
HARMONY: Efficiently Mining the Best Rules for Classification ∗

Jianyong Wang and George Karypis †

Abstract

Many studies have shown that rule-based classifiers perform
well in classifying categorical and sparse high-dimensional
databases. However, a fundamental limitation with many
rule-based classifiers is that they find the rules by employing
various heuristic methods to prune the search space, and
select the rules based on the sequential database covering
paradigm. As a result, the final set of rules that they use
may not be the globally best rules for some instances in the
training database. To make matters worse, these algorithms
fail to fully exploit some more effective search space pruning
methods in order to scale to large databases.

In this paper we present a new classifier, HARMONY,

which directly mines the final set of classification rules.

HARMONY uses an instance-centric rule-generation ap-

proach and it can assure for each training instance, one of the

highest-confidence rules covering this instance is included in

the final rule set, which helps in improving the overall ac-

curacy of the classifier. By introducing several novel search

strategies and pruning methods into the rule discovery pro-

cess, HARMONY also has high efficiency and good scala-

bility. Our thorough performance study with some large

text and categorical databases has shown that HARMONY

outperforms many well-known classifiers in terms of both

accuracy and computational efficiency, and scales well w.r.t.

the database size.

1 Introduction

As one of the most fundamental data mining tasks,
classification has been extensively studied and various
types of classification algorithms have been proposed.
Among which, one category is the rule-based classi-
fiers [26, 27, 13, 30]. They build a model from the

∗This work was supported in part by NSF CCR-9972519,
EIA-9986042, ACI-9982274, ACI-0133464, and ACI-0312828; the
Digital Technology Center at the University of Minnesota; and
by the Army High Performance Computing Research Center
(AHPCRC) under the auspices of the Department of the Army,
Army Research Laboratory (ARL) under Cooperative Agreement
number DAAD19-01-2-0014. The content of which does not
necessarily reflect the position or the policy of the government,
and no official endorsement should be inferred. Access to research
and computing facilities was provided by the Digital Technology
Center and the Minnesota Supercomputing Institute.

†Department of Computer Science and Engineering/Digital
Technology Center/Army HPC Research Center, University of
Minnesota. Email: {jianyong, karypis}@cs.umn.edu.

training database as a set of high-quality rules, which
can be used to predict the class labels of unlabeled
instances. Many studies have shown that rule-based
classification algorithms perform very well in classifying
both categorical databases [27, 25, 24, 30] and sparse
high-dimensional databases such as those arising in the
context of document classification [6, 5].

Some traditional rule-based algorithms like
FOIL [27], RIPPER [13], and CPAR [30] discover a
set of classification rules one-rule-at-a-time and employ
a sequential covering methodology to eliminate from
the training set the positive instances that are covered
by each newly discovered rule. This rule induction
process is done in a greedy fashion as it employs various
heuristics (e.g., information gain) to determine how
each rule would be extended. Due to this heuristic
rule-induction process and the sequential covering
framework, the final set of discovered rules are not
guaranteed to be the best possible. For example, due to
the removal of some training instances, the information
gain is computed based on the incomplete information;
thus, the variable (or literal) chosen by these algorithms
to extend the current rule will be no longer the globally
optimal one. Moreover, for multi-class problems, these
algorithms need to be applied multiple times, each time
mining the rules for one class. If the training database
is large and contains many classes, the algorithms will
be inefficient.

Since the introduction of association rule mining [2],
many association-based (or related) classifiers have been
proposed [17, 22, 7, 4, 8, 23, 15, 5, 31, 14]. Some typ-
ical examples like CBA [25] and CMAR [24] adopt ef-
ficient association rule mining algorithms (e.g., Apri-
ori [3] and FP-growth [20]) to first mine a large num-
ber of high-confidence rules satisfying a user-specified
minimum support and confidence thresholds, then use
various sequential-covering schemes to select from them
a set of high-quality rules to be used for classification.
Since these schemes defer the selection step only after
a large intermediate set of high-confidence rules have
been identified, they tend to achieve somewhat bet-
ter accuracy than the traditional heuristic rule induc-
tion schemes [30]. However, the drawback of these ap-
proaches is that the number of initial rules is usually
extremely large, significantly increasing the rule discov-

ery and selection time.
In this paper we propose a new classification algo-

rithm, HARMONY1, which can overcome the problems
of both the rule-induction-based and the association-
rule-based algorithms. HARMONY directly mines for
each training instance one of the highest confidence fre-
quent classification rules that it supports, and builds
the classification model from the union of these rules
over the entire set of instances. Thus HARMONY em-
ploys an instance-centric rule generation framework and
is guaranteed to find and include the best possible rule
for each training instance. Moreover, since each train-
ing instance usually supports many of the discovered
rules, the overall classifier can better generalize to new
instances and thus achieve better classification perfor-
mance.

