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Abstract

As various genome sequencing projects have already
been completed or are near completion, genome re-
searchers are shifting their focus to functional genomics.
Functional genomics represents the next phase, that ex-
pands the biological investigation to studying the function-
ality of genes of a single organism as well as studying and
correlating the functionality of genes across many differ-
ent organisms. Recently developed methods for monitoring
genome-wide mRNA expression changes hold the promise of
allowing us to inexpensively gain insights into the function
of unknown genes. In this paper we focus on evaluating the
feasibility of using supervised machine learning methods
for determining the function of genes based solely on their
expression profiles. We experimentally evaluate the perfor-
mance of traditional classification algorithms such as sup-
port vector machines and k-nearest neighbors on the yeast
genome, and present new approaches for classification that
improve the overall recall with moderate reductions in pre-
cision. Our experiments show that the accuracies achieved
for different classes varies dramatically. In analyzing these
results we show that the achieved accuracy is highly depen-
dent on whether or not the genes of that class were signif-
icantly active during the various experimental conditions,
suggesting that gene expression profiles can become a vi-
able alternative to sequence similarity searches provided
that the genes are observed under a wide range of exper-
imental conditions.

1. Introduction

Traditionally, researchers have been using sequence data
(either nucleotide sequence in the case of genes, or amino
acid sequences in the case of proteins) to determine the
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function of genes and/or the corresponding proteins. This
approach relies on the fact that a set of genes that have
sufficiently similar sequences also perform the same func-
tion. The explosive growth of the amount of sequence in-
formation available in public databases has made such an
approach particularly accurate and an indispensable tool
towards functional genomics. Despite the fact that func-
tional genomic techniques based on sequence data can pro-
vide a wealth of information about the functionality of
entire genomes; they also have two inherent limitations.
First, in some cases the functional similarity cannot be in-
ferred by sequence information alone as sequence compar-
isons can be uninformative and even misleading. Second,
even though there are many projects for sequencing entire
genomes of different species, there will be a lot of species
for which we don’t and will never have complete sequence
information (at least in the next several decades). This is a
function of both the cost associated with sequencing as well
as the fact that there are a lot of species.

Recently developed methods for monitoring genome-
wide mRNA expression changes such as oligonucleotide
chips [7], SAGE [20], and cDNA microarrays [18], are es-
pecially powerful as they allow us to quickly and inexpen-
sively observe the changes at the differential expression lev-
els of the entire complement of the genome under many dif-
ferent induced conditions. Knowing when and under what
conditions a gene or a set of genes is expressed often pro-
vides strong clues as to their biological role and function.
Already, numerous such experiments involving relatively
small genomes are performed at various sites worldwide.
In the coming year the number of this type of experiments
involving microarrays is expected to increase significantly.

One way of using the data produced by microarray ex-
periments to determine the function of unknown genes is to
use clustering algorithms to group together genes that have
similar expression profiles. Based on the distribution of
known and unknown genes in such clusters, then some in-
formation about the function of previously unknown genes
can be inferred. In fact a large number of studies have al-



ready taken place in which putative functions of unknown
genes have been identified in this way. However, clustering
being an unsupervised learning method is not ideally suited
for this particular task as it has no mechanism by which to
perform feature selection. A better approach of inferring
the function of unknown genes based on their expression
profiles is to use machine learning techniques based on su-
pervised learning [14].

This has been recently recognized by a number of re-
searchers and a few attempts have been made to use such
algorithms. In particular, Golub et al. [8], by looking at
expression profiles of a subset of human genes, a partic-
ular type of leukemia can be distinguished from another
type of the disease. Brown et al. [1] used several classifi-
cation algorithms to predict if a gene has a particular func-
tion based on expression profiles and obtain encouraging
results. Hvidsten et al. [9] applied rule-based induction to
predict human gene functionality based on the gene ontol-
ogy database [2] from expression profiles of the fibroblast
serum response [10] and showed high prediction accuracy
for 16 gene functional classes. Nevertheless, most of these
studies were limited as they focused on only a small set of
specific functions and/or did not provide any insights on the
overall feasibility of this type of approach for determining
the function of the genes.

