We obtained results using two linear classifiers which used Rocchio and Widrow-

Hoff respectively to learn the weight vectors. In the case of Rocchio we used α = 0, β = 16, γ = 4 [25], whereas in

WH we used η = 0.5 and an initial vector w1 = {0, 0, . . . , 0}. We also ran SVMlite [16] using a polynomial kernel

with d = 1 and a RBF kernel with γ = 0.8 against the data sets. For the feature weight adjustment schemes we used

δ = 8. Other classifiers used include k Nearest Neighbor with k = 10, C4.5 and the Naive Bayesian classifier. For the

naive bayesian we used Rainbow [29] with the multinomial event model. Both the feature weighting schemes were

run with δ = 8. All the classifiers except Naive Bayesian and C4.5 were run against the tf-idf representation of the

documents. These two were run against the boolean representation in which a particular entry di j is 1 if term t j occurs

in document di .
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6.1 Reuters

The first data set that we used was the Reuters-21578 [24] text collection. In particular, we used the “ModApte” split to

divide the text collection into a set of 9603 training documents and 3299 test documents. After eliminating stop-words

and removing terms that occur less than two times, the training corpus contains 11,001 distinct terms.

Table 1 shows the performance of the classifiers on the 10 most frequent classes in the Reuters data set. The columns

labeled “Rocchio” and “WH” shows the performance achieved by a linear classifier using the Rocchio and Widrow-

Hoff algorithms respectively to learn the weights. The next two columns show the performance of the SVM classifier

using a degree one polynomial kernel and a RBF kernel. The fifth column labeled “Centroid” shows the performance

of the centroid classifier. The last two column shows the performance of the centroid classifier after feature weights

have been adjusted by the fixed feature-weight adjustment (FWA) and the variable feature-weight adjustment (VWA)

algorithms respectively. Note that these algorithms were run without using clustering. Table 1 also shows the the

micro-average [42] over all classes, the micro-average over the top 10 classes and the macro-average over the top 10

classes.

Rocchio WH SVM(poly) SVM(rbf) Centroid FWA VWA
earn 96.23 95.86 98.62 98.71 93.74 96.32 96.41
acq 79.00 87.60 91.24 95.27 91.79 91.93 91.93
money-fx 55.31 67.04 70.39 78.21 63.68 66.48 66.48
grain 77.85 79.19 91.94 93.29 77.85 77.85 77.85
crude 75.66 72.49 86.77 89.42 85.71 84.12 84.12
trade 73.5 68.38 70.94 76.92 77.78 77.78 77.78
interest 70.23 66.41 63.36 74.81 75.56 75.56 75.56
wheat 74.65 85.92 78.87 84.51 74.65 80.28 80.28
ship 79.77 73.03 77.53 85.39 85.39 84.27 84.27
corn 60.71 64.29 80.36 85.71 62.5 62.5 62.5
Micro-average (top 10) 82.81 85.25 89.37 92.5 87.01 88.23 88.27
Micro-average (all) 76.73 76.57 83.49 86.62 80.62 81.4 81.42
Average (top 10) 74.29 76.02 81.00 86.22 78.87 79.71 79.72

Table 1: Precision / Recall break even points on Reuters

A number of interesting observations can be made from the results in this table 1. First, comparing Rocchio,

Widrow-Hoff and the basic centroid scheme (the three fastest schemes), we see that overall the centroid scheme

performs substantially better than the rest followed by WH and then Rocchio. In 6 of the top 10 categories the centroid

scheme does best with WH dominating in the remaining 4. Second, we see that the weight adjustment schemes

improve the performance of the centroid classifier, sometimes dramatically. However both weight adjustment schemes

achieve the same level of performance. Third, SVM using a RBF kernel is the overall winner doing about 5% better

than the other schemes.

