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Abstract

As various genome sequencing projects have already been completed or are near completion, genome

researchers are shifting their focus from structural genomics to functional genomics. Functional genomics

represents the next phase, that expands the biological investigation to studying the functionality of genes

of a single organism as well as studying and correlating the functionality of genes across many di�erent

organisms. Recently developed methods for monitoring genome-wide mRNA expression changes hold the

promise of allowing us to inexpensively gain insights into the function of unknown genes. In this paper

we focus on evaluating the feasibility of using supervised machine learning methods for determining the

function of genes based solely on their expression pro�les. We experimentally evaluate the performance

of traditional classi�cation algorithms such as support vector machines and k-nearest neighbors on the

yeast genome, and present new approaches for classi�cation that improve the overall recall with moderate

reductions in precision. Our experiments show that the accuracies achieved for di�erent classes varies

dramatically. In analyzing these results we show that the achieved accuracy is highly dependent on

whether or not the genes of that class were signi�cantly active during the various experimental conditions,

suggesting that gene expression pro�les can become a viable alternative to sequence similarity searches

provided that the genes are observed under a wide range of experimental conditions.

1 Introduction

As various genome sequencing projects have been recently completed or are near completion (e.g., microbial,
human, Arabidopsis), genome researchers are shifting their focus from structural genomics to functional
genomics [15]. Structural genomics represents an initial phase of genome analysis, whose goal is to construct
high resolution genetic and physical maps as well as complete sequence information of the chromosoms.
Functional genomics represents the next phase, that expands the biological investigation to studying the
functionality of genes of a single organism as well as studying and correlating the functionality of genes
across many di�erent organisms.

Traditionally, researchers have been using sequence data (either nucleotide sequence in the case of genes,
or amino acid sequences in the case of proteins) to determine the function of genes and/or the corresponding
proteins. This approach relies on the fact that a set of genes that have suÆciently similar sequences also
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DA/DAAG55-98-1-0441, by the DOE ASCI program, and by Army High Performance Computing Research Center contract
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perform the same function. The explosive growth of the amount of sequence information available in public
databases has made such an approach particularly accurate and an indispensable tool towards functional
genomics. Despite the fact that functional genomic techniques based on sequence data can provide a wealth
of information about the functionality of entire genomes; they also have two inherent limitations. First, in
some cases the functional similarity cannot be inferred by sequence information alone as sequence comparisons
can be uninformative and even misleading. Second, even though there are many projects for sequencing entire
genomes of di�erent species, there will be a lot of species for which we don't and will never have complete
sequence information (at least in the next several decades). This is a function of both the cost associated
with sequencing as well as the fact that there are a lot of species.

Recently developed methods for monitoring genome-wide mRNA expression changes such as oligonu-
cleotide chips [12], SAGE [33], and cDNA microarrays [30], are especially powerful as they allow us to
quickly and inexpensively observe the changes at the di�erential expression levels of the entire complement of
the genome under many di�erent induced conditions. Knowing when and under what conditions a gene or a
set of genes is expressed often provides strong clues as to their biological role and function. Already, numerous
such experiments involving relatively small genomes are performed at various sites worldwide. In the coming
year the number of this type of experiments involving microarrays is expected to increase signi�cantly.

One way of using the data produced by microarray experiments to determine the function of unknown
genes is to use clustering algorithms to group together genes that have similar expression pro�les. Based on
the distribution of known and unknown genes in such clusters, then some information about the function
of previously unknown genes can be inferred. In fact a large number of studies have already taken place in
which putative functions of unknown genes have been identi�ed in this way. However, clustering being an
unsupervised learning method is not ideally suited for this particular task as it has no mechanism by which
to perform feature selection. A better approach of inferring the function of unknown genes based on their
expression pro�les is to use machine learning techniques based on supervised learning [24].

This has been recently recognized by a number of researchers and a few attempts have been made to
use such algorithms. In particular, Golub et al. [14], by looking at expression pro�les of a subset of human
genes, a particular type of leukemia can be distinguished from another type of the disease. Brown et al. [2, 3]
used several classi�cation algorithms to predict if a gene has a particular function based on expression
pro�les and obtain encouraging results. Hvidsten et al. [16] applied rule-based induction to predict human
gene functionality based on the gene ontology database [6] from expression pro�les of the �broblast serum
response [17] and showed high prediction accuracy for 16 gene functional classes. Nevertheless, most of these
studies were limited as they focused on only a small set of speci�c functions and/or did not provide any
insights on the overall feasibility of this type of approach for determining the function of the genes.