The focus of this paper is to perform a study on the suit-
ability of supervised learning techniques for determining
the function of genes using solely gene expression data and
attempts to identify the requirements under which such an
approach will lead to accurate predictions. Our work fo-
cuses on the yeast genome and uses publicly available mi-
croarray datasets [6, 5] and covers a large number of gene
functions defined in the Munich Information Centre for Pro-
tein Sequences (MIPS) database [13]. We present a de-
tailed experimental study using two popular classification
algorithms, support vector machines and k-nearest neigh-
bors for predicting the functions of the genes, and present
fixed-size prediction algorithms that allow us to trade recall
for precision. Our experimental results show that the ac-
curacy achieved by the proposed approaches varies widely
depending on the function that we try to predict. For certain
classes we can achieve high accuracies and for some classes
the accuracies are quite poor. Our analysis shows that the
accuracy achieved for a particular class is highly dependent
on whether or not the genes of that class were significantly
active during the various experimental conditions. This sug-
gests that gene expression profiles can become a viable al-
ternative to sequence similarity searches provided that the
genes are observed under a wide range of experimental con-
ditions that exercise the various cellular functions.

The rest of this paper is organized as follows. Section 2
describes the source and the structure of two datasets we
use in our study, expression profiles and gene functional

class assignment. Section 3 explains the detail of binary
classification algorithms, support vector machines and the
k-nearest neighbors. We will also propose two different
types of fixed-size prediction algorithms. The results and
the evaluation of the experiments are shown in Section 4
and we discuss the relationship between those prediction ac-
curacy results and statistical measure of expression profiles
in Section 5. Finally, Section 6 provides some concluding
remarks.

2. Datasets Description

In our study we used the publicly available expression
profiles from Brown’s group at Stanford University [5, 6].
The source of these profiles were 8 different microarray ex-
periments under different conditions. They can be catego-
rized into the following 4 types, (i) the mitotic cell divi-
sion cycle, (ii) sporulation, (iii) temperature and reducing
shocks, (iv) gene expression in the the budding yeast during
the diauxic shift. These experiments resulted in a total of
79 measurements, however, not all genes have the entire set
of the 79 measurements because each experiment was per-
formed on a different subset of genes. We treat those miss-
ing values as zero. The 79 measures are base 2 logarithms of
ratios of intensities scanned from two separate fluorescence
dye images, which were obtained after hybridization. Even
though the whole yeast genome contains 6275 genes, the
arrays used in the above experiments contained only 2467
genes. Out of expression profiles for those 2467 genes, we
used 2462 profiles by discarding profiles for genes that do
not appear in the MIPS database. Section 2.1 describes the
database in detail.

2.1. Gene Functional Class Assignment

Determining the functional class of the different genes
is very much an ongoing process and to a large extent one
of the key steps in understanding the genomes of the vari-
ous species. Fortunately, in the case of the yeast genome,
there exist extensive annotations for a large fraction of the
genes. For our study we used the functional annotations that
are available in the MIPS database [13]. As of the time of
this writing, the MIPS database defines a total of 249 gene
function classes, organized in a tree structure.

Based on the amount of information that is known for
each gene, the MIPS database assigns it to one or more
nodes of the tree of function classes. Genes for which
detailed functional information is known tend to be as-
signed towards the leaves of the tree (i.e., more specific
classes), whereas genes for which the information is more
limited tend to be assigned at the higher-level nodes of the
tree, (i.e., more abstract classes). Out of the total num-
ber of 6275 genes of the yeast genome, MIPS provides at
least one annotation for 3902 genes. For example, a gene



YBR069C is assigned a function named amino-acid trans-

port. Because amino-acid transport is a sub-function of amino-

acid metabolism which is also a sub-function of the top-level
function METABOLISM, YBR069C has all those functions,
famino-acid transport, amino-acid metabolism, METABOLISMg,
i.e., a function at a node and all the functions of its path
to the top-level node. A gene also may have functions as-
signed from multiple branches. For the case of YBR069C,
it has functions from the top level category METABOLISM

and its subcategories as well as ones from other top level
classes TRANSPORT FACILITATION, CELLULAR TRANSPORT

AND TRANSPORTMECHANISMS and CELLULAR ORGANIZA-

TION and their subcategories. As a result of this functional
class assignment, each gene has 3.4 functions assigned on
the average. All the 2462 genes in the expression profile
dataset described in Section 2 do have at least one func-
tional annotation. The distribution of the number of classes
at the different levels of the tree is shown in Table 1.

