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As various genome sequencing projects have already been completed or are near com-
pletion, genome researchers are shifting their focus to functional genomics. Functional
genomics represents the next phase, that expands the biological investigation to studying
the functionality of genes of a single organism as well as studying and correlating the
functionality of genes across many different organisms. Recently developed methods for
monitoring genome-wide mRNA expression changes hold the promise of allowing us to
inexpensively gain insights into the function of unknown genes. In this paper we focus
on evaluating the feasibility of using supervised machine learning methods for determin-
ing the function of genes based solely on their expression profiles. We experimentally
evaluate the performance of traditional classification algorithms such as support vector
machines and k-nearest neighbors on the yeast genome, and present new approaches
for classification that improve the overall recall with moderate reductions in precision.
Our experiments show that the accuracies achieved for different classes varies dramati-
cally. In analyzing these results we show that the achieved accuracy is highly dependent
on whether or not the genes of that class were significantly active during the various
experimental conditions, suggesting that gene expression profiles can become a viable
alternative to sequence similarity searches provided that the genes are observed under a
wide range of experimental conditions.
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1. Introduction

As various genome sequencing projects have been recently completed or are near
completion (e.g., microbial, human, Arabidopsis), genome researchers are shifting
their focus from structural genomics to functional genomics 14. Structural genomics
represents an initial phase of genome analysis, whose goal is to construct high
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resolution genetic and physical maps as well as complete sequence information of
the chromosoms. Functional genomics represents the next phase, that expands the
biological investigation to studying the functionality of genes of a single organism
as well as studying and correlating the functionality of genes across many different
organisms.

Traditionally, researchers have been using sequence data (either nucleotide se-
quence in the case of genes, or amino acid sequences in the case of proteins) to
determine the function of genes and/or the corresponding proteins. This approach
relies on the fact that a set of genes that have sufficiently similar sequences also
perform the same function. The explosive growth of the amount of sequence infor-
mation available in public databases has made such an approach particularly accu-
rate and an indispensable tool towards functional genomics. Despite the fact that
functional genomic techniques based on sequence homology can provide a wealth
of information about the functionality of entire genomes; they also have two in-
herent limitations. First, in some cases the functional similarity cannot be inferred
by sequence information alone as sequence comparisons can be uninformative and
even misleading. Second, even though there are many projects for sequencing entire
genomes of different species, there will be a lot of species for which we do not and
will never have complete sequence information (at least in the next several decades).
This is a function of both the cost associated with sequencing as well as the fact
that there are a lot of species.

Recently developed methods for monitoring genome-wide mRNA expression
changes such as oligonucleotide chips 10, SAGE 33, and cDNA microarrays 30, are es-
pecially powerful as they allow us to quickly and inexpensively observe the changes
at the differential expression levels of the entire complement of the genome under
many different induced conditions. Knowing when and under what conditions a
gene or a set of genes is expressed often provides strong clues as to their biologi-
cal role and function. Already, numerous such experiments involving relatively small
genomes are performed at various sites worldwide. In the coming year the number of
this type of experiments involving microarrays is expected to increase significantly.

One way of using the data produced by microarray experiments to determine
the function of unknown genes is to use clustering algorithms to group together
genes that have similar expression profiles. Based on the distribution of known
and unknown genes in such clusters, then some information about the function
of previously unknown genes can be inferred. In fact a large number of studies
have already taken place in which putative functions of unknown genes have been
identified in this way. However, clustering being an unsupervised learning method
is not ideally suited for this particular task as it has no mechanism by which to
perform feature selection. A better approach of inferring the function of unknown
genes based on their expression profiles is to use machine learning techniques based
on supervised learning 24.

This has been recently recognized by a number of researchers and a few attempts
have been made to use such algorithms. In particular, Golub et al. 13, by looking
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at expression profiles of a subset of human genes, a particular type of leukemia
can be distinguished from another type of the disease. Brown et al. 3,2 used several
classification algorithms to predict if a gene has a particular function based on
expression profiles and obtain encouraging results. Hvidsten et al. 15 applied rule-
based induction to predict human gene functionality based on the gene ontology
database 11 from expression profiles of the fibroblast serum response 16 and showed
high prediction accuracy for 16 gene functional classes. Nevertheless, most of these
studies were limited as they focused on only a small set of specific functions and/or
did not provide any insights on the overall feasibility of this type of approach for
determining the function of the genes.

