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To help solve the ongoing problem of student retention, 

new expected performance-prediction techniques are 

needed to facilitate degree planning and determine who 

might be at risk of failing or dropping a class. Personalized 

multiregression and matrix factorization approaches 

based on recommender systems, initially developed for 

e-commerce applications, accurately forecast students’ 

grades in future courses as well as on in-class assessments.

An enduring challenge in higher education is 
student retention.1 There is a critical need to 
develop innovative approaches that ensure 
students graduate in a timely fashion and 

are well trained and workforce ready in their field  
of study.2 As the volume and variety of data collected 
in both traditional and online university offerings 
continue to expand, new opportunities to apply big 



62 C O M P U T E R    W W W . C O M P U T E R . O R G / C O M P U T E R

BIG DATA

data analytics to grand challenges in 
higher education arise.

Many traditional educational 
institu tions have deployed learning- 
management systems (LMSs) such as 
Blackboard (www.blackboard.com), 
Moodle (https://moodle.org), and Sakai 
(https://sakaiproject.org) to provide 
students with an online platform to 
access course content and to commu-
nicate and collaborate with instruc-
tors and peers. The data collected by 
LMSs can be used to track students’ 
engagement and predict their future 
academic performance.3 Such pre-
dictions can help students choose the 
most suitable majors and properly 
blend courses of varying difficulty in a 
semester’s schedule; they can also pro-
vide early warnings to the students’ 
instructors and academic advisors 
that they might need assistance. 

In parallel, massive open online 
courses (MOOCs) have emerged as a 
popular low-cost technology to deliver 
distance education on a wide variety 
of topics to students across the world.4 
Given the minimal expense and lack 
of entry barriers such as prerequisites 
or skill requirements, many people 
enroll in MOOCs, but only a small frac-
tion participate in the various course- 
related activities—viewing video lec-
tures, studying course material, com-
pleting quizzes and homework, and so 
on—and many eventually drop out. 
Several researchers have analyzed 
usage logs to determine the factors 
associated with MOOCs’ high attrition 
rate and to develop methods that pre-
dict how participants will perform and 
whether they are likely to drop out.

In response to these trends, 
researchers have deployed big data 
techniques to analyze information 
collected by traditional brick-and-
mortar and online universities as well 

as MOOC providers. Several meth-
ods have been developed to tackle the 
problems of pre-registration grade 
prediction, within-class assessment 
prediction, GPA prediction, with-
in  class grade prediction, and drop 
versus no-drop prediction for MOOC 
students.5–8 We present methods 
that draw on techniques from recom-
mender systems to accurately predict 
students’ next-term course grades as 
well as within-class assessment per-
formance. These approaches ingest 
large amounts of heterogeneous and 
sparse data and can be used in all types 
of educational environments.

NEXT-TERM  
GRADE PREDICTION
These methods are designed to esti-
mate the grades that a student is 
expected to obtain in the courses that 
he or she is considering taking for 
the next term. Students can use these 
estimated grades to select courses 
for which they are well prepared and 
expected to perform well in and also 
satisfy degree requirements, thereby 
allowing them to make progress 
towards graduation. The estimated 
grades also provide information as to 
the difficulty rating for each course, 
which can help students prioritize 
their studies and manage their study 
time. Moreover, course instructors 
and departments can also benefit by 
knowing how students registered for 
particular courses are expected to 
perform; this enables them to make 
adjustments including holding addi-
tional office hours, allocating more 
teaching assistants, and so on. 

To predict the next-term grades we 
leverage four types of data: admis-
sions records that include demo-
graphic information, high school 
scores, and SAT/ACT scores; grades 

in courses that were already taken by 
all the students; information about 
course content; and which instruc-
tors taught which courses. The his-
torical student–course performance 
information is represented in a form 
of an n × m matrix G in which an 
entry gij stores the grade that student 
i obtained in class j. These grades are 
stored as a number between 0 and 4 by 
using a standard letter grade to num-
ber mapping F to 0 and A to 4. Since 
each student takes only a very small 
number of the courses being offered, 
the matrix G will be sparse and most 
of its entries will have no values asso-
ciated with them. 