Table 1. Number of defined function categories at
each level in the tree structure

Level Functions
1 16
2 107
3 85
4 39
5 2

Figure 1(a) shows the size of the different gene functions
in the MIPS class assignment. By “size”, we mean the num-
ber of genes assigned to the corresponding function. Most
of the functions are small in their size, which makes func-
tionality prediction difficult. For this reason, we focus only
on the 50 largest functional classes whose size distribution
is shown in Figure 1(b). The name of those function cate-
gories can be found in [12]. On the average, a gene has 4.6
gene functions assgined.

3. Methods

The goal of supervised learning methods, also known as
classification methods, is to build a set of models that can
correctly predict the class of the different objects. The input
to these methods is a set of objects (training set), the classes
that these objects belong to (dependent variable), and a set
of variables describing different characteristics of the ob-
jects (independent variables). Once such a predictive model
is built, then it can be used to predict the class of the ob-
jects for which class information is not known a priori. For
the problem of classifying genes based on their expression
profiles, the independent variables are the 79 gene expres-
sion levels obtained during the eight different experiments,
and the dependent variable is the function of the gene. The
key advantages of supervised learning methods over unsu-

pervised methods such as clustering, is that by having an
explicit knowledge of the classes the different objects be-
long to, these algorithms can perform an effective feature
selection (e.g., ignoring some of the independent variables)
if that leads to better prediction accuracy.

Over the years a variety of different classification algo-
rithms have been developed by the machine learning com-
munity. Examples of such algorithms are decision tree
based, rule-based, probabilistic, neural networks, genetic,
instance-based, and support vector machines. Depending
on the characteristics of the data sets being classified cer-
tain algorithms tend to perform better than others. In recent
years, algorithms based on the support vector machines and
the k-nearest neighbors have been shown to produce rea-
sonably good results for problems in which the independent
variables are continuous and homogeneous (e.g., they mea-
sure a similar quantity). For this reason, our study uses pri-
marily these two classification algorithms.

Support Vector Machines Support vector machines
(SVM) is a relatively new learning algorithm proposed by
Vapnik [19]. This algorithm is introduced to solve two-class
pattern recognition problems using the Structural Risk Min-
imization principle [19, 3]. Given a training set in a vector
space, this method finds the best decision hyperplane that
separates two classes. The quality of a decision hyperplane
is determined by the distance (referred as margin) between
two hyperplanes that are parallel to the decision hyperplane
and touch the closest data points of each class. The best
decision hyperplane is the one with the maximum margin.
By defining the hyperplane in this fashion, SVM is able to
generalize to unseen instances quite effectively. The SVM
problem can be solved using quadratic programming tech-
niques [19, 3]. SVM extends its applicability on the lin-
early non-separable data sets by either using soft margin
hyperplanes, or by mapping the original data vectors into a
higher dimensional space in which the data points are lin-
early separable. The mapping to higher dimensional spaces
is done using appropriate kernel functions, resulting in effi-
cient algorithms. A new test object is classified by looking
on which side of the separating hyperplane it falls and how
far away it is from it.

K-Nearest Neighbors k-nearest neighbors (kNN) is a
well-known and widely used instance-based classification
algorithm [4, 21]. The basic idea behind this classification
paradigm is to compute the similarity between a test object
and all the objects in the training set, select the k most sim-
ilar training set objects, and determine the class of the test
object based on the classes of these k nearest neighbors.
One of the advantages of kNN is that it is well suited for
multi-modal classes as its classification decision is based on
a small neighborhood of similar objects. As a result, even
if the target class is multi-modal (i.e., consists of objects
whose independent variables have different characteristics
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Figure 1. Distribution of the size of gene functions

for different subsets), it can still lead to good classification
accuracy.

