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Abstract

As data mining techniques are being increasingly applied to non-traditional domains, existing ap-
proaches for finding frequent itemsets cannot be used as they cannot model the requirement of these
domains. An alternate way of modeling the objects in these data sets, is to use a graph to model the
database objects. Within that model, the problem of finding frequent patterns becomes that of discovering
subgraphs that occur frequently over the entire set of graphs. In this paper we present a computationally
efficient algorithm for finding frequent geometric subgraphs in a large collection of geometric graphs. Our
algorithm is able to discover geometric subgraphs that can be rotation, scaling and translation invariant,
and it can accommodate inherent errors on the coordinates of the vertices. We evaluated the perfor-
mance of the algorithm using a large database of over 20,000 real two dimensional chemical structures,
and our experimental results show that our algorithms requires relatively little time, can accommodate
low support values, and scales linearly on the number of transactions.

1 Introduction

Efficient algorithms for finding frequent itemsets—both sequential and non-sequential—in very large trans-
action databases have been one of the key success stories of data mining research [2, 1, 20, 8, 3, 18]. We
can use these itemsets for discovering association rules, for extracting prevalent patterns that exist in the
datasets, or for classification. Nevertheless, as data mining techniques have been increasingly applied to
non-traditional domains, such as scientific, spatial and relational datasets, situations tend to occur on which
we can not apply existing itemset discovery algorithms, because these problems are difficult to be adequately
and correctly modeled with the traditional market-basket transaction approaches.

Recently several approaches have been proposed for mining graphs in the context where the graphs are
used to model relational, physical and scientific datasets [9, 17, 10, 11]. Modeling objects using graphs allows
us to represent arbitrary relations among entities. The key advantage of graph modeling is that it allows us
to solve problems that we could not solve previously. For instance, consider a problem of mining chemical
compounds to find recurrent substructures. We can achieve that using a graph-based pattern discovery
algorithm by creating a graph for each one of the compounds whose vertices correspond to different atoms,
and whose edges correspond to bonds between them. We can assign to each vertex a label corresponding
to the atom involved (and potentially its charge), and assign to each edge a label corresponding to the type
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of the bond (and potentially information about their relative three dimensional orientation). Once these
graphs have been created, recurrent substructures across different compounds become frequently occurring
subgraphs.

This paper focuses on the related problem of finding frequently occurring geometric patterns in geometric
graphs—graphs whose vertices have the two or three dimensional coordinates associated with them. These
patterns correspond to geometric subgraphs that have a sufficiently large support. Datasets arising in many
scientific domains often contain such geometric information, and any patterns discovered in them are of
interest if they preserve both the topological and the geometric nature of the pattern. Moreover, being able
to directly find geometric patterns (as opposed using a post-processing step on the topological patterns),
holds the promise of leading to algorithms that are significantly more scalable than their topological counter-
parts. Despite the importance of the problem, there has been limited work in developing generic algorithms
to find such patterns. The notable exceptions are the work by Wang et al. proposed several algorithms for
automated finding of interesting substructures in chemical or biomolecule domain [16, 15], and the work
by Chew et al. that proposed an approach to find common substructures in protein sequences using root
mean squared (RMS) distance minimization [4]. However, these approaches are either computationally too
expensive, or they find a restricted set of geometric subgraphs.

In this paper we present an algorithm called gFSG that is capable of finding frequently occurring geometric
subgraphs in a large database of graph transactions. The key characteristic of gFSG is that it allows for the
discovery of geometric subgraphs that can be rotation, scaling and translation invariant. Furthermore, to
accommodate inherent errors on the coordinates of the vertices (either due to experimental measurements or
floating point round-off errors), it allows for patterns in which the coordinates can match with some degree
of tolerance. gFSG uses a pattern discovery framework that uses the level-by-level approach that was made
popular by the Apriori [2] algorithm for finding frequent itemsets, and incorporate numerous computationally
efficient algorithms for computing isomorphism between geometric subgraphs that are rotation, scaling and
translation invariant, for candidate generation, and for frequency counting. Experimental results using a
large database of over 20,000 real two dimensional chemical structures show that gFSG requires relatively
little time, can accommodate low support values, and scales linearly on the number of transactions.

In the rest of the paper, we first defines basic notions and introduces notation. Then, we describe
our problem setting of finding frequent geometric subgraphs, the outline and the details of the algorithm.
Finally we experimentally evaluate our algorithm on a real dataset of chemical compounds and analyze the
performance and the scalability of our algorithm.

2 Definitions And Notation

A graph g = (V, E) is made of two sets, the set of vertices V and the set of edges E. Each vertex v ∈ V has
a label l(v) ∈ LV , and each edge e ∈ E is an unordered pair of vertices uv where u, v ∈ V . Each edge also
a label l(e) ∈ LE . LE and LV denote the sets of edge and vertex labels respectively. Those edge and vertex
labels are not necessarily to be unique. That means more than one distinct edges or vertices may have the
same label. If |LE | = |LV | = 1, then we call it an unlabeled graph. If each vertex v ∈ V of the graph has
coordinates associated with it, in either the two or three dimensional space, we call it a geometric graph.
We will denote the coordinates of a vertex v by c(v).

Two graphs g1 = (V1, E1) and g2 = (V2, E2) are isomorphic, denoted by g1 ∼ g2, if they are topologically
identical to each other, i.e., there is a bijection φ : V1 7→ V2 with e = xy ∈ E1 ↔ φ(x)φ(y) ∈ E2 for every
edge e ∈ E1 where x, y ∈ V1. In the case of labeled graphs, this mapping must also preserve the labels on
the vertices and edges, that means for every vertex v ∈ V , l(v) = l(φ(v)) and for every edge e = xy ∈ E,
l(xy) = l(φ(x)φ(y)). A graph g = (V, E) is called automorphic if g is isomorphic to itself via a non-identity
mapping. Given two graphs g1 = (V1, E1) and g2 = (V2, E2), the problem of subgraph isomorphism is to find
an isomorphism between g2 and a subgraph of g1, i.e., to determine whether or not g2 is included in g1.