We investigated two classes of 
methods for building the prediction 
models, both of which are used exten-
sively in e-commerce recommender 
systems to predict consumer ratings 
and purchases. The first class builds 
these models by using linear regres-
sion approaches in which the grades 
obtained by the students in the courses 
that they have already taken and their 
associated characteristics are the 
predictor variables. The second class 
builds these models by using matrix 
factorization approaches to identify 
a low-dimensional space that jointly 
represents both the students and the 
courses such that a student’s grade 
on a particular course is estimated as 
the inner product of their respective 
latent space representations. Given the 
nature of the domain, this latent space 
can correspond to the space of knowl-
edge components.8 

Regression-based methods
The first method that we investigated 
is the course-specific regression (CSpR), 
which predicts the grade that a stu-
dent will achieve in a specific course 
as a sparse linear combination of the 
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grades that the student obtained in 
past courses.8 In order to estimate the 
CSpR model for a particular course, a 
course-specific subset of the data is 
used that consists of the students that 
have already taken that course along 
with the grades they achieved for that 
course and all the other courses they 
have taken prior to it. CSpR assumes 
that undergraduate degree programs 
are structured in such a way that 
courses taken by students provide 
the necessary knowledge and skills 
for them to do well in future courses. 
Consequently, the performance that 
a student achieved in a subset of the 
earlier courses can be used to predict 
how well he or she will perform in 
future courses. 

The second method, personalized 
linear multi-regression (PLMR), uses 
a linear combination of k regression 
models, which are weighted on a 
per-student basis.6 In this approach, 
the predicted grade ĝij for student i in 
course j is given by

ĝ ij = w
0
+ si + c j + PiWX ij

, 

where w0 is a global bias, si is a bias 
term for student i, cj is a bias term for 
course j, Pi is the 1 × k vector of model 
weights for student i, W is the k × p 
matrix of regression coefficients, and 
Xij is a feature vector encoding the 
various information associated with 
student i and course j. Specifically, the 
information encoded in Xij includes 
the student and course numbers, the 
course instructor, the course level, and 
the department offering that course. 
The bias terms reflect the mean grades 
achieved by a student in the past and 
the mean grades for a given course 
in the past. These capture student- 
related factors (for example, skills, 
motivations, and learning habits) and 

course- related factors (for example, 
course material and difficulty). Note 
that setting the number of regression 
models in PLMR to 1 (k = 1) leads to a 
simple regression computation.

Matrix factorization–
based methods
As a baseline method, we investi-
gated a standard matrix factorization 
(MF) approach that approximates the 
observed entries of the student–course 
grade matrix G by the product of two 
matrices whose rank is at most k. In  
this approach, each student i and  
course j are represented via k dimen-
sional latent feature vectors vi and vj, 
respectively, from which the inner 
product is used to predict the grade ĝij 
that student i will obtain on course j, 
that is,

ĝ ij = v i ,f
f =1

k

∑ v j ,f
.

One limitation of the standard 
MF method is that it ignores the 
sequence in which the students have 
taken the various courses and as 
such the latent representation of a 
course can potentially be influenced 
by the performance of the students 
in courses that were taken afterward. 
In order to address this problem, we 
also investigated course-specific MF 
(CSpMF) that relies only on the subset 
of the data used by CSpR in order to 
estimate an MF model that is specific 
to each course.

Finally, in order to exploit the 
additional information that we have 
available (admissions, course con-
tent, instructors, and the like) we 
also developed MF methods based 
on factorization machines (FM), which 
are general-purpose factorization 
techniques that can incorporate 

additional information while also 
leveraging the sparse student–course 
matrix.7 Moreover, by using this addi-
tional information, FM is also able to 
make predictions about students that 
have not yet taken any courses, and 
for whom we have no past course per-
formance information.

IN-CLASS ASSESSMENT 
PREDICTION
Predicting a student’s performance on 
in-class assessments like quizzes and 
homework assignments can poten-
tially provide the needed early inter-
vention for students that are at risk of 
failing a course or dropping out. 

Many researchers have used LMS 
and MOOC data to predict future aca-
demic performance, both to facilitate 
degree planning and to determine 
which students might be at risk of fail-
ing or dropping a class and would ben-
efit from intervention. Rebecca Barber 
and Mike Sharkey applied standard 
linear regression analysis to aggre-
gated LMS data and administrative 
records to develop a general predictive 
risk model indicating the likelihood 
of a given student failing a particular 
course.9 Nguyen Thai-Nghe and his 
colleagues developed an MF method 
inspired by e-commerce recommender 
systems that considered individual 
students’ performance on past LMS 
activities.10 Other researchers have 
likewise applied MF variants to LMS 
data but ignored many of the students’ 
interactions with the system, limiting 
the ability to provide even more gran-
ular forecasts. 