Two steps are critical to the performance of the kNN
classification algorithm. The first is the method used to
compute the similarity between the test object and the ob-
jects in the training set, and the second is the method used
to determine the class of the test object based on the classes
of the nearest neighbors. For data sets in which the objects
are represented by multi-dimensional vectors, like the gene
expression data used in this study, two approaches are com-
monly used to compute the similarity. The first approach
is based on using a Euclidean distance (or any other norm-
based distance) between the test object and the training ob-
jects, whereas the second approach is based on using the
cosine of the angle between the two vectors. The primary
difference between these two distance measures, is that the
Euclidean distance approach is affected by the length of the
test objects whereas the cosine-based approach is length in-
variant and only focuses in the angles of the two vectors.
Recent studies using gene expression data [1] have shown
that cosine-based similarity functions are better as they fo-
cus on the relative shape of the profile and not its magnitude.
For this reason, in our experiments the similarity between
two genes was computed using the cosine function which is
defined as follows. If vi and vj are the two vectors, then
their cosine similarity is given by

cos(vi;vj) = vi � vj=kvik kvjk;

where “�” denotes the dot-product between two vectors, and
kvk denotes the 2-norm (i.e., length) of the vector.

The simplest way to determine the class of the test ob-
ject based on the classes of its k-nearest neighbors is to as-
sign it to the majority class, i.e., the class in which most of
the k-nearest objects belong to. This approach can be eas-
ily extended to weighting differently the different neighbors
based on the actual similarity. In this case, instead of sim-
ply adding the frequencies of the individual classes we do

so in a weighted fashion based on how similar a particular
neighbor is to the test object. If the training set contains
only two classes, the positive and negative class, then this
can be done by looking at the value of the measure q that is
defined as:

q =

kX
i=1

cos(vi;v)c(vi); (1)

where

c(vi) =

(
1 if vi belongs to the positive class;

�1 if vi belongs to the negative class:

If q is positive, then it is assigned to the positive class, oth-
erwise it is assigned to the negative class.

3.1. Binary Classification

Traditional classification algorithms are primarily suited
for learning classification models in which each object be-
longs to only a single class. Nevertheless, in our data set
each gene has more than one classes associated with it. A
common way of solving this type of classification problems
is to build a set of binary classifiers, each distinguishing the
genes of one functional class from the genes that do not be-
long to this class. We will refer to the particular functional
class as the positive class, and the rest of the genes as the
negative class. For our problem this leads to 50 different bi-
nary classifiers, one for each gene function. Once the clas-
sifiers have been built, a new gene is classified by testing
it against each one of the 50 binary classifiers. Each gene
is then assigned to all the classes for which the particular
classifier determined that it was part of the positive class.

Given a set of genes for which we already know their
classes and where not used during training we can use a
particular binary classifier to predict their classes. By com-
paring how many of them are predicted to be in the positive
class we can then evaluate its predictive performance. By



combining the predictions with the actual classes we can
partition the test genes into four classes. The true posi-
tives and the true negatives which are the set of genes that
were correctly predicted to be part of the positive or neg-
ative class, respectively; and the false positives and false
negatives which are the sets of genes that were incorrectly
predicted as positives or negatives, respectively. A common
way of measuring that performance is to use two measures
called the precision and recall. The precision p of a binary
classifier is defined as

p =
Ntrue positives

Ntrue positives +Nfalse positives
;

and the recall is defined as

r =
Ntrue positives

Ntrue positives +Nfalse negatives
:

The precision measures what fraction of the genes that are
predicted positive are actually positive, and the recall mea-
sures what fraction of the positive genes were actually pre-
dicted as positive.