In addition to this we also tested the effect of clustering of the negative set (as described in section 4.3). These

results are presented in table 2 for 5, 10, 15 and 20 clusters. As can be seen clustering has a dramatic improvement in

the performance of the scheme. The number of clusters only slightly affects overall performance but using 10 clusters

gives the best results. Comparing the results after clustering with the SVM results we see that the SVM (poly) scheme

now has an overall micro-average about one percent less than using weight adjustment. SVM (rbf) does better by

about 2% now. The weight adjustment schemes dominate SVM(rbf) in 3 of the top 10 classes. Once again both weight

adjustment schemes achieve the same performance.
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FWA VWA
5 10 15 20 5 10 15 20

earn 95.58 95.76 94.94 94.66 95.68 95.21 94.94 94.66
acq 94.02 94.16 91.93 92.9 94.02 94.16 91.93 92.9
money-fx 72.07 77.1 77.1 77.65 73.18 76.54 77.1 77.65
grain 85.23 91.28 87.92 88.59 85.23 91.95 93.96 88.59
crude 85.71 84.66 86.24 86.24 85.71 84.65 86.24 86.24
trade 77.78 79.49 79.49 78.63 77.78 79.49 79.49 78.63
interest 71.76 73.28 74.05 74.05 71.76 73.28 74.05 74.05
wheat 87.32 87.32 85.92 85.92 85.92 87.33 85.92 85.92
ship 82.02 85.39 84.27 84.27 82.02 85.39 84.27 84.27
corn 76.79 87.5 85.71 87.5 76.79 87.5 85.71 87.5
Micro-average (top 10) 89.56 90.71 89.67 89.88 89.63 90.49 89.99 89.88
Micro-average (all) 83.16 84.69 84.25 84.33 83.21 84.59 84.56 84.35
Average (top 10) 82.83 85.59 84.76 85.04 82.81 85.55 85.36 85.04

Table 2: Effect of clustering

6.2 OHSUMED results

Table 3 gives the same data in Table 1 for the OHSUMED [14] data set. We used from the OHSUMED data, those

documents with id’s between 100000 and 120000 which had either the title or both the title and the abstract. The

classification task considered here is to assign the document to one or multiple categories of the 23 MeSH “diseases”

categories.. There were 19858 entries in the data set. The first 12000 of these were used in the training set and the

remaining formed the test set. A total of 6561 documents did not have class label assigned to them. 6199 documents

belonged to multiple classes.

Once again comparing Rocchio, Widrow-Hoff and the centroid scheme we see that the centroid scheme performs

the best among the three on this data set. Rather surprisingly Widrow-Hoff has a very poor performance on this data

set and is dominated completely by Rocchio, performing better in only 2 of the 23 categories. The centroid based

scheme dominates both of them in all 23 categories. Both weight adjustment schemes achieve similar performances

and improve the accuracy of basic centroid scheme by about 3 %. Even without clustering the schemes achieve a

higher micro-average than the SVM(poly) scheme and perform better than it in 16 of the 23 classes. SVM(rbf) again

performs the best. It achieves a micro-average about 5% higher than the FWA scheme and performs better in 22 of the

23 categories.

The results for the weight-adjustment schemes after clustering are shown in in table 4. Clustering has almost no

effect on accuracy. In fact in some cases it actually reduces accuracy. Overall using 5 clusters gives the best result for

this data set and the results are about 4-5% lower than those for the SVM(rbf) scheme. One interesting result in this

table is that each of the different levels of clustering improves accuracy in some of the data sets For example, for FWA

no clustering gives the best results for classes c23 and c0, while using 5 clusters gives the best result for classes c14

and c04. Similarly trends can be seen in the other classes.