The focus of this paper is to perform a study on the suitability of supervised learning techniques for
determining the function of genes using solely gene expression data and attempts to identify the requirements
under which such an approach will lead to accurate predictions. Our work focuses on the yeast genome and
uses publicly available microarray datasets [11, 10] and covers a large number of gene functions de�ned
in the Munich Information Centre for Protein Sequences (MIPS) database [21, 20, 22, 23]. We present a
detailed experimental study using two popular classi�cation algorithms, support vector machines and k-
nearest neighbors for predicting the functions of the genes, and present �xed-size prediction algorithms that
allow us to trade recall for precision. Our experimental results show that the accuracy achieved by the
proposed approaches varies widely depending on the function that we try to predict. For certain classes we
can achieve high accuracies and for some classes the accuracies are quite poor. Our analysis shows that the
accuracy achieved for a particular class is highly dependent on whether or not the genes of that class were
signi�cantly active during the various experimental conditions. This suggests that gene expression pro�les
can become a viable alternative to sequence similarity searches provided that the genes are observed under
a wide range of experimental conditions that exercise the various cellular functions.

The rest of this paper is organized as follows. Section 2 describes the source and the structure of two
datasets we use in our study, expression pro�les and gene functional class assignment. Section 3 explains
the detail of binary classi�cation algorithms, support vector machines and the k-nearest neighbors. We
will also propose two di�erent types of �xed-size prediction algorithms. The results and the evaluation of
the experiments are shown in Section 4 and we discuss the relationship between those prediction accuracy
results and statistical measure of expression pro�les in Section 5. Finally, Section 6 provides some concluding
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remarks.

2 Datasets Description

As discussed in the introduction our goal is to develop algorithms for determining the function of the yeast
genes using supervised learning methods that are based entirely on gene expression data. In order to achieve
that we need to have access to two key pieces of information: (i) the actual expression pro�les, and (ii) the
di�erent functional classes that the various genes belong to. These are described in the rest of this section.

2.1 Expression Pro�les

In our study we used the publicly available expression pro�les from Brown's group at Stanford University [10,
11]. The source of these pro�les were 8 di�erent microarray experiments under di�erent conditions. They can
be categorized into the following 4 types, (i) the mitotic cell division cycle, (ii) sporulation, (iii) temperature
and reducing shocks, (iv) gene expression in the the budding yeast during the diauxic shift. These experiments
resulted in a total of 79 measurements, however, not all genes have the entire set of the 79 measurements
because each experiment was performed on a di�erent subset of genes. We treat those missing values as zero.
The 79 measures are base 2 logarithms of ratios of intensities scanned from two separate 
uorescence dye
images, which were obtained after hybridization. Even though the whole yeast genome contains 6275 genes,
the arrays used in the above experiments contained only 2467 genes. Out of expression pro�les for those
2467 genes, we used 2462 pro�les by discarding pro�les for genes that do not appear in the MIPS database.
Section 2.2 describes the database in detail.

2.2 Gene Functional Class Assignment

Determining the functional class of the di�erent genes is very much an ongoing process and to a large extent
one of the key steps in understanding the genomes of the various species. Fortunately, in the case of the
yeast genome, there exist extensive annotations for a large fraction of the genes. For our study we used the
functional annotations that are available in the MIPS database [21, 20, 22, 23]. As of the time of this writing,
the MIPS database de�nes a total of 249 gene function classes, organized in a tree structure.

Based on the amount of information that is known for each gene, the MIPS database assigns it to one
or more nodes of the tree of function classes. Genes for which detailed functional information is known
tend to be assigned towards the leaves of the tree (i.e., more speci�c classes), whereas genes for which the
information is more limited tend to be assigned at the higher-level nodes of the tree, (i.e., more abstract
classes). Out of the total number of 6275 genes of the yeast genome, MIPS provides at least one annotation
for 3902 genes. For example, a gene YBR069C is assigned a function named amino-acid transport. Because
amino-acid transport is a sub-function of amino-acid metabolism which is also a sub-function of the top-level
function METABOLISM , YBR069C has all those functions, famino-acid transport, amino-acid metabolism,
METABOLISMg, i.e., a function at a node and all the functions of its path to the top-level node. A gene
also may have functions assigned from multiple branches. For the case of YBR069C, it has functions from
the top level category METABOLISM and its subcategories as well as ones from other top level classes
TRANSPORT FACILITATION , CELLULAR TRANSPORT AND TRANSPORTMECHANISMS and CELLULAR

ORGANIZATION and their subcategories. As a result of this functional class assignment, each gene has 3.4
functions assigned on the average. All the 2462 genes in the expression pro�le dataset described in Section 2.1
do have at least one functional annotation. The distribution of the number of classes at the di�erent levels
of the tree is shown in Table 1.