The notion of isomorphism and automorphism can be extended for the case of geometric graphs as well. A
simple way of defining geometric isomorphism between two geometric graphs g1 and g2 is to require that there
is an isomorphism φ that in addition to preserving the topology and the labels of the graph, to also preserve
the coordinates of every vertex. However, since the coordinates of the vertices depend on the particular
reference coordinate axes, the above definition is of limited interest. Instead, it is more natural to define
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geometric isomorphism that allows homogeneous transforms on those coordinates, prior to establishing a
match. For the purpose of our work, we consider three basic types of geometric transformations: rotation,
scaling and translation, as well as, their combination. In light of that, we define that two geometric graphs
g1 and g2 are geometrically isomorphic, if there exists an isomorphism φ of g1 and g2 and a homogeneous
transform T , that preserves the coordinates of the corresponding vertices, i.e., T (c(v)) = c(φ(v)) for every
v ∈ V . In this case, φ is called a geometric isomorphism between g1 and g2. Geometric automorphism
is defined in an analogous fashion. Figure 1 shows some examples illustrating this definition. There are four
geometric graphs drawn in this two dimensional example, each of which is a rectangle. Edges are unlabeled
and vertex labels are indicated by their colors. The graphs r1 ∼ r2 if all of the rotation, scaling and translation
are allowed, and r1 ∼ r3 if both rotation and translation are allowed, and r1 ∼ r4 if translation is allowed.

r2 r3

r4
r1

Figure 1: Sample isomorphic geometric graphs

One of the challenges in using the above definition of geometric graph isomorphism is that it requires
an exact match of the coordinates of the various vertices. Unfortunately, equivalence of the two sets of
coordinates is not straightforward. Geometric graphs derived from physical datasets may contain small
amounts of error, and in many cases, we are interested in find geometric patterns that are similar to, but
slightly different from each other. To accommodate these requirements, we allow a certain amount of tolerance
r when we establish a match between coordinates. That is, if ‖ T (c(v)) − c(φ(v))‖ ≤ r for every v ∈ V , we
regard φ as a valid geometric isomorphism. We will refer to the parameter r as the coordinate matching
tolerance. A two dimensional example is shown in Figure 2. We can think of an imaginary circle or sphere
of a radius r centered at each vertex. After aligning the local coordinate axes of the two geometric graphs
with each other, if a corresponding vertex in another graph is inside this circle or sphere, we consider that the
two vertices are located at the same position. We will refer to these isomorphisms as r-tolerant geometric
isomorphisms, and will be the type of isomorphisms that will assume for the rest of this paper.

X

Y

r

Figure 2: Tolerance r

Finally, a graph is connected if there is a path between every pair of vertices in the graph. Given a graph
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g = (V,E), a graph gs = (Vs, Es) will be a subgraph of g if and only if Vs ⊆ V and Es ⊆ E. In a way similar
to isomorphism, the notion of subgraph can be extended to r-tolerant geometric subgraphs in which the
coordinates match after a particular homogeneous transform T .

3 Frequent Geometric Subgraph Discovery—Problem Definition

The input for the frequent geometric subgraph discovery problem is a set of graphs D, each of which is
an undirected labeled geometric graph, a parameter σ such that 0 < σ ≤ 1.0, a set of allowed geometric
transforms out of rotation, scaling and translation, and a coordinate matching tolerance r. The goal of the
frequent geometric subgraph discovery is to find all connected undirected geometric graphs that have an
r-tolerant geometric subgraph in at least σ|D|% of the input graphs.

We will refer to each of the graphs in D as a geometric graph transaction or simply a transaction when
the context is clear, to D as the geometric graph transaction database, to σ as the support threshold, and
each of the discovered patterns as the r-tolerant frequent geometric subgraph.

There are four key aspects in the above problem statement. First, we are only interested in geometric
subgraphs that are connected. This is motivated by the fact that the resulting frequent subgraphs will be
encapsulating relations (or edges) between some of the entities (or vertices) of various objects. Within this
context, connectivity is a natural property of frequent patterns. An additional benefit of this restriction is
that it reduces the complexity of the problem, as we do not need to consider disconnected combinations of
frequent connected subgraphs.

Second, we allow the graphs to be labeled, and as discussed in Section 2, each graph (and discovered
pattern) can contain vertices and/or edges with the same label. This greatly increases our modeling ability,
as it allow us to find patterns involving multiple occurrences of the same entities and relations, but at the
same time makes the problem of finding such frequently occurring subgraphs non-trivial [11]. In such cases,
and any frequent subgraph discovery algorithm needs to correctly identify how a particular subgraph maps
to the vertices and edges of each graph transaction, that can only be done by solving many instances of the
subgraph isomorphism problem, which has been shown to be in NP-complete [7].

Third, we allow homogeneous transforms when we find instances of them in transactions. That is, a
pattern can appear in a transaction in a shifted, scaled or rotated fashion. This greatly increases our ability
to find interesting patterns. For instance in many chemical datasets, common substructures are at different
orientation from each other, and the only way to identify them is to allow for translation and rotation invariant
patterns. However, this added flexibility comes at a considerable increase in the complexity of discovering
such patterns, as we need to consider all possible geometric configurations (a combination of rotation, scaling
and translation) of a single pattern. For example, let us take a look at Figure 3 of a triangle. The triangle
shown in Figure 3(a) has infinitely many geometric configurations, some of which are shown in Figure 3(b).

