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Abstract

As data mining techniques are being increasingly ap-
plied to non-traditional domains, existing approaches for
finding frequent itemsets cannot be used as they cannot
model the requirement of these domains. An alternate way
of modeling the objects in these data sets, is to use a graph
to model the database objects. Within that model, the prob-
lem of finding frequent patterns becomes thar of discover-
ing subgraphs that occur frequently over the entire set of
graphs. In this paper we present a computationally effi-
cient algorithm for finding frequent geometric subgraphs in
a large collection of geometric graphs. Our algorithm is
able to discover geometric subgraphs that can be rotation,
scaling and translation invariant, and it can accommodate
inherent errors on the coordinates of the vertices. Our ex-
perimental results show that our algorithms requires rela-
tively little time, can accommodate low support values, and
scales linearly on the number of transactions.

1 Introduction

Efficient aigorithms for finding frequent itemsets—both
sequential and non-sequential—in very large transaction
databases have been one of the key success stories of data
mining research [2, 1, 22, 8, 3, 20]. Nevertheless, as data
mining techniques have been increasingly applied to non-
traditional domains, such as scientific, spatial and relational
datasets, situations tend to occur on which we can not apply
existing itemset discovery algorithms, because these prob-
lems are difficult to be adequately and cosrectly modeled
with the traditional market-basket transaction approaches.

Recently several approaches have been proposed for
mining graphs in the context where the graphs are used to
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model relational, physical and scientific datasets [9, 19, 10,
12,7, 11]. Modeling objects using graphs allows us to rep-
resent arbitrary relations among entities. The key advan-
tage of graph modeling is that it allows us to solve prob-
lems that we could not solve previously. For instance, con-
sider a problem of mining chemical compounds to find re-
current substructures. We can achieve that using a graph-
based pattern discovery algorithm by creating a graph for
each one of the compounds whose vertices correspond to
different atoms, and whose edges correspond to bonds be-
tween them. We can assign to each vertex a label corre-
sponding to the atom involved (and potentially its charge),
and assign to each edge a label corresponding to the type
of the bond (and potentially information about their rela-
tive three dimensional orientation). Once these graphs have
been created, recurrent substructures across different com-
pounds become frequently occurring subgraphs.

This paper focuses on the related problem of finding fre-
quently occurring geometric patterns in geometric graphs—
graphs whose vertices have two or three dimensicnal coor-
dinates associated with them. These patterns correspond 1o
geometric subgraphs that have a sufficiently large support.
Datasets arising in many scientific domains often contain
such geometric information, and any patterns discovered in
them are of interest if they preserve both the topological
and the geometric nature of the pattern. Moreover, being
able to directly find geometric patterns (as opposed using
a post-processing step on the topological patterns), holds
the promise of leading to algorithms that are significantly
more scalable than their topological counter-parts. Despite
the importance of the problem, there has been limited work
in developing generic algorithms to find such patterns. The
notable exceptions are the work by Wang et al. proposed
severat algorithms for automated finding of interesting sub-
structures in chemical or biomolecule domain [18, 17], and
the work by Chew et al. that proposed an approach to
find common substructures in protein sequences using root
mean squared (RMS) distance minimization [4]. However,
these approaches are either computationally too expensive,



or they find a restricted set of geometric subgraphs.

In this paper we present an algorithm called gFSG that
is capable of finding frequently occurring geometric sub-
graphs in a large database of graph transactions. The key
characteristic of gFSG is that it allows for the discovery of
geometric subgraphs that can be rotation, scaling and trans-
lation invariant. Furthermore, to accommodate inherent er-
rors on the coordinates of the vertices (either due to exper-
imental measurements or floating point round-off errors), it
allows for patterns in which the coordinates can match with
some degree of tolerance. gFSG uses a pattern discovery
framework that uses the level-by-level approach that was
made popular by the Apriori [2] algorithm for finding fre-
quent itemsets, and incorporate numerous computationally
efficient algorithms for computing isomorphism between
geometric subgraphs that are rotation, scaling and transla-
tion invariant, for candidate generation, and for frequency
counting. Experimental results using a large database of
over 20,000 real two dimensional chemical structures show
that gFSG requires relatively little time, can accommodate
low suppert values, and scales linearly on the number of
transactions.