Figure 1(a) shows the size of the di�erent gene functions in the MIPS class assignment. By \size", we
mean the number of genes assigned to the corresponding function. Most of the functions are small in their
size, which makes functionality prediction diÆcult. For this reason, we focus only on the 50 largest functional
classes whose size distribution is shown in Figure 1(b). The name of those function categories are shown in
Table 2. Parenthesized numbers in each function class show the number of genes assigned to the category in
the pro�le dataset, and indentation corresponds to the depth of each function category. On the average, a
gene has 4.6 gene functions.
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Table 1: Number of de�ned function categories at each level in the tree structure

Level Functions
1 16
2 107
3 85
4 39
5 2
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(b) The 50 largest functions

Figure 1: Distribution of the size of gene functions

3 Methods

The goal of supervised learning methods, also known as classi�cation methods, is to build a set of models that
can correctly predict the class of the di�erent objects. The input to these methods is a set of objects (training
set), the classes that these objects belong to (dependent variable), and a set of variables describing di�erent
characteristics of the objects (independent variables). Once such a predictive model is built, then it can be
used to predict the class of the objects for which class information is not known a priori. For the problem
of classifying genes based on their expression pro�les, the independent variables are the 79 gene expression
levels obtained during the eight di�erent experiments, and the dependent variable is the function of the gene.
The key advantages of supervised learning methods over unsupervised methods such as clustering, is that by
having an explicit knowledge of the classes the di�erent objects belong to, these algorithms can perform an
e�ective feature selection (e.g., ignoring some of the independent variables) if that leads to better prediction
accuracy.

Over the years a variety of di�erent classi�cation algorithms have been developed by the machine learning
community. Examples of such algorithms are decision tree based [1, 26, 25], rule-based [4, 5], probabilistic [19],
neural networks [8, 34], genetic [13], instance-based [9, 35], and support vector machines [31, 32]. Depending
on the characteristics of the data sets being classi�ed certain algorithms tend to perform better than others.
In recent years, algorithms based on the support vector machines and the k-nearest neighbors have been
shown to produce reasonably good results for problems in which the independent variables are continuous
and homogeneous (e.g., they measure a similar quantity). For this reason, our study uses primarily these
two classi�cation algorithms.
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Table 2: The 50 largest functions in the expression pro�le dataset

1. METABOLISM (1061)

(a) amino-acidmetabolism (204)

i. amino-acid biosynthesis (118)

(b) nucleotide metabolism (144)

(c) C-compound and carbohydrate metabolism (414)

i. C-compound and carbohydrate utilization (261)

ii. regulation of C-compound and carbohydrate utiliza-
tion (120)

(d) lipid, fatty-acid and isoprenoid metabolism (213)

i. lipid, fatty-acid and isoprenoid biosynthesis (118)

2. ENERGY (247)
3. CELL GROWTH, CELL DIVISION AND DNA SYNTHESIS (832)

(a) budding, cell polarity and �lament formation (172)

(b) pheromone response, mating-type determination, sex-
speci�c proteins (161)

(c) DNA synthesis and replication (91)

(d) recombination and DNA repair (99)

(e) cell cycle control and mitosis (347)

4. TRANSCRIPTION (787)

(a) rRNA transcription (106)

(b) tRNA transcription (83)

(c) mRNA transcription (575)

i. mRNA synthesis (422)

A. transcriptional control (333)

ii. mRNA processing (splicing) (106)

5. PROTEIN SYNTHESIS (351)

(a) ribosomal proteins (208)

6. PROTEIN DESTINATION (579)

(a) protein targeting, sorting and translocation (139)

(b) protein modi�cation (187)

(c) assembly of protein complexes (93)

(d) proteolysis (154)

i. cytoplasmic and nuclear degradation (98)

7. TRANSPORT FACILITATION (310)
8. CELLULAR TRANSPORT AND TRANSPORTMECHANISMS

(495)

(a) vesicular transport (Golgi network, etc.) (125)

(b) cellular import (101)

9. CELLULAR BIOGENESIS (205)

(a) biogenesis of cell wall (cell envelope) (107)

10. CELL RESCUE, DEFENSE, CELL DEATH AND AGEING (363)

(a) stress response (170)

(b) DNA repair (88)

11. IONIC HOMEOSTASIS (123)

(a) homeostasis of cations (113)