(a) A tri-
angle

(b) Sample geometric configurations
of the same triangle

Figure 3: A triangle and its geometric configurations under rotation and translation

Fourth, we allow for some degree of tolerance when we try to establish a matching between the vertex-
coordinates of the pattern and its supporting transaction. Even though this significantly improves our ability
to find meaningful patterns and deal with measurement errors and errors due to floating point operations
(that are occurred by applying the various geometric transforms), it dramatically changes the nature of
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the problem for the following reason. In traditional pattern discovery problems such as finding frequent
itemsets, sequential patterns, and/or frequent topological graphs there was a clear definition of what was
the pattern given its set of supporting transactions. On the other hand, in the case of r-tolerant geometric
subgraphs, there are many different geometric representations of the same pattern (all of which will be r-
tolerant isomorphic to each other). The problem becomes not only that of finding a pattern and its support,
but also finding the right representative of this pattern. Note that this representative can be either an actual
instance, or a composite of many instances. The selection of the right representative can have a serious
impact on correctly computing the support of the pattern. For example, given a set of subgraphs that are
r-tolerant isomorphic to each other, the one that corresponds to an outlier will tend to have a lower support
than the one corresponding to the center. Thus, the exact solution of the problem of discovering all r-tolerant
geometric subgraphs involves a pattern optimization phase whose goal is to select the right representative for
each pattern, such that it will lead to the largest number of frequent patterns.

4 gFSG—Frequent Geometric Subgraph Discovery Algorithm

To solve the problem of finding the frequently occurring r-tolerant geometric subgraphs, as defined in Sec-
tion 3, we developed an algorithm called gFSG. gFSG represents a first attempt for addressing this problem,
and due to the complexity imposed by allowing a tolerance on how the different coordinates are matched,
gFSG is not guaranteed to find all such frequent r-tolerant geometric subgraphs. In particular, gFSG uses
a simple approach that is based on the first occurrence in determining the representative for each pattern,
that may lead to under-counting the frequency of certain patterns. However, gFSG can be easily extended
to perform a shape optimization for these representative patterns, and those extensions are described in
Section 6.

In addition to that, to improve the performance of gFSG, it imposes two additional conditions that must
be satisfied by the input database. First, the closest distance between any pair of points in each graph is least
2r; and second, the are no frequent subgraphs in the database that are 2r-tolerant geometrically isomorphic
to each other. Both of these conditions stem from the fact that we allow a tolerance to the mapping of the
coordinates. The first condition allow as to efficiently compute geometric isomorphism between two graphs,
whereas the second condition states that the frequent patterns in order to be distinguished as being different,
they have to be reasonably far away from each other. If these conditions are not met, gFSG may fail to
discover some patterns.

The gFSG algorithm follows the level-by-level structure of the Apriori algorithm used for finding frequent
itemsets in market-basket datasets [2], and shares many characteristics with our previously developed frequent
subgraph discovery algorithm for topological graphs [11]. The motivation behind using the level-by-level
structure of the Apriori algorithm is that it achieves the highest amount of pruning compared with other
algorithms such as GenMax, dEclat [20] and Tree Projection [1]. At the same time, the relatively simple
algorithmic structure of this approach, allow us to focus on the non-trivial aspects of operating on geometric
graphs.

The high level structure of our algorithm, called gFSG, is shown in Algorithm 1. Edges in the algorithm
correspond to items in traditional frequent itemset discovery. Namely, as these algorithms increase the size
of frequent itemsets by adding a single item at a time, our algorithm increases the size of frequent subgraphs
by adding an edge one-by-one. gFSG initially enumerates all the frequent single, double and triple edge
graphs. Then, based on the double and triple edge graphs, it starts the main computational loop. During
each iteration it first generates candidate subgraphs whose size is greater than the previous frequent ones
by one edge (Line 6) of Algorithm 1. Next, it counts the frequency for each of these candidates, and prunes
subgraphs that do no satisfy the support constraint (Lines 8—12). Discovered frequent subgraphs satisfy
the downward closure property of the support condition, which allows us to effectively prune the lattice of
frequent subgraphs. The notation used in this algorithm and in the rest of this paper is explained in Table 1.

In the rest of this section we describe the various algorithms used by gFSG to compute geometric graph
isomorphism, generate the size one, two, and three frequent subgraphs, generate the candidate subgraphs,
and computes their frequency.
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Algorithm 1 gfsg(D, s) (Frequent Geometric Subgraph)
1: F 1 ← detect all frequent geometric 1-subgraphs in D
2: F 2 ← detect all frequent geometric 2-subgraphs in D
3: F 3 ← detect all frequent geometric 3-subgraphs in D
4: k ← 4
5: while F k−1 6= ∅ do
6: Ck ← gfsg-gen(F k−1)
7: for each candidate gk ∈ Ck do
8: gk.count ← 0
9: for each transaction t ∈ D do

10: if candidate gk is included in t then
11: gk.count ← gk.count + 1
12: F k ← {gk ∈ Ck | gk.count ≥ sD}
13: k ← k + 1
14: return F 1, F 2, . . . , F k−2

Table 1: The meaning of the notation used throughout the paper.

Notation Description
D A dataset of graph transactions
t A graph transaction in D

k-(sub)graph A (sub)graph with k edges
gk A k-subgraph
Ck A set of candidates with k edges
F k A set of frequent k-subgraphs

4.1 Geometric Graph Isomorphism

One of the key computational kernels used by gFSG is that of determining whether or not two geometric
graphs are geometrically isomorphic to each other. This operation is used extensively when computing the
size one, two, three frequent subgraphs and during candidate generation to essentially establish whether two
patterns are identical or not.

In principle, a geometric isomorphism between two graphs g1 and g2 can be computed in two different
ways. First, we can identify all topological isomorphisms between g1 and g2, and then check each one of
them to determine whether or not there is an allowable homogeneous geometric transformation that brings
the corresponding vertices of the two graphs within an r distance from each other (where r is the coordinate
matching tolerance). Alternatively, we can first identify the possible of geometric transformations that will
map the vertices of g1 within an r distance of the vertices of g2, and then check each one of them to see if it
preserves the topology (and the vertex and edge labels) of the two graphs.