The focus of this paper is to perform a study on the suitability of supervised
learning techniques for determining the function of genes using solely gene expres-
sion data and attempts to identify the requirements under which such an approach
will lead to accurate predictions. Our work focuses on the yeast genome and uses
publicly available microarray datasets 9,8 and covers a large number of gene func-
tions defined in the Munich Information Centre for Protein Sequences (MIPS)
database 20,19,21,22. We present a detailed experimental study using two popular
classification algorithms, support vector machines and k-nearest neighbors for pre-
dicting the functions of the genes, and present fixed-size prediction algorithms that
allow us to trade recall for precision. Our experimental results show that the accu-
racy achieved by the proposed approaches varies widely depending on the function
that we try to predict. For certain classes we can achieve high accuracies and for
some classes the accuracies are quite poor. Our analysis shows that the accuracy
achieved for a particular class is highly dependent on whether or not the genes
of that class were significantly active during the various experimental conditions.
This suggests that gene expression profiles can become a viable alternative to se-
quence similarity searches provided that the genes are observed under a wide range
of experimental conditions that exercise the various cellular functions.

The rest of this paper is organized as follows. Section 2 describes the source
and the structure of two datasets we use in our study, expression profiles and gene
functional class assignment. Section 3 explains the detail of binary classification
algorithms, support vector machines and the k-nearest neighbors. We will also pro-
pose two different types of fixed-size prediction algorithms. The results and the
evaluation of the experiments are shown in Section 4 and we discuss the relation-
ship between those prediction accuracy results and statistical measure of expression
profiles in Section 5. Finally, Section 6 provides some concluding remarks.

2. Datasets Description

As discussed in the introduction our goal is to develop algorithms for determining
the function of the yeast genes using supervised learning methods that are based
entirely on gene expression data. In order to achieve that we need to have access to
two key pieces of information: (i) the actual expression profiles, and (ii) the different
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functional classes that the various genes belong to. These are described in the rest
of this section.

2.1. Expression Profiles

In our study we used the publicly available expression profiles from Brown’s group
at Stanford University 8,9. The source of these profiles were 8 different microarray
experiments under different conditions. They can be categorized into the following
4 types, (i) the mitotic cell division cycle, (ii) sporulation, (iii) temperature and
reducing shocks, (iv) gene expression in the the budding yeast during the diauxic
shift. These experiments resulted in a total of 79 measurements, however, not all
genes have the entire set of the 79 measurements because each experiment was
performed on a different subset of genes. We treat those missing values as zero.
The 79 measures are base 2 logarithms of ratios of intensities scanned from two
separate fluorescence dye images, which were obtained after hybridization. Even
though the whole yeast genome contains 6275 genes, the arrays used in the above
experiments contained only 2467 genes. Out of expression profiles for those 2467
genes, we used 2462 profiles by discarding profiles for genes that do not appear in
the MIPS database. Section 2.2 describes the database in detail.

2.2. Gene Functional Class Assignment

Determining the functional class of the different genes is very much an ongoing pro-
cess and to a large extent one of the key steps in understanding the genomes of the
various species. Fortunately, in the case of yeast, there exist extensive annotations
for a large fraction of the genes. For our study we used the functional annotations
that are available in the MIPS database 20,19,21,22. As of the time of this writing,
the MIPS database defines a total of 249 gene functional classes, organized in a tree
structure.

Based on the amount of information that is known for each gene, the MIPS
database assigns it to one or more nodes of the tree of function classes. Genes for
which detailed functional information is known tend to be assigned towards the
leaves of the tree (i.e., more specific classes), whereas genes for which the infor-
mation is more limited tend to be assigned at the higher-level nodes of the tree,
(i.e., more abstract classes). Out of the total number of 6275 genes of the yeast
genome, MIPS provides at least one annotation for 3902 genes. For example, a gene
YBR069C is assigned a function named amino-acid transport. Because amino-acid

transport is a sub-function of amino-acid metabolism which is also a sub-function
of the top-level function METABOLISM, YBR069C has all those functions, {amino-

acid transport, amino-acid metabolism, METABOLISM}, i.e., a function at a node
and all the functions of its path to the top-level node. A gene also may have func-
tions assigned from multiple branches. For the case of YBR069C, it has functions
from the top level category METABOLISM and its subcategories as well as ones from
other top level classes TRANSPORT FACILITATION, CELLULAR TRANSPORT AND



March 18, 2005 21:11 WSPC/INSTRUCTION FILE genex-ijait

5

50 100 150 200
0

200

400

600

800

1000

1200

1400

1600

1800

2000

All gene functions

C
la

ss
 s

iz
e 

(n
u

m
be

r 
of

 a
ss

ig
n

ed
 g

en
es

)