In the SVM algorithm the classification decision is made
by looking at how far a test object is from the decision hy-
perplane, whereas in the case of the kNN algorithm, the
classification is made by looking at the q measure defined in
equation (1). If the distance to the hyperplane or the value of
q is positive the algorithms assign an object to the positive
class. Essentially, in both of these algorithms the value zero
acts as a threshold in determining the class of the object.
However, in many cases a threshold value that is greater
or smaller than zero may be more appropriate. To avoid
the arbitrariness of this particular threshold setting, we set
a threshold for classifiers at a value called the break-even
point where the precision and the recall becomes equal. In
general, if the value of the decision threshold increases (i.e.,
it becomes harder to assign something to the positive class)
the precision increases and the recall decreases. On the
other hand, if the decision threshold decreases the precision
will tend to decrease and the recall will tend to increase. By
changing the value of the decision threshold we can then
find the point at which the precision becomes the same as
the recall.
Fixed-size Predictions As discussed in the previous sec-
tion the approach based on binary classifiers can be used
to address the problem of classifying genes into multiple
classes. Nevertheless one limitation of that approach is that
it does not allow us to directly control the number of classes
that each gene is assigned to. In some cases we may want to
determine for each gene a set of m classes that it will most
likely belong to. This is particularly important if expres-
sion profile based gene classification is used to identify a
set of genes that we may want to study further, for example
to obtain their sequences.

In this study we explored two different approaches for
determining the m most likely functions of a gene. The
first approach is based on obtaining the list of candidate
functions by utilizing the results of the 50 binary classifiers,
whereas the second approach is based on finding these can-
didate classes directly.

As discussed in Section 3.1, for each of the binary
classes, both the SVM and the kNN classifiers compute a
quantity that essentially measures how strong a particular
genes belongs to a particular class. Our first approach for
identifying the m most likely functions is based on using
these strength measures of the different binary classifiers.
In the case of SVM, for a gene we compute its distance to
the 50 decision hyperplanes, and assign it to classes that cor-
respond to the m largest values (i.e., strongest predictions).
Similarly, in the case of kNN we compute the q measure
for each of the 50 classifiers and assign it to the classes that
correspond to the m largest values. We will refer to these
two approaches as the SVM-induced and the kNN-induced
methods, respectively.

Our direct approach for determining the m most likely
candidate functions is based on the kNN approach. In par-
ticular, for each gene gi we identify a set of its k most sim-
ilar genes, Ngi . We then compute the similarity-weighted
frequency of the various classes that the genes in Ngi be-
long to, and select the m most frequent classes as the pre-
dicted classes. This approach was motivated by similar al-
gorithms developed by the information retrieval community
for building recommender agents [16, 15, 17]. We will refer
to this approach as the direct kNN method.

4. Experimental Results
As discussed in Section 2, because some of the 249 gene

function classes defined in the MIPS database cover a very
small number of genes, our experimental evaluation was fo-
cused only on the 50 largest classes, using the classifica-
tions and datasets described in Section 2. In the rest of this
section we present the results for binary classification and
fixed-sized classification.

4.1. Binary Classification Results

We applied the SVM and the kNN algorithms to predict
gene functionality of a subset of the yeast genome. To eval-
uate prediction accuracy of each algorithm, we performed
3-way cross validation. Each prediction measure is obtained
at the break-even point where its recall and precision are
equal. The implementation of SVM we used is SVM light,
version 3.50 by Joachims [11]. Among various types of ker-
nels that SVMlight supports, we chose linear, polynomial
(quadratic and cubic) and radial basis functions. We also
specified a trade-off option “-c 100” to finish the learning
program in reasonable running time. Other parameters are
all used as their default settings.



In the case of SVM classification algorithm two param-
eters were found to play an important role in the overall
quality of the results. The first is how the different 79-
dimensional vectors representing each gene are normalized
and the second is the choice of the kernel. To evaluate the
sensitivity on the vector normalization, we performed two
sets of experiments. In the first set, we used raw log-ratios
of expression levels whereas in the second experiment ex-
pression levels were normalized so that each vector is of
unit length. Figure 2 shows the precision of the break-
even point achieved by the two representations for the cu-
bic and the radial basis functions. Note that the classes are
displayed in decreasing class size order. Looking at these
graphs, we can see that in general, normalized representa-
tions lead to dramatic improvements for some classes. Sim-
ilar results hold for the other kernel functions.
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Figure 2. Effect of normalization

Next we compare the average precision at the break-
even point for different types of the SVM kernels (see Fig-
ure 3). The average precision over the 50 functions for the
linear, the quadratic, the cubic and the radial basis kernels
are 23.8%, 25.6%, 27.5% and 27.6% respectively, and the
difference by the kernel type is in general small. The per-
formance of the cubic function is similar to that of the ra-
dial basis function and those two types outperform the linear
and the quadratic kernels. With 27 out of the 50 functions,
the radial basis kernel’s precision is better than the cubic
kernel’s. Both the cubic and the radial basis kernels out-
perform linear and quadratic for more than 31 functions,
respectively.