In gFSG we experimented with both of those approaches, and we found that the latter approach is more
efficient as it allow us for quicker miss-matches. Furthermore, in contrast to the purely topological graph
isomorphism (used in the first approach) whose time complexity has not been proven to be in P or NP-
complete, the second approach has the advantage of having a polynomial complexity. The details of this
algorithm and additional optimizations are described in the rest of this section. Our description assumes
that we are interested in geometric isomorphism that include all three transformations: rotation, scaling and
translation.

Each geometric graph has its own coordinate system, or a reference frame. When we check the geometric
isomorphism between g1 and g2, both should be in the same coordinate system. Nevertheless, there are
infinitely many possible local coordinate systems we can choose, especially when we consider rotation invariant
isomorphisms. Our algorithm limits this number by using a subset of the edges of the graph to define the
coordinate axes. In the two dimensional space, it suffices to choose an edge and its direction to determine
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a local coordinate system (e.g., the edge uv in Figure 4(a) as the X axis), and in the three dimensional
space, two connected non-collinear edges (edges uv and uw in Figure 4(b)) form the XY plane and set the
reference frame. These reference frames allow us to find translation and rotation invariant isomorphisms. To
accommodate isomorphisms that are scale invariant, we can uniformly scale the graph such that one of these
edges (e.g., the one defining the X-axis) is of unit length. We will refer to each one of the graphs obtained
by using the edge-defined reference frames as a geometric configuration.

X

Y

u v

(a) 2D

Z

u Xv

Y

w

(b) 3D

Figure 4: Edges for the basis of the local coordinate system

The algorithm for computing the geometric isomorphism is shown in Algorithm 2. First we check to see
if g1 and g2 are of the same size, and if not, then the algorithm returns “false” indicating that these graphs
are not isomorphic to each other. Then, the algorithm chooses an arbitrary geometric configuration for g2

and tries to find a bijection between that configuration of g2 and all possible geometric configurations of g1.
The bijection between a pair of geometric configurations is determined by iterating over each vertex of g1

and pairing it with the closest vertex of g2 with the same label that has not yet being paired. If at any given
time, the pair of closest vertices are more than r-distance apart, the algorithm terminates the search for that
configuration, as there is not an r-tolerant bijection between them. Once a bijection has been established, it
is then checked to determine if it is a valid topological isomorphism (line 12–13).

Algorithm 2 will correctly determine if two graphs are geometrically isomorphic or not provided that the
distance between any pair of points in either g1 or g2 is greater than 2r. This is because it pairs a vertex of
g1 to a single closest vertex of g2, and it stops considering a particular geometric configuration as soon as a
pairing is not r-tolerant. There may be a case in which there is an alternate pairing of the earlier vertices,
that are r-tolerant but not necessarily the closest pairs, that will allow to find an overall r-tolerant pairing.
Nevertheless, allowing for such bijections would substantially increase the complexity of the problem, without
significantly increasing our modeling ability.

The complexity of this algorithm is dependent on the size of the input geometric graphs. The number
of possible geometric configuration is in O(|V1|2) or O(|V1|3) for the two or three dimensions respectively.
Choosing the closest point out of |V2| vertices can be done in O(|V2|) time. It takes O(|E1|) steps to check the
validity of a bijection φ. Therefore, the time complexity of geometric-isomorph is in O(|V |2|E|) for the two
dimensions and O(|V |3|E|) for the three dimensions. Note that the expressions on the number of geometric
configurations assume that g is dense. For most real-life problems, however, g will be sparse, dramatically
reducing the overall complexity of this algorithm.

4.1.1 Using Simple Keys To Speedup The Computations

To further reduce the overall time spent in checking whether or not two graphs are geometrically isomorphic,
gFSG employs a number of topological properties and geometric transform invariants. The key idea is to first
check those properties and invariants, and proceed computing an isomorphism only if these properties and
invariants match. Even though this approach does not decrease the worst-case asymptotic complexity, in
practice it leads to dramatic speedup. We will collectively refer to those topological properties and geometric
transform invariants as simple keys.

The topological properties used by gFSG is the distribution of vertex and edge labels since they are easy
to compute and check. In addition to those, other properties such as vertex degree distributions, or the
number of size-two paths and their label distributions can also be used. In our experiments, we found that
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Algorithm 2 geometric-isomorph(g1 = (V1, E1), g2 = (V2, E2), r) (Geometric Isomorphism)
1: if |V1| 6= |V2| or |E1| 6= |E2| then
2: return false
3: choose one arbitrary geometric configuration of g2.
4: for each geometric configuration of g1 do
5: change the coordinates of all the vertices in g1 according to the chosen geometric configuration.
6: {assume g1 and g2 now share the same coordinate system}
7: for each vertex v ∈ V1 do
8: find the closest vertex u ∈ V2 from v such that l(u) = l(v)
9: if ‖c(v)− c(u)‖ > r then

10: break
11: φ(v) ← u
12: if φ is a valid topological isomorphism between g1 and g2 then
13: return true
14: return false

incorporating such more complicated properties do not dramatically improve the performance, because they
lead to relatively long keys.

Geometric transform invariants are values computed from a geometric graph which remain the same no
matter how we rotate, scale or translate the original geometric graph. Because it does not change by those
transforms, we only need to calculate the invariant once for each geometric graph regardless of its geometric
configuration. In gFSG we used the normalized sum of distances between the center and vertices. The
normalized sum of distance is given by

d =
1

lmin

∑

v∈V

‖c(v)− c(c)‖

where

lmin = min
e∈E

(length of e)

c(c) =
1
|V |

∑

v∈V

c(v)

This invariant is useful for checking the identity during the candidate generation. For example, in Figure 5,
the normalized sum for the graph with four edges is given by d = (d1 + . . . + d5)/lmin.

lmin
d1

d2

d4

d3d5

Figure 5: The normalized sum of distances from the center

Because the normalized sum of distances has the same dimension as distances, we use the same coordinate
matching tolerance r for checking the equality between two normalized sums.