12. CELLULAR ORGANIZATION (2254)

(a) organization of plasma membrane (144)

(b) organization of cytoplasm (556)

(c) organization of cytoskeleton (106)

(d) organization of endoplasmatic reticulum (155)

(e) organization of Golgi (79)

(f) nuclear organization (764)

(g) mitochondrial organization (364)

Support Vector Machines Support vector machines (SVM) is a relatively new learning algorithm pro-
posed by Vapnik [31, 32]. This algorithm is introduced to solve two-class pattern recognition problems using
the Structural Risk Minimization principle [31, 7]. Given a training set in a vector space, this method �nds
the best decision hyperplane that separates two classes. The quality of a decision hyperplane is determined
by the distance (referred as margin) between two hyperplanes that are parallel to the decision hyperplane
and touch the closest data points of each class. The best decision hyperplane is the one with the maximum
margin. By de�ning the hyperplane in this fashion, SVM is able to generalize to unseen instances quite ef-
fectively. The SVM problem can be solved using quadratic programming techniques [31, 7]. SVM extends its
applicability on the linearly non-separable data sets by either using soft margin hyperplanes, or by mapping
the original data vectors into a higher dimensional space in which the data points are linearly separable.
The mapping to higher dimensional spaces is done using appropriate kernel functions, resulting in eÆcient
algorithms. A new test object is classi�ed by looking on which side of the separating hyperplane it falls and
how far away it is from it.

k-Nearest Neighbors k-nearest neighbors (kNN) is a well-known and widely used instance-based classi-
�cation algorithm. The basic idea behind this classi�cation paradigm is to compute the similarity between a
test object and all the objects in the training set, select the k most similar training set objects, and determine
the class of the test object based on the classes of these k nearest neighbors. One of the advantages of kNN is
that it is well suited for multi-modal classes as its classi�cation decision is based on a small neighborhood of
similar objects. As a result, even if the target class is multi-modal (i.e., consists of objects whose independent
variables have di�erent characteristics for di�erent subsets), it can still lead to good classi�cation accuracy.

Two steps are critical to the performance of the kNN classi�cation algorithm. The �rst is the method
used to compute the similarity between the test object and the objects in the training set, and the second is
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the method used to determine the class of the test object based on the classes of the nearest neighbors. For
data sets in which the objects are represented by multi-dimensional vectors, like the gene expression data
used in this study, two approaches are commonly used to compute the similarity. The �rst approach is based
on using a Euclidean distance (or any other norm-based distance) between the test object and the training
objects, whereas the second approach is based on using the cosine of the angle between the two vectors. The
primary di�erence between these two distance measures, is that the Euclidean distance approach is a�ected
by the length of the test objects whereas the cosine-based approach is length invariant and only focuses in
the angles of the two vectors. Recent studies using gene expression data [2] have shown that cosine-based
similarity functions are better as they focus on the relative shape of the pro�le and not its magnitude. For
this reason, in our experiments the similarity between two genes was computed using the cosine function
which is de�ned as follows. If vi and vj are the two vectors, then their cosine similarity is given by

cos(vi;vj) = vi � vj=kvik kvjk;

where \�" denotes the dot-product between two vectors, and kvk denotes the 2-norm (i.e., length) of the
vector.

The simplest way to determine the class of the test object based on the classes of its k-nearest neighbors
is to assign it to the majority class, i.e., the class in which most of the k-nearest objects belong to. This
approach can be easily extended to weighting di�erently the di�erent neighbors based on the actual similarity.
In this case, instead of simply adding the frequencies of the individual classes we do so in a weighted fashion
based on how similar a particular neighbor is to the test object. If the training set contains only two classes,
the positive and negative class, then this can be done by looking at the value of the measure q that is de�ned
as:

q =

kX
i=1

cos(vi;v)c(vi); (1)

where

c(vi) =

(
1 if vi belongs to the positive class;

�1 if vi belongs to the negative class:

If q is positive, then it is assigned to the positive class, otherwise it is assigned to the negative class.

3.1 Binary Classi�cation

Traditional classi�cation algorithms are primarily suited for learning classi�cation models in which each object
belongs to only a single class. Nevertheless, in our data set each gene has more than one classes associated
with it. A common way of solving this type of classi�cation problems is to build a set of binary classi�ers,
each distinguishing the genes of one functional class from the genes that do not belong to this class. We will
refer to the particular functional class as the positive class, and the rest of the genes as the negative class.
For our problem this leads to 50 di�erent binary classi�ers, one for each gene function. Once the classi�ers
have been built, a new gene is classi�ed by testing it against each one of the 50 binary classi�ers. Each gene
is then assigned to all the classes for which the particular classi�er determined that it was part of the positive
class.