(a) All gene functions

5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

1400

1600

1800

2000

The 50 largest gene functions

C
la

ss
 s

iz
e 

(n
u

m
be

r 
of

 a
ss

ig
n

ed
 g

en
es

)

(b) The 50 largest functions

Fig. 1. Distribution of the size of gene functions

TRANSPORTMECHANISMS and CELLULAR ORGANIZATION and their subcate-
gories. As a result of this functional class assignment, each gene has 3.4 functions
assigned on the average. All the 2462 genes in the expression profile dataset de-
scribed in Section 2.1 do have at least one functional annotation. The distribution
of the number of classes at the different levels of the tree is shown in Table 1.

Table 1. Number of
defined function cate-
gories at each level in
the tree structure

Level Functions

1 16
2 107
3 85
4 39
5 2

Figure 1(a) shows the size of the different gene functions in the MIPS class as-
signment. By “size”, we mean the number of genes assigned to the corresponding
function. Most of the functions are small in their size, which makes functionality
prediction via supervised machine learning approaches difficult. For this reason, we
focus only on the 50 largest functional classes whose size distribution is shown in
Figure 1(b). The name of those function categories are shown in Table 2. Paren-
thesized numbers in each function class show the number of genes assigned to the
category in the profile dataset, and indentation corresponds to the depth of each
function category. On the average, a gene has 4.6 gene functions.

3. Methods

The goal of supervised learning methods, also known as classification algorithms,
is to build a set of models that can correctly predict the class of the different ob-
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Table 2. The 50 largest functions in the expression profile dataset

(1) METABOLISM (1061)

(a) amino-acidmetabolism (204)

i. amino-acid biosynthesis (118)

(b) nucleotide metabolism (144)
(c) C-compound and carbohydrate metabolism (414)

i. C-compound and carbohydrate utilization (261)
ii. regulation of C-compound and carbohydrate utilization (120)

(d) lipid, fatty-acid and isoprenoid metabolism (213)

i. lipid, fatty-acid and isoprenoid biosynthesis (118)

(2) ENERGY (247)
(3) CELL GROWTH, CELL DIVISION AND DNA SYNTHESIS (832)

(a) budding, cell polarity and filament formation (172)
(b) pheromone response, mating-type determination, sex-specific proteins (161)
(c) DNA synthesis and replication (91)
(d) recombination and DNA repair (99)
(e) cell cycle control and mitosis (347)

(4) TRANSCRIPTION (787)

(a) rRNA transcription (106)
(b) tRNA transcription (83)
(c) mRNA transcription (575)

i. mRNA synthesis (422)

A. transcriptional control (333)

ii. mRNA processing (splicing) (106)

(5) PROTEIN SYNTHESIS (351)

(a) ribosomal proteins (208)

(6) PROTEIN DESTINATION (579)

(a) protein targeting, sorting and translocation (139)
(b) protein modification (187)
(c) assembly of protein complexes (93)
(d) proteolysis (154)

i. cytoplasmic and nuclear degradation (98)

(7) TRANSPORT FACILITATION (310)
(8) CELLULAR TRANSPORT AND TRANSPORTMECHANISMS (495)

(a) vesicular transport (Golgi network, etc.) (125)
(b) cellular import (101)

(9) CELLULAR BIOGENESIS (205)

(a) biogenesis of cell wall (cell envelope) (107)

(10) CELL RESCUE, DEFENSE, CELL DEATH AND AGEING (363)

(a) stress response (170)
(b) DNA repair (88)

(11) IONIC HOMEOSTASIS (123)

(a) homeostasis of cations (113)

(12) CELLULAR ORGANIZATION (2254)

(a) organization of plasma membrane (144)
(b) organization of cytoplasm (556)
(c) organization of cytoskeleton (106)
(d) organization of endoplasmatic reticulum (155)
(e) organization of Golgi (79)
(f) nuclear organization (764)
(g) mitochondrial organization (364)

jects. The input to these methods is a set of objects (training set), the classes that
these objects belong to (dependent variable), and a set of variables describing dif-
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ferent characteristics of the objects (independent variables). Once such a predictive
model is built, then it can be used to predict the class of the objects for which
class information is not known a priori. For the problem of classifying genes based
on their expression profiles, the independent variables are the 79 gene expression
levels obtained during the eight different experiments, and the dependent variable
is the function of the gene. The key advantages of supervised learning methods over
unsupervised methods such as clustering, is that by having an explicit knowledge of
the classes the different objects belong to, these algorithms can perform an effective
feature selection (e.g., ignoring some of the independent variables) if that leads to
better prediction accuracy.