Within the context of MOOCs, many 
student performance– forecasting ap-
proaches have been developed. To 
predict in real time when a student 
might stop engaging in a particular 
course, Sebastien Boyer and Kalyan 
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Veeramachaneni combined interac-
tion data on the student from previ-
ous courses with data from previous 
weeks of the current course.11 Tanmay 
Sinha and Justine Cassell tracked stu-
dent activities across multiple MOOCs 
to predict grade sequences.12 Zach-
ary Pardos and colleagues adapted 
the cognitive modeling techniques of 
Bayesian knowledge tracing to predict 
student performance on homework, 
lecture sequences, and exams in a 
MOOC course.5

As part of our ongoing work on 
this problem, we have developed 
approaches that track the participa-
tion of a student within a class at a tra-
ditional university or a MOOC by ana-
lyzing the click-stream server logs and 
predicting the student performance 
on the next graded assessment. These 
approaches are based on estimating 
PLMR models to predict student per-
formance on in-class assessments like 
quizzes and homework assignments 
within an LMS or MOOC. To do so, 
they utilize a wide range of features 
extracted from the server logs that 
track student interactions with the sys-
tem, such as performance on previous 
assessments, number of logins, views 
of different course materials, number 
of attempts at a given assessment, and 
time between viewing material and 
attempting an assessment. Figure 1 
shows examples of activities captured 
by a typical MOOC server log.

PLMR can also be used to analyze 
the relative performance of the differ-
ent features for in-class assessment 
prediction. Model parameters should 
all have nonnegative values to ensure 
that they additively contribute to pre-
dicted grades. Such PLMR implemen-
tations can be incorporated into stu-
dent monitoring and early warning 
systems to indicate when a student is 

having trouble or falling behind and 
thus might need assistance. 

DATASETS
We trained and tested our perfor-
mance prediction methods on four 
datasets: George Mason University 
(GMU) transcript data, University of 
Minnesota (UMN) transcript data, 
UMN LMS data, and Stanford Univer-
sity MOOC data.

GMU transcript data
This dataset consists of course re-
cords we obtained on 30,754 students 
enrolled at GMU from summer 2009 
to spring 2014 (a total of 15 terms) who 
had declared in 1 of 144 majors, each 
of which belongs to 1 of 13 colleges. 
During this time period, the students 
took 9,085 courses, each classified 
as 1 of 161 disciplines and taught by 
1 of 6,347 instructors. Discarding 
records with no grades (withdraw-
als) or grades that do not translate to 
the A–F scale (audits) yielded 894,736  
student–course dyads. Of these dyads, 
584,179 (65.29 percent) correspond to 
dyads involving transfer grades. All 
data was collected and anonymized 
in accordance with GMU institutional 
review board policies. The dataset 
includes various student, course, and 
instructor features, either categorical 
or real-valued. 

For each student, we have demo-
graphic data from admissions records 
such as age, race, sex, zip code, high 
school ID and GPA, and SAT scores. 
For each student−course dyad, we 
have the student’s declared major at 
the time and the grade earned. For 
each term in a student’s transcript, 
we have the number of course credit 
hours attempted that term as well 
as the number attempted up to that 
term. To reflect the student’s relative 

progress, we annotated each term 
with a value indicating the number of 
previous terms in which the student 
had taken courses.

Each course belongs to a particu-
lar discipline, is worth a fixed number 
of credit hours, and is assigned a par-
ticular course level. For each term, we 
have the aggregate student GPA for the 
course from the previous term as well as 
the cumulative aggregate student GPA 
of the course over all terms it was pre-
viously offered (in our dataset). We also 
have the number of students enrolled in 
all sections of the course during the cur-
rent term, as well as the total number 
of students enrolled for all prior terms 
the course was offered. For each course 
we have the instructor’s classification 
(adjunct, full-time, part-time, graduate 
research assistant, or graduate teach-
ing assistant), rank (instructor, assistant 
professor, associate professor, eminent 
scholar, or university professor), and 
ten ure status (term, tenure-track, or ten-
ured). We mapped all transfer course 
records to GMU equivalents.