In the rest of the paper, we first defines basic notions and
introduces notation. Then, we describe our problem setting
of finding frequent geometric subgraphs, the outline and the
details of the algorithm. Finally we experimentally evalu-
ate our algorithm on a real dataset of chemical compounds
and analyze the performance and the scalability of our al-
gorithm.

2 Definitions And Notation

A graph g = (V, E) is made of two sets, the set of ver-
tices V' and the set of edges E. Each vertex v € V has
a label (v} € Ly, and each edge e € E is an unordered
pair of vertices uv where u,v € V. Each edge also a label
I(e) € Lg. Lg and Ly denote the sets of edge and ver-
tex labels respectively. Those edge and vertex labels are not
necessarily to be unique. If |Lg| = |Lyv| = 1, then we call
it an unlabeled graph. If each vertex v € V of the graph
has coordinates associated with it, in either the two or three
dimensional space, we call it a geometric graph. We will
denote the coordinates of a vertex v by ¢(v).

Two graphs g1 = (V1, E1) and go = (V3, Ea) are iso-
morphic, denoted by g ~ gz, if they are topologically
identical to each other, i.e., there is a bijection ¢ : V] — 15
withe = zy € E; & ¢lz)d(y) € E, for every edge
e € E) where z,y € V]. In the case of labeled graphs, this
mapping must also preserve the labels on the vertices and
edges, that means for every vertex v € V, l(v) = I{¢(v))
and for every edge e = zy € E, l(zy) = l{#(z)o(y)). An
automorphism of a graph g = (V, E) is a bijection from
the vertices in g to vertices in the same g. Given two graphs
o = (V1, Er) and g2 = (V2, E2), the problem of subgraph
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isomorphism is to find an isomorphism between g- and a
subgraph of g;, i.e., to determine whether or not g, is in-
cludedin ¢;.

The notion of isomorphism and automorphism can be
extended for the case of geometric graphs as well. A sim-
pie way of defining geometric isomorphism between two
geometric graphs gy and g2 is to require that there is an
isomorphism ¢ that in addition to preserving the topology
and the labels of the graph, to also preserve the coordinates
of every vertex, However, since the coordinates of the ver-
tices depend on the particular reference coordinate axes, the
above definition is of limited interest. Instead, it is more nat-
ural to define geometric isomorphism that allows homoge-
neous transforms on those coordinates, prior to establishing
a match. For the purpose of our work, we consider three
basic types of geometric transformations: rotation, scaling
and translation, as well as, their combination. In light of
that, we define that two geometric graphs ¢, and g, are ge-
ometrically isomorphic, if there exists an isomorphism ¢
of g; and g and a homogeneous transform 7, that pre-
serves the coordinates of the corresponding vertices, i.e.,
T(e(v)) = c(¢p(v)) for every v € V. In this case, ¢ is
called a geometric isomorphism between g; and g;. Ge-
ometric automorphism is defined in an analogous fashion.
Figure 1(a) shows some examples illustrating this defini-
tion. There are four geometric graphs drawn in this two
dimensional example, each of which is a rectangle. Edges
are unlabeled and vertex labels are indicated by their colors.
The graphs r1 ~ 2 if all of the rotation, scaling and transla-
tion are allowed, and 7, ~ 7 if both rotation and translation
are allowed, and 7, ~ 74 if translation is allowed.

Lz: U

(a) Sample isomor-
phic geometric graphs

(b) Tolerance

Figure 1. Geometric isomorphism and r-tolerance

One of the challenges in using the above definition of
geometric graph isomorphism is that it requires an exact
match of the coordinates of the various vertices. Unfor-
tunately, geometric graphs derived from physical datasets
may contain small amounts of error, and in many cases,
we are interested in find geometric patterns that are similar
to, but slightly different from each other. To accommodate
these requirements, we allow a certain amount of tolerance
r when we establish a match between coordinates. That is,
if || 7T{e{v)) — e{¢(v))]| < r forevery v € V, we regard
¢ as a valid geometric isomorphism. We will refer to the
parameter r as the coordinate matching tolerance. A two



dimensional example is shown in Figure 1(b). We can think
of an imaginary circle or sphere of a radius r centered at
each vertex. After aligning the local coordinate axes of the
two geometric graphs with each other, if a corresponding
vertex in another graph is inside this circle or sphere, we
consider that the two vertices are located at the same posi-
tion. We will refer to these isomorphisms as r-telerant geo-
metric isomorphisms, and will be the type of isomorphisms
that will assumne for the rest of this paper.