Over the years a variety of different classification algorithms have been devel-
oped by the machine learning community. Examples of such algorithms are decision
tree based 1,26,25, rule-based 4,5, probabilistic 18, neural networks 23,34, genetic 12,
instance-based 7,35, and support vector machines 31,32. Depending on the character-
istics of the data sets being classified certain algorithms tend to perform better than
others. In recent years, algorithms based on the support vector machines and the
k-nearest neighbors have been shown to produce reasonably good results for prob-
lems in which the independent variables are continuous and homogeneous (e.g.,
they measure a similar quantity). For this reason, our study uses primarily these
two classification algorithms.

Support Vector Machines Support vector machines (SVM) is a relatively new
learning algorithm proposed by Vapnik 31,32. This algorithm is introduced to solve
two-class pattern recognition problems using the Structural Risk Minimization prin-
ciple 31,6. Given a training set in a vector space, this method finds the best decision
hyperplane that separates two classes. The quality of a decision hyperplane is de-
termined by the distance (referred as margin) between two hyperplanes that are
parallel to the decision hyperplane and touch the closest data points of each class.
The best decision hyperplane is the one with the maximum margin. By defining
the hyperplane in this fashion, SVM is able to generalize to unseen instances quite
effectively. The SVM problem can be solved using quadratic programming tech-
niques 31,6. SVM extends its applicability on the linearly non-separable data sets
by either using soft margin hyperplanes, or by mapping the original data vectors
into a higher dimensional space in which the data points are linearly separable. The
mapping to higher dimensional spaces is done using appropriate kernel functions,
resulting in efficient algorithms. A new test object is classified by looking on which
side of the separating hyperplane it falls and how far away it is from it.

k-Nearest Neighbors k-nearest neighbors (kNN) is a well-known and widely used
instance-based classification algorithm. The basic idea behind this classification
paradigm is to compute the similarity between a test object and all the objects
in the training set, select the k most similar training set objects, and determine the
class of the test object based on the classes of these k nearest neighbors. One of the
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advantages of kNN is that it is well suited for multi-modal classes as its classification
decision is based on a small neighborhood of similar objects. As a result, even if the
target class is multi-modal (i.e., consists of objects whose independent variables have
different characteristics for different subsets), it can still lead to good classification
accuracy.

Two steps are critical to the performance of the kNN classification algorithm.
The first is the method used to compute the similarity between the test object and
the objects in the training set, and the second is the method used to determine
the class of the test object based on the classes of the nearest neighbors. For data
sets in which the objects are represented by multi-dimensional vectors, like the
gene expression data used in this study, two approaches are commonly used to
compute the similarity. The first approach is based on using a Euclidean distance
(or any other norm-based distance) between the test object and the training objects,
whereas the second approach is based on using the cosine of the angle between the
two vectors. The primary difference between these two distance measures, is that the
Euclidean distance approach is affected by the length of the test objects whereas the
cosine-based approach is length invariant and only focuses in the angles of the two
vectors. Recent studies using gene expression data 3 have shown that cosine-based
similarity functions are better as they focus on the relative shape of the profile and
not its magnitude. For this reason, in our experiments the similarity between two
genes was computed using the cosine function which is defined as follows. If vi and
vj are the two vectors, then their cosine similarity is given by

cos(vi,vj) = vi · vj/‖vi‖ ‖vj‖,
where “·” denotes the dot-product between two vectors, and ‖v‖ denotes the 2-norm
(i.e., length) of the vector.

The simplest way to determine the class of the test object based on the classes
of its k-nearest neighbors is to assign it to the majority class, i.e., the class in which
most of the k-nearest objects belong to. This approach can be easily extended to
weighting differently the different neighbors based on the actual similarity. In this
case, instead of simply adding the frequencies of the individual classes we do so in a
weighted fashion based on how similar a particular neighbor is to the test object. If
the training set contains only two classes, the positive and negative class, then this
can be done by looking at the value of the measure q that is defined as:

q =
k∑

i=1

cos(vi,v)c(vi), (1)

where

c(vi) = { 1 if vi belongs to the positive class, −1if vi belongs to the negative class.