4.2 Generating Size One, Two And Three Frequent Subgraphs

As breadth-first—or horizontal—algorithms for the traditional frequent itemset discovery start with enumer-
ating singletons and doublet of items exhaustively before they actually begin the main iterative process of
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discovering frequent itemsets, our algorithm also starts with listing up all the frequent subgraphs of small
size. Not only the size one and two, but also it exhaustively searches for the frequent size 3-subgraphs too
and there are two distinct reasons for it.

One is the requirement for generating three dimensional candidates. If the input geometric graph transac-
tions are described in the three dimensional space, the frequent patterns are also three dimensional geometric
graphs. In the candidate generation phase which we will describe in Section 4.3, we obtain a candidate of size
k + 1 by joining two distinct frequent k-subgraphs that share a common subgraph of size k− 1. To uniquely
determine the merged geometric graph in the three dimensional space, that shared core must have at least
three non-collinear vertices, that means we must start with at least frequent elementary geometric subgraphs
of size three for the three dimensional space, and size two for the two dimensional space.

The other reason is the fact that we may be able to speed up the process of getting the size 3-subgraphs by
the direct enumeration, rather than by merging two frequent 2-subgraphs, especially for the two dimensional
cases. This is because in the two dimensional space with all the rotation, scaling and translation allowed, it
is easy to merge two frequent subgraphs of size two into the one of size three, since all we need is to align
one edge against another. For example, Figure 6(a) shows two frequent geometric subgraphs. If we focus on
the edge e3 in one of the size two graphs, those two size-2 subgraphs generate four candidates of size three
as shown in Figure 6(b). The other edge e4 will produce another four different candidates. As this example
illustrates, potentially the number of size 3-candidates can be large.

e1

e2
e4

e3

(a) Two geometric 2-
subgraphs

e2

e1 = e3e1

e2 = e3

e4

e4

e1 = e3

e2
e1

e2 = e3

e4

e4

(b) Examples of size-3 candidates

Figure 6: Two geometric 2-subgraphs and examples of generated candidates with rotation, scaling and
translation

The key aspect of enumerating the size 1, 2 and 3 frequent subgraphs is to use the simple keys for the fast
isomorphism checks, which are described in Section 4.1.1. The process consists of two phases. In the first
phase, we record all the simple keys of size two or three graphs in every transaction and their frequencies
in terms of the number of supporting transactions. By focusing on the simple keys of geometric subgraphs,
we do not need to store all the possible coordinates of vertices. At the end of this phase, we can distinguish
the simple keys of frequent subgraphs from the ones of infrequent subgraphs, and we will use those frequent
simple keys in the next phase as a filter. In the second phase, we start over traversing all the transactions.
This time we store all the necessary information for each of size two and three subgraphs including vertex
coordinates and their frequencies. However, we do so only if the subgraph has one of the frequent simple keys
identified during the first phase. Because of the filtering based on the frequent signatures, we can suppress
the number of candidates we have to record during this process.
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4.3 Candidate Generation

In the candidate generation phase, we create a set of candidates of size k + 1, given frequent geometric
k-subgraphs. Candidate geometric subgraphs of size k + 1 are generated by joining two frequent geometric
k-subgraphs. In order for two such frequent k-subgraphs to be eligible for joining they must contain the same
geometric (k− 1)-subgraph. We will refer to this common geometric (k− 1)-subgraph among two k-frequent
subgraphs as their core.

Unlike the joining of itemsets in which two frequent k-size itemsets lead to a unique (k + 1)-size itemset,
the joining of two geometric subgraphs of size k can lead to multiple distinct geometric subgraphs of size
k + 1. This can happen because of two different reasons. First, there may be more than one automorphisms
of a single core. The core itself may have multiple automorphisms, and each of them can lead to a different
(k + 1)-candidate. In the worst case where a core of size k − 1 has a symmetric structure, the number of
automorphisms can be at most k− 1. An example for this case is shown in Figure 7(a), in which the core—a
square of 4 vertices—has more than one automorphism which result in four different candidates of size 6.
Second, two frequent geometric subgraphs may have multiple geometric cores as depicted by Figure 7(b).
Because every core has one fewer edge, for a pair of two k-subgraphs to be joined, the number of multiple
cores is bounded by k − 1.

Join

g6
1 g6

2

+

g5
1 g5

2

g6
3

g6
4

(a) Multiple automorphisms of a core

Join

g4
1 g4

2 g5
1

g5
2First core h3

1 Second core h3
2

+

(b) Multiple cores

Figure 7: Three different cases of candidate joining

The overall algorithm for candidate generation is shown in Algorithm 3. For each pair of frequent sub-
graphs that share the same core, the gfsg-join is called at Line 6 to generate all possible candidates of size
k + 1. For each of the candidates, the algorithm first checks if they are already in Ck+1. If they are not,
then it verifies if all its k-subgraphs are frequent. If they are, gfsg-join then inserts it into Ck+1, otherwise
it discards the candidate (Lines 7—17).