Finally, a graph is connected if there is a path between
every pair of vertices in the graph. Given a graph ¢ =
(V,E),agraphg, = (V;, E,} will be asubgraph of g if and
only if V, C V and E; C E. In a way similar to isomor-
phism, the notion of subgraph can be extended to r-telerant
geometric subgraphs in which the coordinates match after
a particular homogeneous transform 7.

3 Problem Definition

The input for the frequent geometric subgraph discovery
problem is a set of graphs D), each of which is an undirected
labeled geometric graph, the minimum support ¢ such that
0 < o < 1.0, a set of allowed geometric transforms out
of rotation, scaling and translation, and a coordinate match-
ing tolerance r. The goal of the frequent geometric sub-
graph discovery is to find all connected undirected geomet-
ric graphs that have an r-tolerant geometric subgraph in at
least ¢|D| graphs of the input dataset. We will refer to
each of the graphs in D as a geomerric graph transaction
or simply a transaction when the context is clear, to D as
the geometric graph transaction database, to ¢ as the sup-
port threshold, and each of the discovered patterns as the
T-tolerant frequent geometric subgraph.

There are two key aspects in the above problem state-
ment. First, we allow homogeneous transforms when we
find instances of them in transactions, That is, a pattern
can appear in a transaction in a shifted, scaled or rotated
fashion. This greatly increases our ability to find interesting
patterns. For instance in many chemical datasets, common
substructures are at different orientation from each other,
and the only way to identify them is to ailow for translation
and rotation invariant patterns. However, this added flexi-
bility comes at a considerable increase in the complexity of
discovering such patterns, as we need to consider all pos-
sible geometric configurations (a combination of rotation,
scaling and translation) of a single pattern. For example, let
us take a look at Figure 2 of a triangle. The triangle shown
in Figure 2(a) has infinitely many geometric configurations,
some of which are shown in Figure 2(b).

Second, we allow for some degree of tolerance when we
try to establish a matching between the vertex-coordinates
of the pattern and its supporting transaction. Even though
this significantly improves our ability to find meaningful
patterns and deal with measurement errors and errors due
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{a) A
triangle

(b) Sample geometric config-
urations of the same triangle
Figure 2. A triangle and its geometric configurations
under rotation and translation

to floating point operations (that are occurred by applying
the various geometric transforms), it dramatically changes
the nature of the problem for the following reason. In tradi-
tional pattern discovery problems such as finding frequent
itemsets, sequential patterns, and/or frequent topological
graphs there was a clear definition of what was the pat-
tern given its set of supporting transactions. On the other
hand, in the case of r-tolerant geometric subgraphs, there
are many different geometric representations of the same
pattern {all of which will be r-tolerant isomorphic to each
other). The problem becomes not only that of finding a pat-
tern and its support, but also finding the right representative
of this pattern. Note that this representative can be either an
actual instance, or a composite of many instances. The se-
lection of the right representative can have a serious impact
on correctly computing the support of the pattern. For ex-
ample, given a set of subgraphs that are r-tolerant isomor-
phic to each other, the one that corresponds to an outlier
will tend to have a lower support than the one correspond-
ing to the center. Thus, the exact solution of the problem
of discovering all r-tolerant geometric subgraphs involves a
pattern optimization phase whose goal is to select the right
representative for each pattern, such that it will lead to the
largest number of frequent patterns.

4 ¢gFSG—Frequent Geometric Subgraph
Discovery Algorithm

To solve the problem of finding the frequently occurring
r-tolerant geometric subgraphs, as defined in Section 3, we
developed an algorithm called gFSG. gFSG represents a
first attempt for addressing this problem, and due to the
complexity imposed by allowing a tolerance on how the dif-
ferent coordinates are matched, gFSG is not guaranteed to
find all such frequent r-tolerant geometric subgraphs. In
particular, gFSG uses a simple approach that is based on
the first occurrence in determining the representative for
each pattern, that may lead to under-counting the frequency
of certain patterns. However, gFSG can be easily extended
te perform a shape optimization for these representative pat-
terns, and those extensions are described in Section 6.