If q is positive, then it is assigned to the positive class, otherwise it is assigned to
the negative class.
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3.1. Binary Classification

Traditional classification algorithms are primarily suited for learning classification
models in which each object belongs to only a single class. Nevertheless, in our
data set each gene has more than one classes associated with it. A common way of
solving this type of classification problems is to build a set of binary classifiers, each
distinguishing the genes of one functional class from the genes that do not belong to
this class. We will refer to the particular functional class as the positive class, and
the rest of the genes as the negative class. For our problem this leads to 50 different
binary classifiers, one for each gene function. Once the classifiers have been built, a
new gene is classified by testing it against each one of the 50 binary classifiers. Each
gene is then assigned to all the classes for which the particular classifier determined
that it was part of the positive class.

Given a set of genes for which we already know their classes and where not used
during training we can use a particular binary classifier to predict their classes. By
comparing how many of them are predicted to be in the positive class we can then
evaluate its predictive performance. By combining the predictions with the actual
classes we can partition the test genes into four classes. The true positives and the
true negatives which are the set of genes that were correctly predicted to be part of
the positive or negative class, respectively; and the false positives and false negatives
which are the sets of genes that were incorrectly predicted as positives or negatives,
respectively. A common way of measuring that performance is to use two measures
called the precision and recall. The precision p of a binary classifier is defined as

p =
Ntrue positives

Ntrue positives + Nfalse positives
,

and the recall is defined as

r =
Ntrue positives

Ntrue positives + Nfalse negatives
.

The precision measures what fraction of the genes that are predicted positive are
actually positive, and the recall measures what fraction of the positive genes were
actually predicted as positive. An alternate way of evaluating the performance of
a classifier is to look at its accuracy, which is defined as the fraction of correct
predictions. However, when the different classes are of significantly different sizes,
the accuracy measure can be misleading, and looking at precision and recall provides
more meaningful information.

In the SVM algorithm the classification decision is made by looking at how far
a test object is from the decision hyperplane, whereas in the case of the kNN algo-
rithm, the classification is made by looking at the q measure defined in equation (1).
If the distance to the hyperplane or the value of q is positive the algorithms assign
an object to the positive class. Essentially, in both of these algorithms the value zero
acts as a threshold in determining the class of the object. However, in many cases
a threshold value that is greater or smaller than zero may be more appropriate. To
avoid the arbitrariness of this particular threshold setting, we set a threshold for
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classifiers at a value called the break-even point where the precision and the recall
becomes equal. In general, if the value of the decision threshold increases (i.e., it
becomes harder to assign something to the positive class) the precision increases
and the recall decreases. On the other hand, if the decision threshold decreases the
precision will tend to decrease and the recall will tend to increase. By changing the
value of the decision threshold we can then find the point at which the precision
becomes the same as the recall.

3.1.1. Fixed-size Predictions

As discussed in the previous section the approach based on binary classifiers can be
used to address the problem of classifying genes into multiple classes. Nevertheless
one limitation of that approach is that it does not allow us to directly control the
number of classes that each gene is assigned to. In some cases we may want to
determine for each gene a set of m classes that it will most likely belong to. This
is particularly important if expression profile based gene classification is used to
identify a set of genes that we may want to study further, for example to obtain
their sequences.

In this study we explored two different approaches for determining the m most
likely functions of a gene. The first approach is based on obtaining the list of can-
didate functions by utilizing the results of the 50 binary classifiers, whereas the
second approach is based on finding these candidate classes directly.

As discussed in Section 3.1, for each of the binary classes, both the SVM and the
kNN classifiers compute a quantity that essentially measures how strong a particular
genes belongs to a particular class. Our first approach for identifying the m most
likely functions is based on using these strength measures of the different binary
classifiers. In the case of SVM, for a gene we compute its distance to the 50 decision
hyperplanes, and assign it to classes that correspond to the m largest values (i.e.,
strongest predictions). Similarly, in the case of kNN we compute the q measure
for each of the 50 classifiers and assign it to the classes that correspond to the m

largest values. We will refer to these two approaches as the SVM-induced and the
kNN-induced methods, respectively.

Our direct approach for determining the m most likely candidate functions is
based on the kNN approach. In particular, for each gene gi we identify a set of
its k most similar genes, Ngi

. We then compute the similarity-weighted frequency
of the various classes that the genes in Ngi

belong to, and select the m most fre-
quent classes as the predicted classes. This approach was motivated by similar algo-
rithms developed by the information retrieval community for building recommender
agents 28,27,29. We will refer to this approach as the direct kNN method.

4. Experimental Results

As discussed in Section 2, because some of the 249 gene function classes defined in
the MIPS database cover a very small number of genes, our experimental evaluation
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Fig. 2. Kernel types of SVM and the effect of normalization

was focused only on the 50 largest classes shown in Table 2, using the classifications
and datasets described in Section 2. In the rest of this section we present the results
for binary classification and fixed-sized classification.