To achieve high computational efficiency, HAR-
MONY mines the classification rules for all the classes
simultaneously and directly mines the final set of classi-
fication rules by pushing deeply some effective pruning
methods into the projection-based frequent itemset min-
ing framework. All these pruning methods preserve the
completeness of the resulting rule-set in the sense that
they only remove from consideration rules that are guar-
anteed not to be of high quality. We have performed
numerous performance studies with various databases
and shown that HARMONY can achieve better accu-
racy while maintaining high efficiency.

The rest of the paper is organized as follows. Sec-
tion 2 introduces some basic definitions and notations.
Section 3 discusses in detail the HARMONY algorithm.
Section 4 describes some of the related work in this area.
The thorough performance study is presented in Sec-
tion 5. Finally, the paper concludes with Section 6.

2 Notations and Definitions

A training database TrDB is a set of training in-
stances2, where each training instance, denoted as a
triple 〈tid, X, cid〉, contains a set of items (i.e., X) and
is associated with a unique training instance identifier
tid, and a class identifier cid ∈ {c1, c2, ..., ck} (a class
identifier is also called a class label, and we assume
there are totally k distinct class labels in TrDB). Ta-
ble 1 illustrates an example training database, which
contains totally eight instances and two classes. Let
I={i1, i2, . . . , in} be the complete set of distinct items
appearing in TrDB. An itemset Y is a non-empty sub-
set of I and is called an l-itemset if it contains l items.

1 HARMONY stands for the Highest confidence clAssification
Rule Mining fOr iNstance-centric classifYing.

2Note there may exist a test database, which is in the
same form as the training database and is used to evaluate the
performance of a classifier. We denote it by TeDB.

An itemset {x1, . . . , xl} is also denoted by x1 · · ·xl. A
training instance 〈tid, X, cid〉 is said to contain item-
set Y if Y ⊆ X . The number of instances in TrDB
containing itemset Y is called the (absolute) support of
itemset Y , denoted by sup

Y
. The number of instances

containing itemset Y and associated with a class label ci

(where i ∈ {1, 2, ..., k}) is called the support of Y ∪{ci},
denoted by supci

Y . A classification rule has the form:
‘Y → ci : supci

Y , conf ci

Y ’, where Y is called the body,

ci the head, supci

Y the support, and conf ci

Y =
sup

ci
Y

sup
Y

the

confidence of the rule, respectively. In addition, we use
|TrDB| to denote the number of instances in database
TrDB, and for brevity, we sometimes use the instance
identifier tid to denote an instance 〈tid, X, cid〉.

Table 1: An example training database TrDB.

Instance identifier Set of items Class identifier

01 a, c, e, g 1

02 b, d, e, f 0

03 d, e, f 0

04 a, b, c, e 1

05 a, c, e 1

06 b, d, e 0

07 a, b, e 1

08 a, b, d, e 0

Given a minimum support threshold, min sup, an
itemset Y is frequent if sup

Y
≥min sup. A frequent

itemset Y supported by any training instance 〈tj , Xj , ci〉
(1 ≤ j ≤ |TrDB| and 1 ≤ i ≤ k) is also called
a frequent covering itemset of instance tj , and ‘Y →
ci : supci

Y , conf ci

Y ’ is called a frequent covering rule of
instance tj . Among the frequent covering rules of any
instance tj , those with the highest confidence are called
the Highest Confidence Covering Rules w.r.t. instance
tj . We denote a Highest Confidence Covering Rule
w.r.t. instance tj by HCCRtj

, and use HCCRsup
tj

and

HCCRconf
tj

to denote its support and confidence.