In the case of kNN classifier, we performed a sequence
of experiments in which we set the number of neighbors,
k, to be 1, 2, 5, 10, 20, 30 and 40. The average precision
at the break-even point achieved in this sequence of experi-
ments was 24.4%, 24.7%, 26.2%, 26.4%, 25.9%, 24.9% and
24.2% respectively. Thus, with 10 neighbors kNN shows
the best results, however, the number of neighbors has less
impact on the break-even point precision compared to the
type of the SVM kernels.
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Figure 3. Comparison of 4 different SVM kernel types

Finally, Figure 4 shows the binary classification results
of SVM and kNN for the 50 functions. For the SVM clas-
sifier we used normalized gene vectors with the radial basis
kernel, which achieved the better result than the other poly-
nomial kernels. For the kNN classifiers we used 10 neigh-
bors, because again using 10 neighbors achieved the best
precision at the break-even point on the average. From these
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Figure 4. Precision at the break-even point of pre-
dicting gene functionality with SVM and kNN

results we can see that in general SVM achieves slightly
better precision than kNN does. Nevertheless, only a few
classes can be identified with reasonably high precision, re-
gardless of the classification methods. The average preci-
sion for both radial basis SVM and kNN with k = 10 was
27.6% and 26.7%, respectively. Note that there is tendency
that larger functions are easy to get correct prediction than
smaller ones.

4.2. Fixed-size Prediction Results

Motivated by the relatively poor results obtained by the
binary classification algorithms, we focused on developing
algorithms that for each gene, predict a fixed number m of
candidate classes. The key goal of this approach is to try
to achieve a higher level of recall—i.e., to predict most of



the classes of a particular gene—at the cost of potentially
achieving a somewhat lower precision.

As discussed in Section 3.1, we developed three
schemes: the SVM-induced and the kNN-induced schemes
that obtain predictions using the 50 individual binary clas-
sifiers, and the direct kNN scheme that uses the kNN-type
algorithm to directly compute these predictions.

Figure 5 shows the results obtained in this set of ex-
periments with all the three schemes, under different val-
ues of m, and under different parameters of the underlying
classification algorithms. In the case of the SVM-induced
method, Figure 5(a) shows the results obtained using the
linear (“p1”), the quadratic (“p2”), the cubic (“p3”) and the
radial basis (“r”) kernels. In the case of the kNN-induced
method, Figure 5(c) shows the results achieved for k equal
to 5, 10, 20 and 30. In the case of the direct kNN method,
Figure 5(b) shows the results achieved by using a neighbor-
hood of size 5, 10, 20 and 30. Also for comparison pur-
poses, the results labelled “All binary predictions” in Fig-
ures 5(a) and 5(c) show the results obtained by only using
the binary predictions at the break-even point. Note that un-
like the fixed-size results, in these two sets of results, the
number of predictions made for each gene is not uniform.

Looking at the different fixed-size prediction results we
can see that as expected the overall recall increases as we
increase the number of predictions m. Nevertheless, as m
increases, the overall precision decreases. Comparing the
results produced by the SVM-induced method with those
produced by the kNN-induced method, we can see they are
quite similar (at least for the radial basis kernel and the 10
nearest neighbors).

On the other hand, the direct kNN method outperforms
the other two and always produces at least 4% higher pre-
cision and 5% higher recall at each corresponding experi-
ment. This can be easier seen by looking at the results in
Table 2 that summarizes the overall precision and recall of
the various schemes for their best set of parameters. The
overall results indicate that relatively high levels of recall
can be obtained with a moderate reduction in precision. For
instance, for m = 6, 2.4 (' 6� 0:398) predictions out of 6
from the direct kNN classifier are likely to be correct, and
by those predictions we can discover all functions of every
incoming gene with 51.6% probability.