Given a set of genes for which we already know their classes and where not used during training we can
use a particular binary classi�er to predict their classes. By comparing how many of them are predicted
to be in the positive class we can then evaluate its predictive performance. By combining the predictions
with the actual classes we can partition the test genes into four classes. The true positives and the true
negatives which are the set of genes that were correctly predicted to be part of the positive or negative class,
respectively; and the false positives and false negatives which are the sets of genes that were incorrectly
predicted as positives or negatives, respectively. A common way of measuring that performance is to use two
measures called the precision and recall. The precision p of a binary classi�er is de�ned as

p =
Ntrue positives

Ntrue positives +Nfalse positives
;
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and the recall is de�ned as

r =
Ntrue positives

Ntrue positives +Nfalse negatives
:

The precision measures what fraction of the genes that are predicted positive are actually positive, and the
recall measures what fraction of the positive genes were actually predicted as positive. An alternate way of
evaluating the performance of a classi�er is to look at its accuracy, which is de�ned as the fraction of correct
predictions. However, when the di�erent classes are of signi�cantly di�erent sizes, the accuracy measure can
be misleading, and looking at precision and recall provides more meaningful information.

In the SVM algorithm the classi�cation decision is made by looking at how far a test object is from
the decision hyperplane, whereas in the case of the kNN algorithm, the classi�cation is made by looking at
the q measure de�ned in equation (1). If the distance to the hyperplane or the value of q is positive the
algorithms assign an object to the positive class. Essentially, in both of these algorithms the value zero
acts as a threshold in determining the class of the object. However, in many cases a threshold value that is
greater or smaller than zero may be more appropriate. To avoid the arbitrariness of this particular threshold
setting, we set a threshold for classi�ers at a value called the break-even point where the precision and the
recall becomes equal. In general, if the value of the decision threshold increases (i.e., it becomes harder to
assign something to the positive class) the precision increases and the recall decreases. On the other hand,
if the decision threshold decreases the precision will tend to decrease and the recall will tend to increase. By
changing the value of the decision threshold we can then �nd the point at which the precision becomes the
same as the recall.

3.1.1 Fixed-size Predictions

As discussed in the previous section the approach based on binary classi�ers can be used to address the
problem of classifying genes into multiple classes. Nevertheless one limitation of that approach is that it does
not allow us to directly control the number of classes that each gene is assigned to. In some cases we may
want to determine for each gene a set of m classes that it will most likely belong to. This is particularly
important if expression pro�le based gene classi�cation is used to identify a set of genes that we may want
to study further, for example to obtain their sequences.

In this study we explored two di�erent approaches for determining the m most likely functions of a gene.
The �rst approach is based on obtaining the list of candidate functions by utilizing the results of the 50
binary classi�ers, whereas the second approach is based on �nding these candidate classes directly.

As discussed in Section 3.1, for each of the binary classes, both the SVM and the kNN classi�ers compute
a quantity that essentially measures how strong a particular genes belongs to a particular class. Our �rst
approach for identifying the m most likely functions is based on using these strength measures of the di�erent
binary classi�ers. In the case of SVM, for a gene we compute its distance to the 50 decision hyperplanes, and
assign it to classes that correspond to the m largest values (i.e., strongest predictions). Similarly, in the case
of kNN we compute the q measure for each of the 50 classi�ers and assign it to the classes that correspond
to the m largest values. We will refer to these two approaches as the SVM-induced and the kNN-induced
methods, respectively.

Our direct approach for determining the m most likely candidate functions is based on the kNN approach.
In particular, for each gene gi we identify a set of its k most similar genes, Ngi . We then compute the
similarity-weighted frequency of the various classes that the genes in Ngi belong to, and select the m most
frequent classes as the predicted classes. This approach was motivated by similar algorithms developed by the
information retrieval community for building recommender agents [28, 27, 29]. We will refer to this approach
as the direct kNN method.