In addition to that, to improve the performance of gF SG,
it imposes two additional conditions that must be satisfied
by the input database. First, the closest distance between
any pair of points in each graph is least 2r; and second,



the are no frequent subgraphs in the database that are 2r-
tolerant geometrically isomorphic to each other. Both of
these conditions stem from the fact that we allow a toler-
ance to the mapping of the coordinates. The first condition
allow as to efficiently compute geometric isomorphism be-
tween two graphs, whereas the second condition states that
the frequent patterns in order to be distinguished as being
different, they have to be reasonably far away from each
other. If these conditions are not met, gFSG may fail to
discover some patterns.

The gFSG algorithm follows the level-by-level structure
of the Apriori algorithm used for finding frequent itemsets
in market-basket datasets [2], and shares many character-
istics with our previously developed frequent subgraph dis-
covery algorithm for topological graphs [12]. The high level
structure of our algorithm is shown in Algorithm 1. Edges
in the algorithm correspond to items in traditional frequent
itemset discovery. Our algorithm increases the size of fre-
quent subgraphs by adding an edge one-by-one. gFSG ini-
tially enumerates all the frequent single, double and triple
edge graphs. Then, based on the double and triple edge
graphs, it starts the main computational loop. During each
iteration it first generates candidate subgraphs whose size is
greater than the previous frequent ones by one edge (Line
6) of Algorithm 1. Next, it counts the frequency for each
of these candidates, and prunes subgraphs that do no sat-
isfy the support constraint (Lines 8§-12). Discovered fre-
quent subgraphs satisfy the downward closure property of
the support condition, which allows us to effectively prune
the lattice of frequent subgraphs. The notation used in this
algorithm and in the rest of this paper is explained in Ta-
ble 1.

Algorithm 1 gfsg(D, s) (Frequent Geometric Subgraph)

1 F1 « detect all frequent geometric 1-subgraphs in D
: F? 4 detect all frequent geemetric 2-sabgraphs in D
: F3 « detect all frequent geometric 3-subgraphs in D
k4
: while F¥~1 2 g do
C* + gfsg-gen(FE—1)
for each candidate g* ¢ C* do
g" «count + ¢
for each transaction t € D do
10 if candidate g* is included in ¢ then
11: g* .count + ¢*.count + 1
122 F* « {g* € C* | g*.coumt > sD}
133 k+k+1
14: return F1,F?, ... Fk-2

R R I R RV

In the rest of this section we outline the algorithms used
by gFSG to compute geometric graph isomorphism, gener-
ate the candidate subgraphs, and compute their frequency.
Additional details on some of these algorithms can be found
in [13].

Table 1. Notation used throughout the paper

Notation | Description
D A dataset of graph transactions
t A graph transaction in D
k-(sub)graph | A (sub)graph with k edges
g* A k-subgraph
Cc*k A set of candidates with £ edges
F* A set of frequent k-subgraphs

4.1 Geometric Graph Isomorphism

One of the key computational kernels used by gFSG is
that of determining whether or not two geometric graphs
are geometrically isomorphic to each other. This operation
is used extensively when computing the size one, two, three
frequent subgraphs and during candidate generation to es-
sentially establish whether two patterns are identical or not.

In gFSG, a geometric isomorphism between two graphs
g1 and g, is computed by first identifying the possible ge-
ometric transformations that will map the vertices of gy
within an r distance of the vertices of g2, and then check
each one of them to see if it preserves the topology (and
the vertex and edge labels) of the two graphs. The details
of this algorithm and additional optimizations are described
in the rest of this section. Note that our description will
assume that we are interested in geometric isomorphism
that include all three transformations: rotation, scaling and
translation.