4.1. Binary Classification Results

We applied the SVM and the kNN algorithms to predict gene functionality of a
subset of the yeast genome. To evaluate prediction accuracy of each algorithm, we
performed 3-way cross validation. Each prediction measure is obtained at the break-
even point where its recall and precision are equal. The implementation of SVM we
used is SVMlight, version 3.50 by Joachims 17. Among various types of kernels that
SVMlight supports, we chose linear, polynomial (quadratic and cubic) and radial
basis functions. We also specified a trade-off option “-c 100” to finish the learning
program in reasonable running time. Other parameters are all used as their default
settings.

In the case of SVM classification algorithm two parameters were found to play
an important role in the overall quality of the results. The first is how the different
79-dimensional vectors representing each gene are normalized and the second is
the choice of the kernel. To evaluate the sensitivity on the vector normalization,
we performed two sets of experiments. In the first set, we used raw log-ratios of
expression levels whereas in the second experiment expression levels were normalized
so that each vector is of unit length. Figures 2(a) and 2(b) show the precision of the
break-even point achieved by the two representations for the cubic and the radial
basis functions. Note that the classes are displayed in decreasing class size order.
Looking at these graphs, we can see that in general, normalized representations lead
to dramatic improvements for some classes especially with the radial basis kernel.

Next we compare the average precision at the break-even point for different types
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of the SVM kernels (see Figure 3). The average precision over the 50 functions for
the linear, the quadratic, the cubic and the radial basis kernels are 23.8%, 25.6%,
27.5% and 27.6% respectively, and the difference by the kernel type is in general
small. The performance of the cubic function is similar to that of the radial basis
function and those two types outperform the linear and the quadratic kernels. With
27 out of the 50 functions, the radial basis kernel’s precision is better than the
cubic kernel’s. Both the cubic and the radial basis kernels outperform linear and
quadratic for more than 31 functions, respectively.

In the case of kNN classifier, we performed a sequence of experiments in which we
set the number of neighbors, k, to be 1, 2, 5, 10, 20, 30 and 40. The average precision
at the break-even point achieved in this sequence of experiments was 24.4%, 24.7%,
26.2%, 26.4%, 25.9%, 24.9% and 24.2% respectively. Thus, with 10 neighbors kNN
shows the best results, however, the number of neighbors has less impact on the
break-even point precision compared to the type of the SVM kernels.

Finally, Figure 4 shows the binary classification results of SVM and kNN for the
50 functions. For the SVM classifier we used normalized gene vectors with the radial
basis kernel, which achieved the better result than the other polynomial kernels. For
the kNN classifiers we used 10 neighbors, because again using 10 neighbors achieved
the best precision at the break-even point on the average. From these results we
can see that in general SVM achieves slightly better precision than kNN does.
Nevertheless, only a few classes can be identified with reasonably high precision,
regardless of the classification methods. The average precision for both radial basis
SVM and kNN with k = 10 was 27.6% and 26.7%, respectively. Note that there is
tendency that larger functions are easy to get correct prediction than smaller ones.

4.2. Fixed-size Prediction Results

Motivated by the relatively poor results obtained by the binary classification al-
gorithms, we focused on developing algorithms that for each gene, predict a fixed
number m of candidate classes. The key goal of this approach is to try to achieve
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Fig. 4. Precision at the break-even point of predicting gene functionality with SVM and kNN

a higher level of recall—i.e., to predict most of the classes of a particular gene—at
the cost of potentially achieving a somewhat lower precision.

As discussed in Section 3.1.1, we developed three schemes: the SVM-induced and
the kNN-induced schemes that obtain predictions using the 50 individual binary
classifiers, and the direct kNN scheme that uses the kNN-type algorithm to directly
compute these predictions.

Figure 5 shows the results obtained in this set of experiments with all the three
schemes, under different values of m, and under different parameters of the under-
lying classification algorithms. In the case of the SVM-induced method, Figure 5(a)
shows the results obtained using the linear (“p1”), the quadratic (“p2”), the cubic
(“p3”) and the radial basis (“r”) kernels. In the case of the kNN-induced method,
Figure 5(c) shows the results achieved for k equal to 5, 10, 20 and 30. In the case
of the direct kNN method, Figure 5(b) shows the results achieved by using a neigh-
borhood of size 5, 10, 20 and 30. Also for comparison purposes, the results labelled
“All binary predictions” in Figures 5(a) and 5(c) show the results obtained by only
using the binary predictions at the break-even point. Note that unlike the fixed-size
results, in these two sets of results, the number of predictions made for each gene
is not uniform.