6.3 Multi-Class results

Our final set of results are from using the centroid-based classifier as a k-way classifier. Table 6.3 shows the perfor-

mance of the various classifiers. The column “NB” shows the performance of the naive-bayesian classifier. “C4.5”

shows the performance of the standard decision tree classifier while “kNN” gives the the performance of the k nearest

neighbor algorithm.
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rocc wh SVM(poly) SVM(rbf) centroid FWA VWA
c23 38.65 42.16 47.70 56.38 51.59 53.19 53.38
c20 46.72 37.80 57.48 70.08 53.81 64.83 65.88
c14 58.26 56.03 67.41 75.11 69.53 71.99 72.21
c04 48.96 46.19 51.21 64.19 59.34 60.21 60.21
c06 47.26 38.23 59.82 68.32 62.83 66.37 66.19
c21 47.51 42.04 52.02 58.57 57.96 60.10 60.10
c10 31.16 25.00 45.55 57.53 41.10 51.71 51.37
c08 43.96 37.92 51.34 58.72 52.35 54.36 54.36
c19 54.85 36.08 62.45 73.20 60.13 61.39 61.39
c17 31.45 20.49 50.53 59.72 51.94 58.30 59.01
c01 40.25 36.96 52.66 61.52 52.15 52.15 52.15
c05 29.51 24.59 46.45 56.83 42.08 43.17 43.17
c13 39.65 34.62 50.89 61.83 51.48 53.25 53.25
c12 46.12 38.36 52.97 61.64 50.91 51.37 51.37
c15 16.57 7.73 46.41 53.89 40.33 51.93 48.62
c16 43.34 33.10 47.44 58.36 50.85 52.21 52.22
c18 23.08 9.40 41.45 45.30 27.35 32.05 32.05
c11 52.73 14.55 60.91 66.36 62.73 63.63 63.64
c07 35.52 19.74 36.84 46.05 42.11 42.11 42.11
c09 56.69 24.41 63.78 66.93 58.27 62.20 62.20
c22 13.43 20.90 13.64 16.42 17.91 16.42 16.42
c03 36.13 21.85 42.86 50.42 37.81 37.82 37.82
c02 34.15 12.20 51.22 56.10 50.00 50.00 50.00
average 39.82 29.58 50.13 58.41 49.76 52.64 52.57
micro-average 43.30 36.98 53.12 62.23 53.89 57.04 57.12

Table 3: OHSUMED results

The detailed characteristics of the various document collections used in this experiments are available in [12] 1.

Note that for all data sets, we used a stop-list to remove common words, and the words were stemmed using Porter’s

suffix-stripping algorithm [30]. Furthermore, we selected documents such that each document has only one class (or

label). In other words, given a set of classes, we collected documents that have only one class from the set.

The first three data sets west1, west2, west3 are from the statutory collections of the legal document publishing

division of West Group described in [7]. Data sets tr11, tr12, tr21, tr23, tr31, tr41, tr45, fbis, la1, la2, la12, and new3

are derived from TREC-5 [34], TREC-6 [34], and TREC-7 [34] collections. Data sets re0 and re1 are from Reuters-

21578 text categorization test collection Distribution 1.0 [24]. We removed dominant classes such as “earn” and “acq”

that have been shown to be relatively easy to classify. We then divided the remaining classes into 2 sets. Data sets

oh0, oh5, oh10, oh15, and ohscal are from OHSUMED collection [14] subset of MEDLINE database. Data set wap

is from the WebACE project (WAP) [3]. Each document corresponds to a web page listed in the subject hierarchy of

Yahoo! [40].

Table 6.3 shows the performance of the weight adjustment scheme as a k way classifier. The accuracy was measured

by performing a 80-20 split on the data and a 10× cross-validation. The numbers in bold faces indicate the winning

algorithms on a particular data set. Between them the three centroid based schemes dominate in 19 of the 23 classes.If

we compare k-NN, naive bayesian and C4.5 amongst each other we see that C4.5 does the worst followed by k-NN

and Naive Bayesian performs the best. The basic centroid scheme dominates all three and weight adjustment tends to

improve its performance.