Each geometric graph has its own coordinate system,
or a reference frame. When we check the geometric iso-
morphism between ¢; and g2, both should be in the same
coordinate system. Nevertheless, there are infinitely many
possible local coordinate systems we can choose, especially
when we consider rotation invariant isomorphisms. Qur al-
gorithm limits this number by using a subset of the edges of
the graph to define the coordinate axes. In the two dimen-
sional space, it suffices to choose an edge and its direction
to determine a local coordinate system (e.g., the edge uv
in Figure 3(a) as the X axis), and in the three dimensional
space, two connected non-collinear edges (edges uv and uw
in Figure 3(b)) form the XY plane and set the reference
frame. These reference frames allow us to find transiation
and rotation invariant isomorphisms. To accommodate iso-
morphisms that are scale invariant, we can uniformly scale
the graph such that one of these edges (e.g., the one defin-
ing the X -axis) is of unit length. We will refer to each one
of the graphs obtained by using the edge-defined reference
frames as a geometric configuration.

The algorithm for computing the geometric isomorphism
is shown in Algorithm 2. First we check to see if g, and ¢»
are of the same size, and if not, then the algorithm returns
“false” indicating that these graphs are not isomorphic to
cach other. Then, the algorithm chooses an arbitrary geo-
metric configuration for go and tries to find a bijection be-
tween that configuration of g, and all possible geometric
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Figure 3. Edges for the basis of the local coordinate
system

configurations of g;. The bijection between a pair of geo-
metric configurations is determined by iterating over each
vertex of g; and pairing it with the closest vertex of g» with
the same label that has not yet being paired. If at any given
time, the pair of closest vertices are more than r-distance
apart, the algorithm terminates the search for that configu-
ration, as there is not an r-tolerant bijection between them.
Once a bijection has been established, it is then checked to
determine if it is a valid topological isomorphism (line 12—~
13).

The complexity of this algorithm is dependent on the
size of the input geometric graphs. The number of possible
geometric configuration is in O(|V;[%) or O(|V1|®) for the
two or three dimensions respectively. Choosing the closest
point out of |V vertices can be done in O(|V4]) time. It
takes O{|E. |} steps to check the validity of a bijection ¢.
Therefore, the time complexity of geometric-isomorph is in
O(|V|?|E|) for the two dimensions and O(|V |*| E|) for the
three dimensions. Note that the expressions on the num-
ber of geometric configurations assume that g is dense. For
most real-life problems, however, g will be sparse, dramat-
ically reducing the overall complexity of this algorithm.

Algorithm 2 geometric-isomorph(g, = (W1, E1),92 =
(V3, E»),7) {Geometric Isomorphism)

1z if [Vi| # |Vz| or |E1]| # |E2| then
return false
choose one arbitrary geometric configuration of ga.
: for each geometric configuraticn of g) do
change the coordinates of all the vertices in g according to the
chosen geometric configuration.
6 {assume g1 and g2 now share the same coordinate system}
7:  for each vertex v € 1} deo
8 find the closest vertex u € Va from » such that I{u) = {(v)
9 if ||c(v) — e{x)|| > r then
break

B S

H: d(v) + u

12:  if ¢ is a valid topological isomorphism between g1 and g2 then
13: return irue

14: return false

To further reduce the overall time spent in checking
whether or not two graphs are geometrically isomorphic,
gFSG employs both topological properties and geometric
transform invariants. The key idea is to first check those
properties and invariants, and proceed computing an iso-
morphism only if these properties and invariants match. We
will collectively refer to those topological properties and ge-
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ometric transform invariants as simple keys.

The topological properties used by gFSG is the distribu-
tion of vertex and edge labels since they are easy to compute
and check. Geometric transform invariants are values com-
puted from a geometric graph which remain the same no
matter how we rotate, scale or translate the original geomet-
ric graph. Because it does not change by those transforms,
we only need to calculate the invariant once for each geo-
metric graph regardless of its geometric configuration. In
gFSG we used the normalized sum of distances between
the geometric center of the graph and its vertices. Because
the normalized sum of distances has the same dimension as
distances, we use the same coordinate matching tolerance r
for checking the equality between two normalized sums,

4.2 Candidate Generation

In the candidate generation phase, we create a set of can-
didates of size k -+ 1, given frequent geometric k-subgraphs.
Candidate geometric subgraphs of size k + 1 are generated
by joining two frequent geometric k-subgraphs. In order
for two such frequent k-subgraphs to be eligible for joining
they must contain the same geometric (k — 1)-subgraph,
We will refer to this common geometric (k — 1)-subgraph
among two k-frequent subgraphs as their core. The joining
algorithm is basically the same as the one used in our pre-
vious work for finding topological frequent subgraphs [12]
and we will not describe the details, which can be found
in[12, 13].