UMN transcript data
This dataset consists of course grades 
for 2,949 students that were part of 
UMN’s computer science and engineer-
ing (CSE) and electrical and computer 
engineering (ECE) degree programs 
from fall 2002 to spring 2014. Both 
programs are part of the Col  lege  of Sci-
ence  and Engineering (CS&E),  which 
requires students to take a common set 
of core science courses during the first 
23 semesters. We removed any courses 
that are not among those  off  ered by 
CS&E departments and generally do 
not count toward degree require-
ments, as well as those taken pass/
fail, leaving 2,556 courses. The result-
ing dataset contains 76,748 student– 
grade dyads.
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UMN LMS data
The UMN dataset was extracted from 
the university’s Moodle installation, 
one of the largest worldwide. It spans 
two semesters and includes 11,556 
students and 832 courses belong-
ing to 157 departments. Each student 
enrolled in at least four courses. The 
dataset includes 114,498 assignments 
and 75,143 quiz submissions, and 
251,348 forum posts. Assignments 
and quizzes are referred to as activities, 

with grades scaled to be in the range  
from 0 to 1 such that the lowest grade 
that a student can get is 0 and the 
highest grade is 1. Each student−
activity dyad (s, a) is associated with 
a feature vector fsa. Features fall into  
three categories.

Student performance features. These 
describe the student’s current GPA 
and the current grade achieved in the 
course’s previous activities.

Activity and course features. These 
describe the activity type (assignment 
or quiz); the course level, which takes 
an integer value of 1, 2, 3, or 4 (4 being 
the most advanced); and the depart-
ment to which the course belongs.

LMS features. Extracted from Moo-
dle’s server log files, these describe 
the student’s interaction with the 
system prior to the activity due date 
and include the number of times the 

Homework 1 Homework n

Video 1-1

Play_video

Login period No activity period

Adjacent login

Login period

Play_video Seek_video

For watching one video

Play_video QuizPause_video

Video 1-2 Video n-1 Video n-2

Quiz 1-1 Quiz 1-2 Quiz n-1 Quiz n-2

(a)

(b)

(c)

FIGURE 1. Different student activities within a typical massive open online course (MOOC). (a) Students view video lectures, each with 
an accompanying quiz, and have periodic homework assignments. (b) There are various video-viewing options including searching for 
a video and pausing/playing a video. (c) Students can have multiple login sessions, each of which might contain video watching, quiz 
attempts, and/or homework assignments.
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student has posted a comment on 
a forum, read a forum discussion, 
viewed course material, added some-
thing (like a wiki page) to the course 
page, or accessed the course page. We 
measured each interaction multiple 
times: one, two, four, and seven days 
prior to the activity due date. We also 
included all interactions up to the 
due date of the previous assignment. 
We normalized the forum interaction 

features with respect to the total num-
ber of available forum discussions.

Stanford MOOC data
This dataset includes activity infor-
mation about students who took the 
Stanford MOOC course “Statistics in 
Medicine” in summer 2014 and was 
obtained via a data-sharing agree-
ment with the university (http://
datastage.stanford.edu). Activities in- 

cluded viewing video lectures and 
articles, and attempting graded quiz-
zes and homework assignments. The 
course had 9 learning units with 111 
assessments including 79 quizzes, 6 
homework assignments, and 26 sin-
gle questions. Of the 13,130 students, 
4,337 submitted at least 1 homework 
assignment, 1,262 completed part of 
all 6 homework assignments, 1,099 
finished all homework assignments, 
193 finished all quizzes and homework 
assignments, and 6,481 had video- 
related activity. To capture latent 
information behind the clickstream, 
for each student we extracted session-, 
quiz-, video-, homework-, time-, and 
interval-related features.

RESULTS
We used these datasets to evaluate 
our next-class grade prediction and 
in-class assessment-prediction (both 
LMS and MOOC) models.

Next-term grade prediction
Table 1 reports the next-term grade- 
prediction results on the GMU tran- 
script data. FM produces the lowest- 
error predictions. PLMR is the next 
best, followed by random forest. Ran-
dom Forests (RF) are classical super-
vised learning methods that combine a 
collection of decision trees trained on 
multiple samples of data. Each decision 
tree attempts to discover the most infor-
mative features that split the data into 
cohesive groups with lowest error with 
regards to the continuous target attri-
bute value (specifically, course grade 
in our case). For comparison, the table 
includes prediction results from several 
other baseline methods: mean of means 
(mean of the student, course, and global 
means) and uniform random guessing.

Table 2 shows results for the top 
three methods for cold-start (CS) 

TABLE 1. Next-term grade prediction results on 
George Mason University transcript data.

Method
Root-mean-square  

error (RMSE)
Mean absolute  

error (MAE)

Factorization machine (FM) 0.7423 0.52 ± 0.53

Personalized linear multi-regression (PLMR) 0.7886 0.57 ± 0.55

Random forest (RF) 0.7936 0.58 ± 0.54

Mean of means 0.8643 0.64 ± 0.58

Uniform random guessing  1.8667  1.54 ± 1.06

TABLE 2. Results for the top three methods from Table 1 
for cold-start (CS) and non–cold-start (NCS) records.