3 HARMONY: An Instance-Centric Classifier

In this paper we present HARMONY, an accurate and
efficient rule-based classifier with good scalability that
is designed to overcome the problems of both the tradi-
tional rule-based and the recently proposed association-
based classifiers. The key idea behind HARMONY is
to build a classifier that instead of using various heuris-
tic methods to discover and/or select rules, it uses the
best possible rules for each training instance. As such,
it takes an instance-centric view and directly mines the
database of training instances to find at least one of
the highest confidence frequent covering rules (if there
is any) and include it in the final set of classification
rules. Moreover, HARMONY employs some effective
search strategies and pruning methods to speed up the

model learning.
The HARMONY algorithm consists of three differ-

ent modules, referred to as RuleMiner, BuildModel,
and NewInstanceClassification. The RuleMiner
module, takes as input the training database TrDB and
the minimum support min sup, and outputs the set of
the highest confidence covering rules (abbreviated as
HCCR). The BuildModel module, takes HCCR as
input and outputs a classification model (abbreviated
as CM), which is used by the NewInstanceClassifi-
cation module to classify a new test instance ti. The
algorithmic details behind these modules are presented
in the rest of this section.

3.1 Mining the Classification Rules

The rule-discovery problem that HARMONY needs to
solve in order to generate the sets of rules needed by
its classification methodology can be formally defined
as follows. Given a training database TrDB and a
minimum support threshold min sup, the problem is to
find one of the highest confidence frequent covering rules
for each of the training instances in TrDB 3.

A näıve way of solving this problem is to use an
existing frequent closed itemset discovery algorithm to
first generate all frequent closed itemsets, and then ex-
tract from them the highest confidence rule for each
training database instance. However, this approach is
not very computationally efficient because the number
of frequent closed itemsets is usually huge, and both
the itemset generation and rule selection are very ex-
pensive. For this reason, HARMONY adopts another
more efficient way. It directly mines the final set of
highest confidence classification rules. By maintaining
the highest confidence among the covering rules mined
so far for each instance, HARMONY can employ some
efficient pruning methods to accelerate the rule discov-
ery.

Note that although we mainly focus on mining any
one of the highest confidence frequent covering rules for
each training instance, it is straightforward to revise
HARMONY to mine the complete set of the highest
confidence frequent covering rules or the one with the
highest support for each training instance.

3.1.1 Rule Enumeration

The projection-based itemset enumeration framework
has been widely used in many frequent itemset min-

3Note the input training database must be in the form that
is consistent with the corresponding definition in Section 2,
otherwise, the training database should be first converted to
that form. For example, a numerical database should be first
discretized into a categorical one in order to use HARMONY to
build the model.

ing algorithms [20, 1, 18], and will be used by HAR-
MONY as the basis in enumerating the classification
rules. Given a training database TrDB and a mini-
mum support min sup, HARMONY first computes the
frequent items by scanning TrDB once, and sorts them
to get a list of frequent items (denoted by f list) accord-
ing to a certain ordering scheme. Assume the min sup
is 3 and the lexicographical ordering is the default or-
dering scheme, the f list computed from Table 1 is {a,
b, c, d, e}. HARMONY applies the divide-and-conquer
method plus the depth-first search strategy. In our ex-
ample, HARMONY first mines the rules whose body
contains item ‘a’, then mines the rules whose body con-
tains ‘b’ but no ‘a’, ..., and finally mines the rules whose
body contains only ‘e’. In mining the rules with item
‘a’, item ‘a’ is treated as the current prefix, and its con-
ditional database (denoted by TrDB|a) is built and the
divide-and-conquer method is applied recursively with
the depth-first search strategy. To build conditional
database TrDB|a, HARMONY first identifies the in-
stances in TrDB containing ‘a’ and removes the infre-
quent items, then sorts the left items in each instance
according to the f list order, finally TrDB|a is built as
{〈01, ce, 1〉, 〈04, bce, 1〉, 〈05, ce, 1〉, 〈07, be, 1〉, 〈08, be, 0〉
} (infrequent items ‘d’ and ‘g’ are removed). Follow-
ing the divide-and-conquer method, HARMONY first
mines the rules with prefix ‘ab’, then mines rules with
prefix ‘ac’ but no ‘b’, and finally mines rules with prefix
‘ae’ but no ‘b’ nor ‘c’.