4.3 Frequency Counting

Once candidate subgraphs have been generated, gFSG
computes their frequency. In the context of frequent item-
set discovery by Apriori, the frequency counting is per-
formed substantially faster by building a hash-tree of can-
didate itemsets and scanning each transaction to determine
which of the itemsets in the hash-tree it supports. Devel-
oping such an algorithm for frequent subgraphs, however,
is challenging because there is no natural way to build the
hash-tree for graphs.

In gFSG frequency counting is performed using a
scheme that performs geometric graph isomorphism {us-
ing effective topological and geometric invariants) com-
bined with the use of TID lists to reduce the set of graph
transactions for which these isomorphisms need to be com-
puted. The resulting algorithm makes it possible to effi-
cientty count the frequency of the patterns and achieve a
scalable memory usage.

In order to determine if a graph transaction contains a
particular pattern, we need to check each geometric config-
uration of the graph against a particular geemetric config-
uration of the pattern. This can be achieved using an al-
gorithm similar to that for geometric graph isomorphism.



To reduce the execution time, we first use some topologi-
cal properties and geometric transform invariants to quickly
identify most of the miss-matches (as it was done in the case
of graph isomorphism). The geometric transform invariants
that we use for detecting whether or not a particular pattern
can exist in a graph is based on edge-angle lists.

Let Zeje; denote the angle formed by two connecied
edges e; and e;. Then, an edge-angle list eal(g) of a ge-
ometric graph g is a multiset where eal(g) = {Zeje; |
Zeze;, such that two distinct edges e;, e; share the same
end point}. We create the edge-angle list for each of the
transactions and candidate subgraphs. Because edge angles
are invariant against rotation, scaling and translation, if a
geometric subgraph g is included in a transaction ¢, then
eal{g) C eal(t). Equality of two angles is again determined
with a certain threshold as the vertex coordinate matching.
For example, the graph g in Figure 4 has the following edge-
angle list; eal(g) = {Ze1ey, Zege3, Zeser} = {ay, a1, a2},
where a; feyez and az = Zeyez. Note this is because
Le ey = Zeqez. By using the comparison on the edge angle

€3
€1

Figure 4, A star-shaped geometric graph with three edges

lists, we can easily detect cases where geometric subgraph
isomorphism does not hold, without actually performing the
subgraph isomorphism.

To limit the set of graph transactions that need to be
checked while determining the frequency of a particular
pattern, we use an approach motivated by the well-known
technique of TID lists [6, 16, 23, 21, 221, but in a memory-
efficient manner. We initially identify the set of frequent
edge-angles over all graph transaction by exhaustive enu-
meration. Then, for each frequent edge angle, we create a
list of transaction ID’s that contain an instance of the edge
angle. Let tid(a) denote a list of transaction ID"s that con-
tain an instance of the edge-angle . For example, if a trans-
action t = (V, E} is included in tid(a), then there is a pair
of edges e; and e; € E such that Ze;e; = a.

Now, let g be a candidate geometric graph and let
eal(g) = {ay, @2, .-.,a,} be its edge-angle list. The fre-
quency of g is computed by checking to see if g is contained
only in the graph transacticns that are in the set correspond-
ing to the intersection of the various tid(a;) lists. Of course,
if the intersection of these TID-lists is smaller than the min-
imum support, then the exact frequency of g is not even
computed, as it is not frequent.
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5 Experimental Evaluation

We experimentally evaluated the performance of gFSG
using a set of real geometric graphs representing chemi-
cal compounds. In particular, we used a dataset contain-
ing 223,644 chemical compounds with their two dimen-
sional coordinates that is available from the Developmental
Therapeutics Program (DTP) at National Cancer Institute
(NCI) [5]. These compounds were converted to geometric
graphs in which the vertices correspond to the various atoms
with their two dimensional coordinates and the edges cor-
respond to the bonds between the atoms. The various atom
types were modeled as vertex labels and the various types
of bonds were modeled as edge labels. Overall, there are
a total of 104 distinct vertex labels (atom types) and three
distinct edges labels (bond types).