Looking at the different fixed-size prediction results we can see that as expected
the overall recall increases as we increase the number of predictions m. Nevertheless,
as m increases, the overall precision decreases. Comparing the results produced by
the SVM-induced method with those produced by the kNN-induced method, we
can see they are quite similar (at least for the radial basis kernel and the 10 nearest
neighbors).

On the other hand, the direct kNN method outperforms the other two and
always produces at least 4% higher precision and 5% higher recall at each corre-
sponding experiment. This can be easier seen by looking at the results in Table 3
that summarizes the overall precision and recall of the various schemes for their best
set of parameters. The overall results indicate that relatively high levels of recall
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(a) Fixed-size prediction with the SVM-
induced classifiers
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(b) Fixed-size prediction with the direct
kNN method
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(c) Fixed-size prediction with the kNN-
induced classifiers
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Fig. 5. Fractions of genes and their recall in the fixed-size prediction scheme. For the SVM-
induced classifier, we used the linear (“p1”), the quadratic (“p2”), the cubic (“p3”) and the radial
basis (“r”) functions as their kernel. For both the kNN-induced classifier and the direct kNN
classifier, 5, 10, 20 and 30 neighbors are used.

can be obtained with a moderate reduction in precision. For instance, for m = 6,
2.4 (� 6 × 0.398) predictions out of 6 from the direct kNN classifier are likely to
be correct, and by those predictions we can discover all functions of every incoming
gene with 51.6% probability.

5. Analysis of Results

The experimental results presented in Section 4 showed that the precision of the
predictions produced by either the SVM or the kNN classification algorithms varies
widely for different functional classes. For some classes we were able to achieve
high precision at the break-even point whereas for some of the other classes the
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Table 3. Average precision and recall of 3 fixed-size pre-
diction schemes with 4, 6, 8 and 10 predictions. For the
SVM-induced classifier and the kNN-induced classifier, the
rows with the prediction “all” show the results by consid-
ering all the prediction returned by each of the 50 induced
classifiers, without limiting the number of predictions.

Method Predictions Precision[%] Recall[%]

SVM-induced
(radial basis)

4 41.9 37.0
6 34.5 44.9
8 29.8 51.3
10 26.1 55.9
all 41.8 40.3

kNN-induced
(10 neighbors)

4 42.5 37.7
6 35.2 45.8
8 29.8 51.2
10 26.0 55.8
all 43.5 40.4

Direct kNN
(10 neighbors)

4 48.6 43.4
6 39.8 51.6
8 33.7 56.8
10 30.0 61.3

precision was extremely low. In this section we attempt to analyze these results and
understand both the limitations and advantages of the proposed approach for gene
classification.

Our analysis will primarily focus on relating the classification accuracies with
some of the properties of the gene expression data sets. In particular we will focus
on the following characteristics: (i) class size, (ii) class homogeneity, (iii) variability
of the expression profiles, and (iv) the level of the differentially expressed profiles.

As discussed in Section 2.2, the number of genes contained in the 50 largest
functional classes that were used in our dataset varied significantly. To see if there
is a relation between the size of the class and the prediction quality we plotted the
size versus the precision at the break-even point for all the 50 classes achieved by
the SVM classifier. These results are shown in Figure 6. From this plot we can see
that, in general, if the size of the class is large the precision that was obtained is
quite high. Nevertheless, the opposite is not true, as for some small classes, SVM
was able to achieve precisions that are quite high. Also, the fact the larger classes
achieve better precision at the break-even point should not be surprising, as they
are easier to classify even by a random classifier.

The second characteristic that we focused was whether or not the “tightness”
of a particular class played some role in determining the overall quality of the pre-
dictions. In determining how tight a particular class is we computed the average
pairwise similarity between the genes in each class using the cosine similarity func-
tion. Figures 7(a) and 7(b) plot the size of each class versus its tightness and the
precision achieved for each class versus its tightness. From Figure 7(a) we can see
that there is relatively little variation in the tightness of the different classes, with
the exception of a few classes that are particularly tight. From Figure 7(b) we can
see that class tightness does not play a significant role in determining the precision
of the classifier. For a relatively narrow range of class tightness values, the accura-
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tightness

Fig. 7. Tightness and class size of the 50 largest functional categories

cies obtained differ dramatically and there are classes that achieve high precision
which are not tight and vice versa.