During the mining process, when HARMONY gets
a new prefix, it will generate a set of classification rules
w.r.t. the training instances covered by the prefix. For
each training instance, it always maintains one of its
currently highest confidence rules mined so far. Assume
the current prefix P is ‘a’ (i.e., P=‘a’). As shown in the
above example, P covers five instances with tids 01,
04, 05, 07, and 08. HARMONY computes the covering
rules according to the class distribution w.r.t. the prefix
P . In this example, sup

P
=5, sup0

P =1, sup1
P =4, and

HARMONY generates two classification rules:

Rule 1: a → 0 : 1, 1
5

Rule 2: a → 1 : 4, 4
5

Rule 1 covers the instance with tid 08, while Rule 2
covers the instances with tids 01, 04, 05 and 07. Up to
this point, we have HCCR01 = HCCR04 = HCCR05

= HCCR07 = Rule 2, and HCCR08 = Rule 1.

3.1.2 Ordering of the Local Items

In the above rule enumeration process, we used the
lexicographical ordering as an illustration to sort the set
of local frequent items in order to get the f list. Many
projection-based frequent itemset mining algorithms use

the item support to order the local frequent items (e.g.,
the support descending order was adopted in [20] as the
ordering scheme). However, because we are interested
in the highest confidence rules w.r.t. the training
instances, the support-based ordering schemes may not
be the most efficient and effective ways. As a result, we
propose the following three new ordering schemes as the
alternatives.

Let the current prefix be P , its support be sup
P
, the

support and confidence of the classification rule w.r.t.
prefix P and class label ci, ‘P → ci’, be supci

P and
conf ci

P , respectively, the set of local frequent items be
{x1, x2, ..., xm}, the number of prefix P ’s conditional
instances containing item xj (1 ≤ j ≤ m) and associated
with class label ci (1 ≤ i ≤ k) be supci

P∪{xj}
, and the

support of P ∪ {xj} be sup
P∪{xj}

=
∑k

i=1 supci

P∪{xj}
.

Maximum confidence descending order. Given a
local item xj (1 ≤ j ≤ m) w.r.t. P , we can compute k
rules with body P ∪ {xj}, among which, the i-th rule
with rule head ci is:

P ∪ {xj} → ci : supci

P∪{xj}
,

sup
ci
P∪{xj}

sup
P∪{xj}

The highest confidence among the k rules with body
P ∪{xj} is called the maximum confidence of local item
xj , and is defined as the following:

(3.1)
max

∀i,1≤i≤k
supci

P∪{xj}

sup
P∪{xj}

To mine the highest confidence covering rules as
quickly as possible, a good heuristic is to sort the local
frequent items in their maximum confidence descending
order.

Entropy ascending order. The widely used
entropy to some extent measures the purity of a cluster
of instances. If the entropy of the set of instances
containing P ∪ {xj} (1 ≤ j ≤ m) is small, it is highly
possible to generate some high confidence rules with
body P ∪{xj}. Thus another good ordering heuristic is
to rank the set of local frequent items in their entropy
ascending order, and the entropy w.r.t. item xj is
defined as follows:

(3.2) −
1

log k

k
∑

i=1

(
supci

P∪{xj}

sup
P∪{xj}

) log(
supci

P∪{xj}

sup
P∪{xj}

)

Correlation coefficient ascending order. Both
the maximum confidence descending order and entropy
ascending order do not consider the class distribution
of the conditional database w.r.t. prefix P , which

may cause some problems in some cases. Let us see
an example. Assume the number of class labels k=2,
supc1

P = 12, and supc2

P = 6, then we can get two rules
with body P as follows:

Rule 3: P → c1 : 12, 12
18

Rule 4: P → c2 : 6, 6
18

Suppose there are two local items, x1 and x2,
and supc1

P∪{x1}
=2, supc2

P∪{x1}
=1, supc1

P∪{x2}
=1, and

supc2

P∪{x2}
=2. According to Equation 3.1 and Equa-

tion 3.2, the maximum confidence and entropy w.r.t.
item x1 are equal to the corresponding maximum confi-
dence and entropy w.r.t. x2. Thus we cannot determine
which one of x1 and x2 should be ranked higher. How-
ever, because the conditional database TrDB|P∪{x1}

has the same class distribution as conditional database
TrDB|P , we cannot generate rules with body P ∪ {x1}
and a confidence higher than those with body P (i.e.,
Rule 3 and Rule 4). The two rules with body P ∪ {x1}
are shown as the following.

Rule 5: P ∪ {x1} → c1 : 2, 2
3

Rule 6: P ∪ {x1} → c2 : 1, 1
3

If we examine the rules generated from prefix item-
set P ∪ {x2} as shown in Rule 7 and Rule 8, we can see
Rule 8 has higher confidence than Rule 4, and can be
used to replace Rule 4 for the instances covered by Rule
8. In this case, item x2 should be ranked before item
x1.