5. Analysis of Results

The experimental results presented in Section 4 showed
that the precision of the predictions produced by either the
SVM or the kNN classification algorithms varies widely for
different functional classes. For some classes we were able
to achieve high precision at the break-even point whereas
for some of the other classes the precision was extremely
low. In this section we attempt to analyze these results and
understand both the limitations and advantages of the pro-

Table 2. Average precision and recall of 3 fixed-size
prediction schemes with 4, 6, 8 and 10 predictions.
For the SVM-induced classifier and the kNN-induced
classifier, the rows with the prediction “all” show the
results by considering all the prediction returned by
each of the 50 induced classifiers, without limiting the
number of predictions.

Method Predictions Precision (%) Recall (%)
SVM-induced 4 41.9 37.0
(radial basis) 6 34.5 44.9

8 29.8 51.3
10 26.1 55.9
all 41.8 40.3

kNN-induced 4 42.5 37.7
(10 neighbors) 6 35.2 45.8

8 29.8 51.2
10 26.0 55.8
all 43.5 40.4

Direct kNN 4 48.6 43.4
(10 neighbors) 6 39.8 51.6

8 33.7 56.8
10 30.0 61.3

posed approach for gene classification.

Our analysis will primarily focus on relating the classi-
fication accuracies with some of the properties of the gene
expression data sets. In particular we will focus on the fol-
lowing characteristics: (i) class size, (ii) class homogeneity,
(iii) variability of the expression profiles, and (iv) the level
of the differentially expressed profiles.

As discussed in Section 2.1, the number of genes con-
tained in the 50 largest functional classes that were used in
our dataset varied significantly. To see if there is a rela-
tion between the size of the class and the prediction quality
we plotted the size versus the precision at the break-even
point for all the 50 classes achieved by the SVM classifier.
These results are shown in Figure 6. From this plot we can
see that, in general, if the size of the class is large the pre-
cision that was obtained is quite high. Nevertheless, the
opposite is not true, as for some small classes, SVM was
able to achieve precisions that are quite high. Also, the fact
the larger classes achieve better precision at the break-even
point should not be surprising, as they are easier to classify
even by a random classifier.

The second characteristic that we focused was whether
or not the “tightness” of a particular class played some role
in determining the overall quality of the predictions. In de-
termining how tight a particular class is we computed the
average pairwise similarity between the genes in each class
using the cosine similarity function. Figures 7(a) and 7(b)
plot the size of each class versus its tightness and the preci-
sion achieved for each class versus its tightness. From Fig-
ure 7(a) we can see that there is relatively little variation in
the tightness of the different classes, with the exception of a
few classes that are particularly tight. From Figure 7(b) we
can see that class tightness does not play a significant role in
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(a) Fixed-size prediction with the SVM-induced
classifiers
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(b) Fixed-size prediction with the direct kNN
method
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(c) Fixed-size prediction with the kNN-induced
classifiers
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Figure 5. Fractions of genes and their recall in the fixed-size prediction scheme. For the SVM-induced classifier, we
used the linear (“p1”), the quadratic (“p2”), the cubic (“p3”) and the radial basis (“r”) functions as their kernel. For
both the kNN-induced classifier and the direct kNN classifier, 5, 10, 20 and 30 neighbors are used.

determining the precision of the classifier. For a relatively
narrow range of class tightness values, the accuracies ob-
tained differ dramatically and there are classes that achieve
high precision which are not tight and vice versa.

The last set of characteristics that we focused has to do
with whether or not the magnitude or the variability of the
differential expression of the genes in a class was critical
for achieving high precisions. Figures 8(a) and 8(b) plot the
precision versus the average standard deviation of the ex-
pression profiles of each class, and the average sum of the
absolute expression levels, respectively. In computing both
the standard deviation and the sum of the expression lev-
els we used the log-ratios of the intensities of target versus
control, without the unit-length normalization that we used
for the classification experiments. Looking at these results
we can see that there is a relation between the precisions
achieved by SVM and the variability of the profiles or their
overall differential expression level. The higher the variabil-
ity of overall expression levels the higher the precision that
was obtained. We computed the correlation coefficient for

the two plots and we found that they are 0.51 for Figure 8(a)
and 0.47 for Figure 8(b).