Note that even though the gFSG algorithm can find fre-
quent geometric subgraphs in both two and three dimen-
sional datasets, at the time of writing of this paper, we had
only finished and optimized the two dimensional version of
the code. For this reason our evaluation will only include
two dimensional geometric graphs.

All experiments were done on dual AMD Athlon MP
1800+ (1.53GHz) machines with 2GB main memory, run-
ning the Linux cperating system. All the times reported are
in seconds. '

5.1 Scalability With Respect To The Database Size

Our first set of experiments were designed to evaluate
the scalability of gFSG with respect to the number of in-
put graph transactions. Toward this goal we created five
datasets with different number of transactions varying from
1,000 to 20,000. Each graph transaction was randomly
chosen from the original dataset of 223,644 compounds.
This random dataset creation process resulted in datasets in
which the average transaction size {the number of edges per
transaction) was about 23.

Using these datasets we performed two types of exper-
iments. In the first experiment we used gFSG to find all
frequently occurring geometric subgraphs that are rotation
and translation invariant; whereas in the second set of ex-
periments we used gFSG to find subgraphs that are also
scaling invariant. For both sets of experiments, we used dif-
ferent values of support ranging from 0.25% up to 3%, and
set r to 0.05.

Table 2 show the results obtained for the first and second
set of experiments, respectively. For each individual exper-
iment, these tables show the amount of time required to find
the frequent geometric subgraphs patterns, the size of the
largest discovered frequent pattern, and the total number of
geometric subgraphs that were discovered.

There are three main observations that can be made from
these results. First, gFSG scales linearly with the database



Table 2. Running times in seconds for chemical compound data sets which are randomly chosen from the DTP dataset.
The column “Support” shows the used minimum support (%), the column with ¢ is the running time in seconds, the
column with ! shows the size of the largest frequent subgraph discovered, and the column with #f is the total number

of discovered frequent patterns.

Total Number of Transactions I?
Scaling | Support D = 1000 D = 2000 D = 5000 D = 10000 D = 20000
% i[sec] [] #f | tlsec) 1 #1 | tisect { #f | tlsec] I # t[sec} T #
3.0 8 6 203 18 6 197 32 6 177 6% 6 187 109 4 143
20 14 6 3 38 6 356 62 6 32 1286 6 321 216 5 269
No 1.0 60 8 1124 134 7 1023 161 8 795 423 8 874 839 7 826
0.5 263 8 3213 540 8 3009 622 9 2177 1514 9 2281 2465 7 2091
0.25 7% 10 10040 [ 2051 10 10733 | 2229 |0 6112 5351 % 6090 8590 10 5649
3.0 14 7 236 35 6 246 73 7 236 126 6 217 321 6 224
2.0 26 7 415 72 7 430 124 7 404 205 7 352 522 7 359
Yes 10 123 8 1393 315 8 1395 460 9 1189 1107 8 1295 1974 8 1019
0.5 694 10 4960 1478 10 4623 2108 10 3593 4621 9 3869 9952 9 3354
0.25 2043 13 14235 | 5674 12 15232 | 8972 12 11103 | 17421 9 10929 } 41895 11 1117

size. For most values of support, the amount of time re-
quired on the database with 20,000 transactions is 15-30
times larger than the amount of time required for 1,000
transactions. Second, as with any frequent pattern discovery
algorithm, as we decrease the support the runtime increases
and the number of frequent patterns increases. The overall
increase in the amount of time tends to follow the increase
in the number of patterns, indicating that the complexity
of gF3G scales well with the number of frequent patterns.
Third, comparing the scale invariant with the scale variant
results, we can see that the latter is faster by almost a factor
of two. This is because the number of discovered patterns
is usually smaller, and each pattern has fewer supporting
transactions, reducing the amount of time to compute their
frequency.