Rule 7: P ∪ {x2} → c1 : 1, 1
3

Rule 8: P ∪ {x2} → c2 : 2, 2
3

This example suggests that the more similar
the class distribution between conditional databases
TrDB|P and TrDB|P∪{xj} (1 ≤ j ≤ m), the lower is
the possibility to generate higher confidence rules from
TrDB|P∪{xj}. Because the correlation coefficient is a
good metric in measuring the similarity between two
vectors (the larger the coefficient, the more similar the
two vectors), it can be used to rank the local items. In
HARMONY, the correlation coefficient ascending order
is by default adopted to sort the local items.

Let sup
P

be 1
k

∑k
i=1 supci

P , supP∪{xj} be

1
k

∑k

i=1 supci

P∪{xj}
, σ

P
be

√

1
k

∑k

i=1(supci

P)2 − sup
P

2,

σ
P∪{xj}

be
√

1
k

∑k

i=1(supci

P∪{xj}
)2 − supP∪{xj}

2, the

correlation coefficient between prefix P and P ∪ {xj}
(1 ≤ j ≤ m) is defined as follows.

(3.3)
1
k

∑k

i=1(supci

P × supci

P∪{xj}
− sup

P
× supP∪{xj})

σ
P
× σ

P∪{xj}

3.1.3 Search Space Pruning

Unlike the association-based algorithms, HARMONY
directly mines the final set of classification rules. By
maintaining the current highest confidence among the
covering rules for each training instance during the
mining process, some effective pruning methods can be
proposed to improve the algorithm efficiency.

Support equivalence item elimination. Given the
current prefix P , among its set of local frequent items
{x1, x2, ..., xm}, some may have the same support as
P . We call them support equivalence items and can be
safely pruned according to the following Lemma 3.1.

Lemma 3.1. (Support equivalence item pruning)
Any local item xj w.r.t. prefix P can be safely pruned if
it satisfies sup

P∪{xj}
= sup

P
.

Proof. Because sup
P∪{xj}

= sup
P

holds, TrDB|P
and TrDB|P∪{xj} contain the same set of conditional
instances; thus, their class distributions are also the
same and the following equation must hold:

∀i, 1 ≤ i ≤ k, supci

P∪{xj}
= supci

P

Given any itemset, Y , which can be used to extend
P (Y can be empty), can also be used to extend P∪{xj},
and the following must hold:

∀i, 1 ≤ i ≤ k, supci

P∪{xj}∪Y
= supci

P∪Y

We can further have the following equation:

∀i, 1 ≤ i ≤ k,
sup

ci
P ∪{xj}∪Y

sup
P∪{xj}∪Y

=
sup

ci
P∪Y

sup
P∪Y

This means the confidence of the rule ‘P ∪ {xj} ∪
Y → ci’ is equal to the confidence of the rule ‘P ∪ Y →
ci’, and we cannot generate higher confidence rules from
prefix P ∪ {xj} ∪ Y in comparison with the rules with
body P ∪ Y . Thus item xj can be safely pruned. �

Note P ∪ Y is a subset of P ∪ {xj} ∪ Y , by pruning
item xj , we prefer the more generic classification rules.
A similar strategy was adopted in [7, 14].

Unpromising item elimination. Given the current
prefix P , any one of its local frequent items, xj (1 ≤ j ≤
m), any itemset Y that can be used to extend P ∪ {xj}
(where Y can be empty and P ∪ {xj} ∪ Y is frequent),
and any class label ci (1 ≤ i ≤ k), the following equation
must hold:

conf ci

P∪{xj}∪Y
=

supci

P∪{xj}∪Y

sup
P∪{xj}∪Y

≤
supci

P∪{xj}∪Y

min sup

≤
supci

P∪{xj}

min sup

Because conf ci

P∪{xj}∪Y
≤ 1 also holds, we have the

following equation:

(3.4) conf ci

P∪{xj}∪Y
≤ min{1,

supci

P∪{xj}

min sup
}

Lemma 3.2. (Unpromising item pruning) For any
conditional instance 〈tl, Xl, ci〉 ∈ TrDB|P∪{xj} (∀l,
1 ≤ l ≤ |TrDB|P∪{xj}|, and 1 ≤ i ≤ k), if the following
always holds, item xj is called an unpromising item and
can be safely pruned.