Algorithm 4 shows the joining procedure. Given a pair of k-subgraphs, first we determine whether those
two subgraphs share the same core or not. We may discover more than one core at this step because of
the second reason described above. Once we find such cores, for each of them, we generate all possible
automorphisms of the core. This step corresponds to the first reason described above.
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Algorithm 3 gfsg-gen(F k) (Candidate Generation)
1: The main loop of this code should be different!
2: Ck+1 ← ∅;
3: for each pair of gk

i , gk
j ∈ F k, i < j do

4: for each edge e ∈ gk
i do {create a (k − 1)-subgraph of gk

i by removing an edge e}
5: gk−1

i ← gk
i − e

6: if gk−1
i is included in gk

j then {gk
i and gk

j share the same core}
7: T k+1 ← gfsg-join(gk

i , gk
j , gk−1

i )
8: for each gk+1

j ∈ T k+1 do
9: {test if the downward closure property holds for gk+1

j }
10: flag ← true
11: for each edge fl ∈ gk+1

j do
12: hk

l ← gk+1
j − fl

13: if hk
l is connected and hk

l 6∈ F k then
14: flag ← false
15: break
16: if flag = true then
17: Ck+1 ← Ck+1 ∪ {gk+1}
18: return Ck+1

4.4 Frequency Counting

Once candidate subgraphs have been generated, gFSG computes their frequency. In the context of frequent
itemset discovery by Apriori, the frequency counting is performed substantially faster by building a hash-tree
of candidate itemsets and scanning each transaction to determine which of the itemsets in the hash-tree it
supports. Developing such an algorithm for frequent subgraphs, however, is challenging because there is no
natural way to build the hash-tree for graphs.

In gFSG we implemented three different approaches for computing the frequency of each candidate geo-
metric subgraph. These approaches offer different time-space trade-offs and are described in the rest of this
section.

Algorithm 4 gfsg-join(gk
1 , gk

2 , hk−1) (Join)

1: M ← detect all automorphisms of hk−1

2: {determine an edge e1 ∈ gk
1 that does not appear in hk−1}

3: e1 ← NULL
4: for each edge ei ∈ gk

1 do
5: if ei 6∈ hk−1 then
6: e1 ← ei

7: break
8: {determine an edge e2 ∈ gk

2 that does not appear in hk−1}
9: e2 ← NULL

10: for each edge ei ∈ gk
2 do

11: if ei 6∈ hk−1 then
12: e2 ← ei

13: break
14: G ← generate all possible graphs of size k + 1 from gk

1 and gk
2 , using M

11



4.4.1 Counting By Geometric Subgraph Isomorphism

In the first approach, for each subgraph we scan each one of the graph transactions in the input dataset and
determine if it is contained or not using geometric subgraph isomorphism. This operation requires to check
each geometric configuration of the graph against a particular geometric configuration of the pattern, using
an algorithm similar to that for geometric graph isomorphism.

To reduce the amount of time required for frequency counting using this approach, we first use some
topological properties and geometric transform invariants to quickly identify most of the miss-matches (as it
was done in the case of graph isomorphism). The geometric transform invariants that we use for detecting
whether or not a particular pattern can exist in a graph is based on edge-angle lists. Let 6 eiej denote the
angle formed by two connected edges ei and ej . Then, an edge-angle list eal(g) of a geometric graph g is a
multiset where

eal(g) = {6 eiej | 6 eiej , such that two distinct edges ei, ej share the same end point}

We create the edge-angle list for each of the transactions and candidate subgraphs. Because edge angles
are invariant against rotation, scaling and translation, if a geometric subgraph g is included in a transaction
t, then eal(g) ⊆ eal(t). Equality of two angles is again determined with a certain threshold as the vertex
coordinate matching. For example, the graph g in Figure 8 has the following edge-angle list; eal(g) =
{6 e1e2, 6 e2e3, 6 e3e1} = {a1, a1, a2}, where a1 = 6 e1e2 and a2 = 6 e1e3. Note this is because 6 e1e2 = 6 e2e3.

e2e3

e1

Figure 8: A star-shaped geometric graph with three edges

By using the comparison on the edge angle lists, we can easily detect cases where geometric subgraph
isomorphism does not hold, without actually performing the subgraph isomorphism.

4.4.2 TID Lists

Determining the geometric subgraph isomorphism described in Section 4.4.1 is expensive and for this reason
we also developed a frequency counting approach that uses Transaction ID (TID) lists, proposed by [6, 14,
21, 19, 20]. In this approach for each frequent subgraph we keep a list of transaction identifiers that support
it. Now when we need to compute the frequency of gk+1, we first compute the intersection of the TID lists
of its frequent k-subgraphs. If the size of the intersection is below the support, gk+1 is pruned, otherwise
we compute the frequency of gk+1 using subgraph isomorphism by limiting our search only to the set of
transactions in the intersection of the TID lists. The advantages of this approach are two-fold. First, in the
cases in which the intersection of the TID lists is bellow the minimum support level, we are able to prune
the candidate subgraph without performing any subgraph isomorphism computations. Second, when the
intersection set is sufficiently large, we only need to perform subgraph isomorphism for those graphs that can
potentially contain the candidate subgraph and not for all the graph transactions.

However, the computational advantages of the TID lists come at the expense of higher memory require-
ments. In particular, when gFSG is working on finding the frequent patterns of size (k + 1), it needs to store
in memory the TID lists for all frequent patterns of size k. Even though this approach can be extended to
work in cases in which the amount of available memory is not sufficient [19], such an extension will require to
perform multiple passes over the database, and we may not be able to get the same effect of pruning based
on the downward closure property.
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4.4.3 Hybrid Approach

The last scheme that we developed can be thought of as a hybrid between the counting approach that uses
subgraph isomorphisms and the one that uses TID lists.

In this approach, we initially identify the set of frequent edge-angles by exhaustive enumeration. Then,
instead of checking the edge-angle lists of a candidate subgraph against that of each transaction, for each
frequent edge angle, we create a list of transaction ID’s that contain an instance of the edge angle. Let tid(a)
denote a list of transaction ID’s that contain an instance of the edge angle. For example, if a transaction
t = (V,E) is included in tid(a), then there is a pair of edges ei and ej ∈ E such that 6 eiej = a. Suppose
a candidate geometric graph g has an edge-angle list eal(g) = {a1, a2, . . . , an}. To check the frequency of g,
we perform the following operation successively. First, we initialize l by tid(a1), i.e., l = tid(a1). Second,
we take the intersection of two TID lists l and tid(a2), and update l by the intersection (l = l ∩ tid(a2)). If
|l| < σ|D|, that means g does not have enough support. We repeat the process for the rest of edge angles
a3, . . . , an. Every time we update l by l∩ tid(ai), we check the size of the resulting intersection since it is the
frequency of the set of the edge angles, and if a geometric subgraph appears in N transactions, then |l| ≥ N .