5.2 Scalability With Respect To The Graph Size

Our second set of experiments was designed to evaluate
the runtime of gFSG when the average size (i.e., the num-
ber of edges) of each transaction increases. Again, using the
whole set of chemical compounds, we created four differ-
ent datasets by extracting 5,000 chemical compounds in the
following way. First we sorted the original dataset based on
the size of compounds. Then, we selected 5,000 compounds
from four different locations of the sorted list, so that each
dataset would have different transaction size. This resulted
in four datasets whose average transaction size were 14, 19,
23 and 28. Because the chemical compounds are taken from
the sorted order, almost all the transactions are in the same
size as the average.

As with our earlier experiments, we used gFSG to find
both scale invariant and scale variant patterns and we varied
the minimum support from 3.0% to (.25%. Tables 3 show
the amount of time and the number of frequent patterns dis-
covered in these two sets of experiments.

From these results we can see that as the average transac-

tion size increases, the time required to find the frequent ge-
ometric subgraphs increases, as well. In most cases, this in-
crease is at a higher rate than the corresponding increase on
the size of each transaction. In general, the running time for
finding the patterns when the average (ransaction size is 28,
is about ten times longer than the running time for the av-
erage transaction size 14, This non-linear relation between
the time complexity and the size of the transaction is due to
the fact that the algorithm needs to explore 2 much higher
search space, and is consistent with the time increases for
other pattern discovery algorithms, such as those for finding
frequent itemsets [14] and sequential patterns [15]. Nev-
ertheless, gFSG is able to mine the largest dataset with a
support of ¢.25 in less than two hours. Also, comparing the
scale invariant with the scale variant experiments, we can
see that as before, finding the scale variant patterns is faster
by about a factor of two.

6 Conclusion

In this paper we presented an algorithm, gFSG, for find-
ing frequently occurring geometric subgraphs in large graph
databases, that can be used to discover recurrent patterns in
scientific, spatial, and relational datasets. Our experimental
evaluation shows that gFSG can scale reasonably well to
very large graph databases provided that graphs contain a
sufficiently many different labels of edges and vertices.

One of the limitations of the current implementation of
gFSG is it does not perform any shape optimizations on the
representation of each geometric pattern. However, some
simple, and yet powerful optimizations can be performed by
using an appreach motivated by k-means clustering, In this
approach, the frequency counting phase will be performed
multiple times. During each iteration, the candidate pattern
will be incrementally adjusted, as its supporting set is being
identified, to represent the centroid consensus pattern of the
supporting set of graph transactions. In principle the itera-
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Table 3. Running times in seconds for the four chemical compound data sets. Each dataset has a different average
transaction size, from 14 to 28. The column “Support” shows the used minimum support (%), the column with 1 is the
running time in seconds, the column with [ shows the size of the largest frequent subgraph discovered, and the column
with #£ is the total number of discovered frequent patterns.

Average Transaction Size T
Scaling | Support T=14 T=1% T=23 T=128
% ifsec] 1 #f | tisec] ! #f | tlsec] [} #f | tlsec] { #f
30 17 6 148 26 5 175 47 6 258 81 6 268
2.0 27 7 270 49 5 324 81 7 418 288 & 792
No 1.6 65 8 6§71 181 6 807 287 -1 1164 1189 9 2975
0.5 196 7 1613 610 7 2180 1002 9 3315 3454 11 8093
0.25 497 9 3708 1726 9 5768 2622 12 8819 | 10172 12 24242
30 22 7 154 41 6 196 73 [ 249 175 7 408
20 36 7 264 81 6 325 142 7 420 543 8 993
Yes 1.0 92 9 680 284 8 927 612 9 1385 2530 10 3936
0.5 406 9 2072 ) 1438 9 2859 | 3050 9 4620 | 9923 12 13178
L 0.25 1226 10 5358 4997 10 8949 | 10824 12 15232 | 29686 14 38788
tive optimization on the shape of a pattern will stop, as soon [12} M. Kuramochi and G. Karypis. Frequent subgraph discov-

as its support does not change in the course of an iteration.
We are currently in the process of evaluating this algorithm
and investigating efficient ways of implementing it.
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