Group Dyad (percent) Method RMSE MAE

NCS 48.60 FM 0.7423 0.5187 ± 0.5310

PLMR 0.7890 0.5635 ± 0.5522

RF 0.7936 0.5837 ± 0.5377

CS student only 42.31 RF 0.7381 0.5867 ± 0.4478

FM 0.8112 0.6114 ± 0.5331

PLMR 0.9917 0.7321 ± 0.6689

CS course only 01.75 FM 0.7456 0.5293 ± 0.5252

RF 0.7776 0.5695 ± 0.5295

PLMR  1.1771 0.7489 ± 0.9081

CS both 04.55 RF 0.8203 0.6603 ± 0.4867

FM 0.8337 0.6614 ± 0.5075

PLMR  1.2060 0.8829 ± 0.8215
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and non–cold-start (NCS) records. CS 
records are student–course dyads lack-
ing student or course information, or 
both, from any previous term, whereas 
NCS records contain student and course 
information from at least one previous 
term. RF outperforms FM when stu-
dent information is absent; PLMR only 
performs well on NCS records. These 
results indicate that next-term grade 
prediction can be improved by substi-
tuting RF for FM when there is no prior 
student information. Doing so yields 
an overall root-mean-square error 
(RMSE) of 0.7443 compared to 0.7709 
for FM and 0.7775 for RF. 

Figure 2 shows next-term grade- 
prediction results on the UMN tran-
script data. It plots the RMSE per  
course achieved by three different 
methods—MF, CSpMF, and CSpR—with 
respect to the density of the student–
course grade matrix of the course- 
specific dataset. The error rate for the 
course-specific techniques fluctuates 

more than that for MF, as a different 
model must be trained for each course. 
CSpR outperforms the other methods 
for most courses, achieving an RMSE 
of 0.632.

In-class LMS 
assessment prediction
Figure 3 shows in-class assessment- 
prediction results on the UMN LMS 
data, which was randomly split into 
training and test subsets, achieved by 
PLMR using three-feature combina-
tions: activity and course features plus 
LMS features, student performance  
features plus activity and course fea-
tures, and all feature sets. Prediction 
accuracy improves as the number of  
linear regression models increases, cap-
turing more relations among features, 
especially student performance. Using 
10 regression models and all three sets 
of features, the RMSE falls to 0.145.

Trained using all features, a base-
line linear regression model gives an 

RMSE of 0.223 whereas PLMR with 
one linear model gives an RMSE of 
0.168. In this context, PLMR improves 
on simple linear regression by captur-
ing the general performance trends 
for each student and the course grade 
distributions. Further, the student- 
specific weighting function can adjust 
the regression result for each student.

We found that the features describ-
ing the student’s cumulative GPA, 
cumulative grade, and viewing of 
course materials contributed most to 
grade-prediction accuracy. The fea-
tures derived from forum activities 
contributed least, probably because 
they only appear with a small frac-
tion (10 to 25 percent) of the training 
instances of each course.

In-class MOOC 
assessment prediction
Figure 4 shows in-class assessment- 
prediction results on the Stanford 
MOOC data using PLMR with a varying 
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FIGURE 2. Next-term grade-prediction results on University of Minnesota (UMN) transcript data. Course-specific regression (CSpR) 
outperforms matrix factorization (MF) and course-specific MF (CSpMF) for most courses, achieving a root-mean-square error (RMSE)  
of 0.632.
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number of regression models. Given 
homework assignments, our goal was 

to predict the score a student achieved 
in each of the n assignments. To predict 

the score for a given student on a given 
homework referred by target home-
work, we extracted the features just 
before attempting that target home-
work. The training set consisted of all 
homework–student pairs where stu-
dents attempted and received a score 
for a homework assignment before 
the target homework. RMSE decreases 
as the number of regression models 
increases, with an optimum of five 
regression models.

Recommender system–based 
personalized analytics are 
capable of forecasting stu-

dent performance in a timely and 
accurate manner. Using only histor-
ical grade information coupled with 
available additional information 
such as transcript data, both PLMR 
and our advanced MF techniques can 
predict next-term grades with lower 
error rates than traditional methods. 
PLMR is also useful for predicting 
grades on assessments within a tradi-
tional class or online course by incor-
porating features captured through 
students’ interaction with LMS and 
MOOC server logs. In the future, we 
plan to further refine these methods 
and incorporate them into degree- 
planning and early-warning systems 
to help solve the problem of student 
retention through graduation. 
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