The last set of characteristics that we focused has to do with whether or not
the variability or the strength of the differential expression of the genes in a class
was critical for achieving high precisions. Figures 8(a) and 8(b) plot the precision
versus the average standard deviation of the expression profiles of each class as the
index of the signal variability, and the average sum of the absolute expression levels
as the index of the signal strength, respectively. We computed the average standard
deviation by computing the standard deviation of an expression profile over all the
79 measurements of each gene that belongs to a particular class and taking the
average of those standard deviations of genes in the class. Similarly, the average
absolute sum was computed by adding absolute values of all the 79 measurements
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Fig. 8. SVM binary classification precision at the break-even point and function class statistical
properties

of each gene in a particular class, and taking the average of those summations in
a class. In computing both the standard deviation and the sum of the expression
levels we used the log-ratios of the intensities of target versus control, without the
unit-length normalization that we used for the classification experiments. Looking
at these results we can see that there is a relation between the precisions achieved
by SVM and the variability of the profiles or their overall differential expression
level. The higher the variability of overall expression levels the higher the precision
that was obtained. We computed the correlation coefficient for the two plots and
we found that they are 0.51 for Figure 8(a) and 0.47 for Figure 8(b).

Table 4. Classes with high precision at the break-even point

Function Class P S T σ Σ

ribosomal proteins 80.9 173 0.721 0.710 40.7
CELLULAR ORGANIZATION 75.4 1803 0.295 0.526 32.4
PROTEIN SYNTHESIS 62.8 298 0.591 0.619 36.7
mitochondrial organization 59.4 296 0.382 0.495 30.5
organization of cytoplasm 52.1 463 0.438 0.626 37.0
METABOLISM 47.3 702 0.281 0.541 33.0
ENERGY 47.1 157 0.415 0.636 37.0
nuclear organization 45.7 643 0.361 0.469 30.0

P : SVM precision[%]; S: size; T : tightness; σ: standard deviation;
Σ: absolute sum.

The correlation between the variability or the absolute levels of expression
change and whether or not we can accurately predict them should not be sur-
prising as in these type of classes the genes tend to exhibit a distinctly different
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behavior that can be used by the classification algorithms to build accurate models
for predicting them. On the other hand, if a class contains genes that either have
not been turned on during the experiments or they have a relative constant profile,
the classification algorithms cannot reliably distinguish them from genes of similarly
behaving classes. Our analysis indicates that in order for the genes of a particular
class to be predicted accurately, the microarray experiments that are performed
must have either activated or surpassed them. Unfortunately, the eight different
microarray experiments used in deriving our data set were primarily focuses on a
small set of cellular functions so do not provide a sufficient breadth. We believe,
however, that as additional and more diverse experiments are performed, supervised
learning is a viable method for determining the functions(s) of a gene. To further
illustrate this point, Table 4 shows the eight classes that achieved the highest pre-
cision along with the values of their different characteristics. From the description
of the experiments that used in obtaining the microarray data (Section 2.1) and
the studies reported in 9,2,3 the genes in these functional classes were shown to be
active in the course of the experiments.

6. Conclusions

In this paper we explored the possibility of using microarray expression profiles to
find the functions of genes. We applied two representative binary classification al-
gorithms, SVM and kNN for the 2462 annotated genes out of all the 6275 identified
genes from the yeast genome. The goal of the classification was to predict functional
categories of genes defined in the MIPS database. Because of nonuniform distribu-
tion of genes over functional classes, we focused on the 50 largest gene functional
categories out of 249. The results showed that the overall prediction accuracy was
poor except a few functional categories which are closely related with the nature of
the experimental conditions for obtaining expression profiles.

Provided that the binary classifiers produced the low prediction precision, using
SVM and kNN as the underlying modules we developed three different schemes,
the SVM-induced, the kNN-induced and the direct kNN methods that can predict
a specified number of candidate functions in order to achieve high recall, and eval-
uated their prediction performance in terms of precision and recall. It turned out
that the direct kNN approach outperforms the other two. Compared with the bi-
nary classification results, those three fixed-size prediction schemes improved recall
without a significant loss of precision.

To understand those results of the binary and the fixed-sized prediction ap-
proaches, we analyzed the relationship between the binary prediction precision of
each function class and statistical measures of the DNA expression profiles, which
revealed that (i) large functional classes are relatively easy to predict correctly, and
(ii) the variability of expression profiles has influence on the prediction precision.

Based on those experiments and the analysis we believe it will be feasible to
make use of expression profiles collected under appropriate conditions to predict
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gene functionality as more diverse experiments are performed and pre-examined
data are accumulated.
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