4 Experimental Results

As discussed in Section 2, because some of the 249 gene function classes de�ned in the MIPS database cover
a very small number of genes, our experimental evaluation was focused only on the 50 largest classes shown
in Table 2, using the classi�cations and datasets described in Section 2. In the rest of this section we present
the results for binary classi�cation and �xed-sized classi�cation.
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4.1 Binary Classi�cation Results

We applied the SVM and the kNN algorithms to predict gene functionality of a subset of the yeast genome.
To evaluate prediction accuracy of each algorithm, we performed 3-way cross validation. Each prediction
measure is obtained at the break-even point where its recall and precision are equal. The implementation
of SVM we used is SVMlight, version 3.50 by Joachims [18]. Among various types of kernels that SVMlight

supports, we chose linear, polynomial (quadratic and cubic) and radial basis functions. We also speci�ed a
trade-o� option \-c 100" to �nish the learning program in reasonable running time. Other parameters are
all used as their default settings.

In the case of SVM classi�cation algorithm two parameters were found to play an important role in
the overall quality of the results. The �rst is how the di�erent 79-dimensional vectors representing each
gene are normalized and the second is the choice of the kernel. To evaluate the sensitivity on the vector
normalization, we performed two sets of experiments. In the �rst set, we used raw log-ratios of expression
levels whereas in the second experiment expression levels were normalized so that each vector is of unit
length. Figures 2(a) and 2(b) show the precision of the break-even point achieved by the two representations
for the cubic and the radial basis functions. Note that the classes are displayed in decreasing class size
order. Looking at these graphs, we can see that in general, normalized representations lead to dramatic
improvements for some classes especially with the radial basis kernel.
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Figure 2: Kernel types of SVM and the e�ect of normalization

Next we compare the average precision at the break-even point for di�erent types of the SVM kernels (see
Figure 3). The average precision over the 50 functions for the linear, the quadratic, the cubic and the radial
basis kernels are 23.8%, 25.6%, 27.5% and 27.6% respectively, and the di�erence by the kernel type is in
general small. The performance of the cubic function is similar to that of the radial basis function and those
two types outperform the linear and the quadratic kernels. With 27 out of the 50 functions, the radial basis
kernel's precision is better than the cubic kernel's. Both the cubic and the radial basis kernels outperform
linear and quadratic for more than 31 functions, respectively.

In the case of kNN classi�er, we performed a sequence of experiments in which we set the number of
neighbors, k, to be 1, 2, 5, 10, 20, 30 and 40. The average precision at the break-even point achieved in this
sequence of experiments was 24.4%, 24.7%, 26.2%, 26.4%, 25.9%, 24.9% and 24.2% respectively. Thus, with
10 neighbors kNN shows the best results, however, the number of neighbors has less impact on the break-even
point precision compared to the type of the SVM kernels.

Finally, Figure 4 shows the binary classi�cation results of SVM and kNN for the 50 functions. For the
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Figure 3: Comparison of 4 di�erent SVM kernel types

SVM classi�er we used normalized gene vectors with the radial basis kernel, which achieved the better result
than the other polynomial kernels. For the kNN classi�ers we used 10 neighbors, because again using 10
neighbors achieved the best precision at the break-even point on the average. From these results we can see

10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100

The 50 largest gene functions in descending order sorted by the size

B
re

ak
−e

ve
n

 p
oi

n
t 

pr
ec

is
io

n
 (

%
)

 kNN (k = 10)
SVM (radial basis)

Figure 4: Precision at the break-even point of predicting gene functionality with SVM and kNN

that in general SVM achieves slightly better precision than kNN does. Nevertheless, only a few classes can
be identi�ed with reasonably high precision, regardless of the classi�cation methods. The average precision
for both radial basis SVM and kNN with k = 10 was 27.6% and 26.7%, respectively. Note that there is
tendency that larger functions are easy to get correct prediction than smaller ones.

4.2 Fixed-size Prediction Results

Motivated by the relatively poor results obtained by the binary classi�cation algorithms, we focused on
developing algorithms that for each gene, predict a �xed number m of candidate classes. The key goal of
this approach is to try to achieve a higher level of recall|i.e., to predict most of the classes of a particular
gene|at the cost of potentially achieving a somewhat lower precision.

As discussed in Section 3.1.1, we developed three schemes: the SVM-induced and the kNN-induced
schemes that obtain predictions using the 50 individual binary classi�ers, and the direct kNN scheme that
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uses the kNN-type algorithm to directly compute these predictions.
Figure 5 shows the results obtained in this set of experiments with all the three schemes, under di�erent