Table 3. Classes with high precision at the break-
even point

Function SVM Size Tight- Standard Absolute
Class Precision ness Deviation Sum

ribosomal proteins 80.9 173 0.721 0.710 40.7
CELLULAR ORG. 75.4 1803 0.295 0.526 32.4
PROTEIN SYNTH. 62.8 298 0.591 0.619 36.7
mitochondrial org. 59.4 296 0.382 0.495 30.5
org. of cytoplasm 52.1 463 0.438 0.626 37.0
METABOLISM 47.3 702 0.281 0.541 33.0
ENERGY 47.1 157 0.415 0.636 37.0
nuclear org. 45.7 643 0.361 0.469 30.0

The correlation between the variability or the absolute
levels of expression change and whether or not we can ac-
curately predict them should not be surprising as in these
type of classes the genes tend to exhibit a distinctly dif-
ferent behavior that can be used by the classification algo-
rithms to build accurate models for predicting them. On
the other hand, if a class contains genes that either have not
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(a) Class size and tightness
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(b) Break-even point precision and class tightness

Figure 7. Tightness and class size of the 50 largest functional categories
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(a) Break-even point precision and standard devia-
tion of profiles
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(b) Break-even point precision and average sum of
absolute values in profiles

Figure 8. SVM binary classification precision at the break-even point and function class statistical properties

been turned on during the experiments or they have a rel-
ative constant profile, the classification algorithms cannot
reliably distinguish them from genes of similarly behaving
classes. Our analysis indicates that in order for the genes
of a particular class to be predicted accurately, the microar-
ray experiments that are performed must have either acti-
vated or surpassed them. Unfortunately, the eight different
microarray experiments used in deriving our data set were
primarily focuses on a small set of cellular functions so do
not provide a sufficient breadth. We believe, however, that
as additional and more diverse experiments are performed,
supervised learning is a viable method for determining the
functions(s) of a gene. To further illustrate this point, Ta-
ble 3 shows the eight classes that achieved the highest preci-
sion along with the values of their different characteristics.
From the description of the experiments that used in obtain-
ing the microarray data (Section 2) and the studies reported
in [6, 1] the genes in these functional classes were shown to

be active in the course of the experiments.

6. Conclusions
In this paper we explored the possibility of using mi-

croarray expression profiles to find the functions of genes.
We applied two representative binary classification algo-
rithms, SVM and kNN for the 2462 annotated genes out
of all the 6275 identified genes from the yeast genome. The
goal of the classification was to predict functional categories
of genes defined in the MIPS database. Because of nonuni-
form distribution of genes over functional classes, we fo-
cused on the 50 largest gene functional categories out of
249. The results showed that the overall prediction accu-
racy was poor except a few functional categories which are
closely related with the nature of the experimental condi-
tions for obtaining expression profiles.

Provided that the binary classifiers produced the low pre-
diction precision, using SVM and kNN as the underlying
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Figure 6. SVM (radial basis function) binary clas-
sification precision at the break-even point and class
size

modules we developed three different schemes, the SVM-
induced, the kNN-induced and the direct kNN methods that
can predict a specified number of candidate functions in or-
der to achieve high recall, and evaluated their prediction
performance in terms of precision and recall. It turned out
that the direct kNN approach outperforms the other two.
Compared with the binary classification results, those three
fixed-size prediction schemes improved recall without a sig-
nificant loss of precision.

To understand those results of the binary and the fixed-
sized prediction approaches, we analyzed the relationship
between the binary prediction precision of each function
class and statistical measures of the DNA expression pro-
files, which revealed that (i) large functional classes are rel-
atively easy to predict correctly, and (ii) the variability of
expression profiles has influence on the prediction preci-
sion.

Based on those experiments and the analysis we believe
it will be feasible to make use of expression profiles col-
lected under appropriate conditions to predict gene func-
tionality as more diverse experiments are performed and
pre-examined data are accumulated.
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