When we take the intersections of tid(ai), we start with the less frequent angles so that we may be able to
detect the intersection may not be long enough at the earlier steps. Our experiments (not presented in this
paper) showed that this approach is usually five times faster than the one based on subgraph isomorphism
and only twice as slow as the one based on TID lists. However, it has the advantage of requiring substantially
less memory than the TID-list based approach, and is the scheme that was used in all of our experiments.

5 Experimental Evaluation

We experimentally evaluated the performance of gFSG using a set of real geometric graphs representing
chemical compounds. In particular, we used a dataset containing 223,644 chemical compounds with their two
dimensional coordinates that is available from the Developmental Therapeutics Program (DTP) at National
Cancer Institute (NCI) [5]. These compounds were converted to geometric graphs in which the vertices
correspond to the various atoms with their two dimensional coordinates and the edges correspond to the
bonds between the atoms. The various atom types were modeled as vertex labels and the various types of
bonds were modeled as edge labels. Overall, there are a total of 104 distinct vertex labels (atom types) and
three distinct edges labels (bond types).

Note that even though the gFSG algorithm can find frequent geometric subgraphs in both two and three
dimensional datasets, at the time of writing of this paper, we had only finished and optimized the two
dimensional version of the code. For this reason our evaluation will only include two dimensional geometric
graphs.

All experiments were done on dual AMD Athlon MP 1800+ (1.53GHz) machines with 2GB main memory,
running the Linux operating system. All the times reported are in seconds.

5.1 Scalability With Respect To The Database Size

Our first set of experiments were designed to evaluate the scalability of gFSG with respect to the number
of input graph transactions. Toward this goal we created five datasets with different number of transac-
tions varying from 1,000 to 20,000. Each graph transaction was randomly chosen from the original dataset
of 223,644 compounds. This random dataset creation process resulted in datasets in which the average
transaction size (the number of edges per transaction) was about 23.

Using these datasets we performed two types of experiments. In the first experiment we used gFSG to find
all frequently occurring geometric subgraphs that are rotation, scaling and translation invariant; whereas in
the second set of experiments we are to find subgraphs that are only rotation and translation invariant. For
both sets of experiments, we used different values of support ranging from 0.25% up to 5%, and set r to 0.05.

Tables 2 and 3 show the results obtained for the first and second set of experiments, respectively. For
each individual experiment, these tables show the amount of time required to find the frequent geometric
subgraphs patterns, the size of the largest discovered frequent patttern, and the total number of geometric
subgraphs that were discovered.
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Table 2: Running times in seconds for chemical compound data sets which are randomly chosen from the
DTP dataset. The column with σ shows the used minimum support (%), the column with t is the running
time in seconds, the column with l shows the size of the largest frequent subgraph discovered, and the column
with #f is the total number of discovered frequent patterns.

Total Number of Transactions D
σ D = 1000 D = 2000 D = 5000 D = 10000 D = 20000
% t[sec] l #f t[sec] l #f t[sec] l #f t[sec] l #f t[sec] l #f
5.0 8 6 119 14 6 113 34 6 114 75 5 117 179 6 111
4.5 9 6 137 20 6 138 45 6 139 83 5 132 209 6 126
4.0 10 6 168 22 6 157 52 6 160 96 6 151 244 6 154
3.5 12 6 206 30 6 209 57 6 184 110 6 185 281 6 182
3.0 14 7 236 35 6 246 73 7 236 126 6 217 321 6 224
2.5 20 7 314 55 7 329 85 7 287 150 6 259 357 7 268
2.0 26 7 415 72 7 430 124 7 404 205 7 352 522 7 359
1.5 48 7 687 107 7 613 218 8 630 410 7 552 842 7 526
1.0 123 8 1393 315 8 1395 460 9 1189 1107 8 1295 1974 8 1019
0.5 694 10 4960 1478 10 4623 2108 10 3593 4621 9 3869 9952 9 3354
0.25 2043 13 14235 5674 12 15232 8972 12 11103 17421 9 10929 41895 11 11177

There are three main observations that can be made from these results. First, gFSG scales linearly with
the database size. For most values of support, the amount of time required on the database with 20,000
transactions is 15–30 times larger than the amount of time required for 1,000 transactions. Second, as with
any frequent pattern discovery algorithm, as we decrease the support the runtime increases and the number
of frequent patterns increases. The overall increase in the amount of time tends to follow the increase in the
number of patterns, indicating that the complexity of gFSG scales well with the number of frequent patterns.
Third, comparing the scale invariant with the scale variant results, we can see that the latter is faster by
almost a factor of two. This is because the number of discovered patterns is usually smaller, and each pattern
has fewer supporting transactions, reducing the amount of time to compute their frequency.

Table 3: Running times in seconds for the same chemical compound data sets shown in Table 2, without
scaling. The column with σ shows the used minimum support (%), the column with t is the running time in
seconds, the column with l show the size of the largest frequent subgraph discovered, and the column with
#f is the total number of discovered frequent patterns.