values of m, and under di�erent parameters of the underlying classi�cation algorithms. In the case of the
SVM-induced method, Figure 5(a) shows the results obtained using the linear (\p1"), the quadratic (\p2"),
the cubic (\p3") and the radial basis (\r") kernels. In the case of the kNN-induced method, Figure 5(c)
shows the results achieved for k equal to 5, 10, 20 and 30. In the case of the direct kNN method, Figure 5(b)
shows the results achieved by using a neighborhood of size 5, 10, 20 and 30. Also for comparison purposes,
the results labelled \All binary predictions" in Figures 5(a) and 5(c) show the results obtained by only using
the binary predictions at the break-even point. Note that unlike the �xed-size results, in these two sets of
results, the number of predictions made for each gene is not uniform.
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(a) Fixed-size prediction with the SVM-induced classi-
�ers
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(b) Fixed-size prediction with the direct kNN method
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(c) Fixed-size prediction with the kNN-induced classi-
�ers
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Figure 5: Fractions of genes and their recall in the �xed-size prediction scheme. For the SVM-induced
classi�er, we used the linear (\p1"), the quadratic (\p2"), the cubic (\p3") and the radial basis (\r") functions
as their kernel. For both the kNN-induced classi�er and the direct kNN classi�er, 5, 10, 20 and 30 neighbors
are used.

Looking at the di�erent �xed-size prediction results we can see that as expected the overall recall increases
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as we increase the number of predictions m. Nevertheless, as m increases, the overall precision decreases.
Comparing the results produced by the SVM-induced method with those produced by the kNN-induced
method, we can see they are quite similar (at least for the radial basis kernel and the 10 nearest neighbors).

On the other hand, the direct kNN method outperforms the other two and always produces at least 4%
higher precision and 5% higher recall at each corresponding experiment. This can be easier seen by looking
at the results in Table 3 that summarizes the overall precision and recall of the various schemes for their
best set of parameters. The overall results indicate that relatively high levels of recall can be obtained with
a moderate reduction in precision. For instance, for m = 6, 2.4 (' 6� 0:398) predictions out of 6 from the
direct kNN classi�er are likely to be correct, and by those predictions we can discover all functions of every
incoming gene with 51.6% probability.

Table 3: Average precision and recall of 3 �xed-size prediction schemes with 4, 6, 8 and 10 predictions. For
the SVM-induced classi�er and the kNN-induced classi�er, the rows with the prediction \all" show the results
by considering all the prediction returned by each of the 50 induced classi�ers, without limiting the number
of predictions.

Method Predictions Precision (%) Recall (%)
SVM-induced 4 41.9 37.0
(radial basis) 6 34.5 44.9

8 29.8 51.3
10 26.1 55.9
all 41.8 40.3

kNN-induced 4 42.5 37.7
(10 neighbors) 6 35.2 45.8

8 29.8 51.2
10 26.0 55.8
all 43.5 40.4

Direct kNN 4 48.6 43.4
(10 neighbors) 6 39.8 51.6

8 33.7 56.8
10 30.0 61.3

5 Analysis of Results

The experimental results presented in Section 4 showed that the precision of the predictions produced by
either the SVM or the kNN classi�cation algorithms varies widely for di�erent functional classes. For some
classes we were able to achieve high precision at the break-even point whereas for some of the other classes
the precision was extremely low. In this section we attempt to analyze these results and understand both
the limitations and advantages of the proposed approach for gene classi�cation.

Our analysis will primarily focus on relating the classi�cation accuracies with some of the properties of
the gene expression data sets. In particular we will focus on the following characteristics: (i) class size, (ii)
class homogeneity, (iii) variability of the expression pro�les, and (iv) the level of the di�erentially expressed
pro�les.

As discussed in Section 2.2, the number of genes contained in the 50 largest functional classes that were
used in our dataset varied signi�cantly. To see if there is a relation between the size of the class and the
prediction quality we plotted the size versus the precision at the break-even point for all the 50 classes achieved
by the SVM classi�er. These results are shown in Figure 6. From this plot we can see that, in general, if
the size of the class is large the precision that was obtained is quite high. Nevertheless, the opposite is not
true, as for some small classes, SVM was able to achieve precisions that are quite high. Also, the fact the
larger classes achieve better precision at the break-even point should not be surprising, as they are easier to
classify even by a random classi�er.
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Figure 6: SVM (radial basis function) binary classi�cation precision at the break-even point and class size

The second characteristic that we focused was whether or not the \tightness" of a particular class played
some role in determining the overall quality of the predictions. In determining how tight a particular class
is we computed the average pairwise similarity between the genes in each class using the cosine similarity
function. Figures 7(a) and 7(b) plot the size of each class versus its tightness and the precision achieved
for each class versus its tightness. From Figure 7(a) we can see that there is relatively little variation in
the tightness of the di�erent classes, with the exception of a few classes that are particularly tight. From
Figure 7(b) we can see that class tightness does not play a signi�cant role in determining the precision of the
classi�er. For a relatively narrow range of class tightness values, the accuracies obtained di�er dramatically
and there are classes that achieve high precision which are not tight and vice versa.
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Figure 7: Tightness and class size of the 50 largest functional categories