1These data sets are available from http://www.cs.umn.edu/˜han/data/tmdata.tar.gz.
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FWA VWA
5 10 15 20 5 10 15 20

c23 50.19 43.37 42.73 41.14 50.51 43.37 42.79 41.14
c20 59.97 55.38 48.16 42.26 60.24 55.38 46.98 43.89
c14 71.99 69.98 65.74 65.29 74.11 69.87 66.96 64.17
c04 60.21 56.06 55.88 47.23 61.94 54.84 55.36 44.81
c06 64.96 64.07 62.48 58.23 64.96 64.53 62.65 57.87
c21 61.05 56.29 55.34 54.63 60.57 56.29 56.53 55.00
c10 54.79 54.11 46.92 45.21 54.79 53.77 47.95 43.84
c08 53.36 50.00 48.66 51.01 53.36 50.00 48.32 47.99
c19 69.20 70.25 70.04 63.71 69.41 70.25 70.04 64.14
c17 58.66 58.66 56.54 56.18 59.01 59.36 57.19 53.36
c01 56.71 56.20 60.76 57.97 56.71 56.20 61.01 57.21
c05 53.01 51.37 50.82 48.09 53.01 49.18 51.91 48.63
c13 52.66 52.37 55.03 54.44 52.67 53.25 54.44 55.33
c12 54.11 54.34 55.71 55.38 54.34 59.13 55.71 56.75
c15 49.72 45.86 43.82 41.98 49.17 44.75 41.99 39.44
c16 51.88 54.27 49.83 49.49 51.88 54.61 49.82 50.69
c18 40.17 37.18 36.32 29.49 40.60 38.46 35.47 29.49
c11 60.00 58.18 60.91 62.73 60.00 58.18 60.91 65.45
c07 42.11 40.79 42.11 40.79 42.11 40.79 42.11 40.79
c09 64.57 61.42 65.35 66.93 64.57 61.42 65.35 66.14
c22 17.91 17.91 14.93 13.43 17.91 17.91 14.93 13.43
c03 42.86 41.18 47.90 48.74 42.86 41.18 47.06 48.74
c02 43.90 47.56 48.78 53.75 45.12 47.56 48.78 50.00
average 53.79 52.03 51.51 49.92 53.90 52.19 51.49 49.49
micro-average 57.51 54.57 53.21 50.78 57.67 54.76 53.25 50.48

Table 4: OHSUMED clustering

In all three data sets, it can be seen that the VWA scheme does not do appreciably better than the FWA scheme.

We believe that the VWA scheme has some inbuilt mechanisms for handling term dependencies based on change in

centroid weights and the resulting change in purities. However the results do not seem to indicate this. Part of the

reason seems to be that the purity changes relatively slowly because of our mechanism for dampening weight transfer.

Since the number of iterations is small in most of the data sets, this means that the changes in purity, even added up,

are probably not substantial enough to make a difference in the classification accuracy.

6.4 Efficiency

One of the advantages of our weight adjusted centroid scheme is its speed. As discussed in section 4 model learning

time is linear in the number of non zero terms in the document-term matrix and classification time is linear in number

of classes. A comparison of running time was performed between the svm lite [16] code with the polynomial kernel,

the RBF kernel and the centroid based scheme with VWA and is reported in Table 6. These times were obtained on a

P3 500MHz workstation running Redhat 6 with 1 Gig of memory, under similar load conditions. Looking at this table

we can see that VWA is about 2 - 10 times faster than SVM(rbf) in the learning phase and about 10 - 20 times faster