Total Number of Transactions D
σ D = 1000 D = 2000 D = 5000 D = 10000 D = 20000
% t[sec] l #f t[sec] l #f t[sec] l #f t[sec] l #f t[sec] l #f
5.0 4 6 90 7 6 80 19 6 92 39 6 96 79 4 69
4.5 4 6 105 7 6 89 20 6 101 40 6 107 89 6 84
4.0 4 6 116 8 6 106 23 6 121 45 6 122 82 4 92
3.5 5 6 154 12 6 146 26 6 144 60 6 150 93 4 111
3.0 8 6 203 18 6 197 32 6 177 69 6 187 109 4 143
2.5 10 6 250 24 6 251 47 6 236 105 6 238 155 4 191
2.0 14 6 371 38 6 356 62 6 321 128 6 321 216 5 269
1.5 26 7 610 61 7 559 79 6 457 162 6 436 380 6 421
1.0 60 8 1124 134 7 1023 161 8 795 423 8 874 839 7 826
0.5 263 8 3213 540 8 3009 622 9 2177 1514 9 2281 2465 7 2091
0.25 790 10 10040 2051 10 10733 2224 10 6112 5351 9 6090 8590 10 5649

5.2 Scalability With Respect To The Graph Size

Our second set of experiments was designed to evaluate the runtime of gFSG when the average size (i.e.,
the number of edges) of each transaction increases. Again, using the whole set of chemical compounds, we
created four different datasets by extracting 5,000 chemical compounds in the following way. First we sorted
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the original dataset based on the size of compounds. Then, we selected 5,000 compounds from four different
locations of the sorted list, so that each dataset would have different transaction size. This resulted in four
datasets whose average transaction size were 14, 19, 23 and 28. Because the chemical compounds are taken
from the sorted order, almost all the transactions are in the same size as the average.

As with our earlier experiments, we used gFSG to find both scale invariant and scale variant patterns
and we varied the minimum support from 5.0% to 0.25%. Tables 4 and 5 show the amount of time and the
number of frequent patterns discovered in these two sets of experiments.

Table 4: Running times in seconds for the four chemical compound data sets. Each dataset has a different
average transaction size, from 14 to 28. The column with σ shows the used minimum support (%), the
column with t is the running time in seconds, the column with l shows the size of the largest frequent
subgraph discovered, and the column with #f is the total number of discovered frequent patterns.

Average Transaction Size T
σ T = 14 T = 19 T = 23 T = 28
% t[sec] l #f t[sec] l #f t[sec] l #f t[sec] l #f
5.0 15 6 74 21 6 93 37 6 116 92 6 201
4.5 16 6 86 26 6 112 46 6 142 102 6 236
4.0 17 6 110 29 6 130 54 6 166 115 7 277
3.5 19 7 127 34 6 162 64 6 205 128 7 309
3.0 22 7 154 41 6 196 73 6 249 175 7 408
2.5 27 7 195 59 6 247 96 7 302 331 7 658
2.0 36 7 264 81 6 325 142 7 420 543 8 993
1.5 53 7 386 138 6 502 291 7 729 1002 8 1599
1.0 92 9 680 284 8 927 612 9 1385 2530 10 3936
0.5 406 9 2072 1438 9 2859 3050 9 4620 9923 12 13178
0.25 1226 10 5358 4997 10 8949 10824 12 15232 29686 14 38788

From these results we can see that as the average transaction size increases, the time required to find
the frequent geometric subgraphs increases, as well. In most cases, this increase is at a higher rate than the
corresponding increase on the size of each transaction. In general, the running time for finding the patterns
when the average transaction size is 28, is about ten times longer than the running time for the average
transaction size 14. This non-linear relation between the time complexity and the size of the transaction is
due to the fact that the algorithm needs to explore a much higher search space, and is consistent with the
time increases for other pattern discovery algorithms, such as those for finding frequent itemsets [12] and
sequential patterns [13]. Nevertheless, gFSG is able to mine the largest dataset with a support of 0.25 in less
than two hours. Also, comparing the scale invariant with the scale variant experiments, we can see that as
before, finding the scale variant patterns is faster by about a factor of two.

Table 5: Running times in seconds for the same chemical compound data sets shown in Table 4, without
scaling.

Average Transaction Size T
σ T = 14 T = 19 T = 23 T = 28
% t[sec] l #f t[sec] l #f t[sec] l #f t[sec] l #f
5.0 11 5 68 14 6 79 20 5 97 36 5 128
4.5 12 5 78 17 5 97 26 5 122 46 5 158
4.0 13 5 93 17 5 113 29 5 148 54 5 182
3.5 15 6 118 20 5 136 32 5 182 64 6 213
3.0 17 6 148 26 5 175 47 6 258 81 6 268
2.5 20 6 189 35 5 237 64 6 338 142 6 428
2.0 27 7 270 49 5 324 81 7 418 288 6 792
1.5 33 8 389 84 5 473 107 7 583 481 8 1268
1.0 65 8 671 181 6 807 287 8 1164 1189 9 2975
0.5 196 7 1613 610 7 2180 1002 9 3315 3454 11 8093
0.25 497 9 3708 1726 9 5768 2622 12 8819 10172 12 24242
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6 Conclusion

In this paper we presented an algorithm, gFSG, for finding frequently occurring geometric subgraphs in large
graph databases, that can be used to discover recurrent patterns in scientific, spatial, and relational datasets.
Our experimental evaluation shows that gFSG can scale reasonably well to very large graph databases provided
that graphs contain a sufficiently many different labels of edges and vertices.

One of the limitations of the current implementation of gFSG is it does not perform any shape optimiza-
tions on the representation of each geometric pattern. However, some simple, and yet powerful optimizations
can be performed by using an approach motivated by k-means clustering. In this approach, the frequency
counting phase will be performed multiple times. During each iteration, the candidate pattern will be incre-
mentally adjusted, as its supporting set is being identified, to represent the centroid consensus pattern of the
supporting set of graph transactions. In principle the iterative optimization on the shape of a pattern will
stop, as soon as its support does not change in the course of an iteration. We are currently in the process of
evaluating this algorithm and investigating efficient ways of implementing it.
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