The last set of characteristics that we focused has to do with whether or not the magnitude or the
variability of the di�erential expression of the genes in a class was critical for achieving high precisions.
Figures 8(a) and 8(b) plot the precision versus the average standard deviation of the expression pro�les
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Figure 8: SVM binary classi�cation precision at the break-even point and function class statistical properties

of each class, and the average sum of the absolute expression levels, respectively. In computing both the
standard deviation and the sum of the expression levels we used the log-ratios of the intensities of target
versus control, without the unit-length normalization that we used for the classi�cation experiments. Looking
at these results we can see that there is a relation between the precisions achieved by SVM and the variability
of the pro�les or their overall di�erential expression level. The higher the variability of overall expression
levels the higher the precision that was obtained. We computed the correlation coeÆcient for the two plots
and we found that they are 0.51 for Figure 8(a) and 0.47 for Figure 8(b).

Table 4: Classes with high precision at the break-even point

Function SVM Size Tightness Standard Absolute
class Precision (%) deviation sum

ribosomal proteins 80.9 173 0.721 0.710 40.7
CELLULAR ORGANIZATION 75.4 1803 0.295 0.526 32.4
PROTEIN SYNTHESIS 62.8 298 0.591 0.619 36.7
mitochondrial organization 59.4 296 0.382 0.495 30.5
organization of cytoplasm 52.1 463 0.438 0.626 37.0
METABOLISM 47.3 702 0.281 0.541 33.0
ENERGY 47.1 157 0.415 0.636 37.0
nuclear organization 45.7 643 0.361 0.469 30.0

The correlation between the variability or the absolute levels of expression change and whether or not
we can accurately predict them should not be surprising as in these type of classes the genes tend to exhibit
a distinctly di�erent behavior that can be used by the classi�cation algorithms to build accurate models
for predicting them. On the other hand, if a class contains genes that either have not been turned on
during the experiments or they have a relative constant pro�le, the classi�cation algorithms cannot reliably
distinguish them from genes of similarly behaving classes. Our analysis indicates that in order for the genes of
a particular class to be predicted accurately, the microarray experiments that are performed must have either
activated or surpassed them. Unfortunately, the eight di�erent microarray experiments used in deriving our
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data set were primarily focuses on a small set of cellular functions so do not provide a suÆcient breadth.
We believe, however, that as additional and more diverse experiments are performed, supervised learning is
a viable method for determining the functions(s) of a gene. To further illustrate this point, Table 4 shows
the eight classes that achieved the highest precision along with the values of their di�erent characteristics.
From the description of the experiments that used in obtaining the microarray data (Section 2.1) and the
studies reported in [11, 3, 2] the genes in these functional classes were shown to be active in the course of
the experiments.

6 Conclusions

In this paper we explored the possibility of using microarray expression pro�les to �nd the functions of genes.
We applied two representative binary classi�cation algorithms, SVM and kNN for the 2462 annotated genes
out of all the 6275 identi�ed genes from the yeast genome. The goal of the classi�cation was to predict
functional categories of genes de�ned in the MIPS database. Because of nonuniform distribution of genes
over functional classes, we focused on the 50 largest gene functional categories out of 249. The results showed
that the overall prediction accuracy was poor except a few functional categories which are closely related
with the nature of the experimental conditions for obtaining expression pro�les.

Provided that the binary classi�ers produced the low prediction precision, using SVM and kNN as the
underlying modules we developed three di�erent schemes, the SVM-induced, the kNN-induced and the direct
kNN methods that can predict a speci�ed number of candidate functions in order to achieve high recall, and
evaluated their prediction performance in terms of precision and recall. It turned out that the direct kNN
approach outperforms the other two. Compared with the binary classi�cation results, those three �xed-size
prediction schemes improved recall without a signi�cant loss of precision.

To understand those results of the binary and the �xed-sized prediction approaches, we analyzed the
relationship between the binary prediction precision of each function class and statistical measures of the
DNA expression pro�les, which revealed that (i) large functional classes are relatively easy to predict correctly,
and (ii) the variability of expression pro�les has in
uence on the prediction precision.

Based on those experiments and the analysis we believe it will be feasible to make use of expression
pro�les collected under appropriate conditions to predict gene functionality as more diverse experiments are
performed and pre-examined data are accumulated.
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