in the classification phase.
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NB C4.5 kNN centroid FWA VWA
west1 86.0 85.5 82.9 90.8 92 92.2
west2 76.5 75.3 77.2 82.0 84.2 83.9
west3 75.1 73.5 76.1 83.0 83.6 83.9
oh0 89.1 82.8 84.4 90.8 92 92.2
oh5 87.1 79.6 85.6 89.3 91.4 91.7
oh10 81.2 73.1 77.5 81.9 83.9 83.9
oh15 84.0 75.2 81.7 85.9 86.4 86.5
re0 81.1 75.8 77.9 78.2 77.3 77.2
re1 80.5 77.9 78.9 82.7 82.4 82.4
tr11 85.3 78.2 85.3 86.5 86.9 87
tr12 79.8 79.2 85.7 89.7 88.5 88.5
tr21 59.6 81.3 89.2 90.7 91.1 91.3
tr23 69.3 90.7 81.7 87.0 91.7 91.1
tr31 94.1 93.3 93.9 94.5 95.4 95.4
tr41 94.5 89.6 93.5 95.8 95.6 95.7
tr45 84.7 91.3 91.1 94.7 94.9 94.9
la1 87.6 75.2 82.7 86.4 86.7 86.7
la2 89.9 77.3 84.1 88.5 88.4 88.2
la12 89.2 79.4 85.2 88.0 87.9 87.9
fbis 77.9 73.6 78.0 79.2 79.3 79.3
wap 80.6 68.1 75.1 82.5 82.5 82.5
ohscal 74.6 71.5 62.5 76.7 80.4 80.5
new3 74.4 73.5 67.9 80.2 80.1 80.1

Table 5: Classification Accuracy

7 Conclusion

In this report we showed how a weight adjustment scheme improves the accuracy of a centroid based classifier. This

scheme retains the power of the centroid based classifier while further enhancing its ability. Also it retains much of

the speed of the original scheme. In terms of future work, clustering has been shown to be useful in improving the

accuracy of this scheme. Clustering is needed in order to handle multi-modal distributions which this scheme cannot

handle in its current form. Automatically determining whether a class needs to be clustered and how many clusters it

should be divided into would be an interesting problem. As it stands the analysis of the algorithm is still incomplete.

It would be beneficial to have a more rigorous analysis of this scheme and its strengths and weaknesses.

SVM(poly) SVM(rbf) VWA (10 clusters)
learn classify learn classify learn classify

earn 66 17 136 36 19 1
acq 103 17 190 42 20 1
money-fx 125 10 144 23 24 1
grain 33 8 71 19 29 1
crude 46 9 78 20 21 1
trade 63 9 88 23 22 2
interest 146 7 119 15 23 1
wheat 39 5 55 11 24 2
ship 30 5 59 15 25 1
corn 25 6 41 11 31 1

Table 6: Run time comparison (all times in seconds)
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A Associativity of weighing

We wish to show that applying a weight vector 	W i = {W i
1,W i

2, . . . ,W i
t }, during the i th iteration and normalizing the

vector after each iteration for L iterations is the same as applying the vector 	W = {�L
i=1W i

1,�
L
i=1W i

2, . . . ,�
L
i=1W i

t }
and normalizing once. This can be shown by induction. Consider a vector 	a ={a1, a2, . . . , at }. Applying the weight

vector 	W 1 once and normalizing it gives us the new vector 	a1 = {. . . W 1
i ai√∑
(W 1

i )
2·a2

i

. . .}. This is the base case. Let us

assume that k applications of this gives us the vector

	ak = {. . . , (�k
r=1Wr

i )ai√∑
(�k

r=1Wr
i )

2a2
i

. . .} (19)
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Applying the weight vector 	W k+1 = {W k+1
1 ,W k+1

2 , . . . ,W k+1
t } gives us

{. . . , (�k+1
r=1Wr

i )ai√∑
(�k

r=1Wr
i )

2a2
i

. . .} (20)

The magnitude of this vector is

√∑
(�k+1

r=1 W r
i )

2·a2
i∑

(�k
r=1W r

i )
2a2

i
. Thus the normalized vector is obtained by dividing vector in (20) by

its magnitude which gives us

{. . . , (�k+1
r=1Wr

i ) · ai√∑
(�k=1

r=1 Wr
i )

2a2
i

. . .} (21)

Thus having shown that the statement is true for L = 1 and that if it is true for k, it is true for k + 1, the statement

is true for all L.

The optimization discussed in Section (4.1) is a special case in which W 1
i = W 2

i = . . . = W L
i .
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