(3.5) HCCRconf
tl

≥ min{1,
supci

P∪{xj}

min sup
}

Proof. By combining Equation 3.4 and Equation 3.5
we get that for any itemset Y (Y can be empty) the
following must hold:

conf ci

P∪{xj}∪Y
≤ HCCRconf

tl

This means that any rule mined by growing prefix
P ∪ {xj} will have a confidence that is no greater
than the current highest confidence covering rules (with
the same rule head) of any conditional instance in
TrDB|P∪{xj}; thus, item xj can be safely pruned. �

Unpromising conditional database elimination.
Given the current prefix P , any itemset Y (where Y
can be empty and P ∪ Y is frequent), any class label
ci (1 ≤ i ≤ k), the confidence of rule ‘P ∪ Y → ci’,
conf ci

P∪Y , must satisfy the following equation:

conf ci

P∪Y =
supci

P∪Y

sup
P∪Y

≤
supci

P∪Y

min sup
≤

supci

P

min sup

In addition, because conf ci

P∪Y ≤ 1 also holds, we
have the following equation:

(3.6) conf ci

P∪Y ≤ min{1,
supci

P

min sup
}

Lemma 3.3. (Unpromising conditional database

pruning) For any conditional instance 〈tl, Xl, ci〉 ∈
TrDB|P (∀l, 1 ≤ l ≤ |TrDB|P |, and 1 ≤ i ≤ k),
if the following always holds, the conditional database
TrDB|P can be safely pruned.

(3.7) HCCRconf
tl

≥ min{1,
supci

P

min sup
}

Proof. By combining Equation 3.6 and Equation 3.7
we can get that for any itemset Y (Y can be empty)
and ∀l, 1 ≤ l ≤ |TrDB|P |, 〈tl, Xl, ci〉 ∈ TrDB|P
(1 ≤ i ≤ k), the following must hold:

conf ci

P∪Y ≤ HCCRconf
tl

This means that any rule mined by growing prefix P
will have a confidence that is no greater than the current
highest confidence rules (with the same rule head) of
any conditional instance in TrDB|P ; thus, the whole
conditional database TrDB|P can be safely pruned. �

ALGORITHM 1.1: RuleMiner(TrDB, min sup)

INPUT: (1) TrDB : a training database, and (2) min sup: a minimum
support threshold.
OUTPUT: (1) HCCR: the set of the highest confidence frequent
covering rules w.r.t. each instance in TrDB.

01. for all ti ∈ TrDB
02. HCCRti

← ∅;
03. call ruleminer(∅, TrDB).

SUBROUTINE 1.1 : ruleminer(pi, cdb)

INPUT: (1) pi: a prefix itemset, and (2) cdb: the conditional
database w.r.t. prefix pi.

04. if(pi 6= ∅)
05. for all 〈tl, Xl, cj〉 ∈ cdb

06. if(HCCR
conf
tl

<
sup

cj
pi

suppi
)

07. HCCRtl
← rule ‘pi → cj ’;

08. I ← find frequent items(cdb,min sup);
09. S ← support equivalence item pruning(I); I ← I - S;
10. S ← unpromising item pruning(I, cdb); I ← I - S;
11. if(I 6= ∅)
12. if(unpromising conditional database pruning(I,pi,cdb))
13. return;
14. correlation coefficient ascending ordering(I);
15. for all x ∈I do

16. pi
′
← pi ∪ {x};

17. cdb
′
← build cond database(pi

′
, cdb);

18. call ruleminer(pi
′
, cdb

′
);

3.1.4 The Integrated Rule Mining Algorithm

The overall structure of the RuleMiner algorithm is
shown in ALGORITHM 1.1. First, it initializes the
highest confidence classification rules w.r.t. each train-
ing instance to empty (lines 01-02), then enumerates the
classification rules by calling subroutine ruleminer(∅,
TrDB) (line 03). Subroutine ruleminer() takes as in-
put a prefix itemset pi and its corresponding condi-
tional database cdb. For each conditional instance, it
checks if a classification rule with higher confidence can
be computed from the current prefix pi, if so, it re-
places the corresponding instance’s current highest con-
fidence rule with the new rule (lines 04-07). It then
finds the frequent local items by scanning cdb (line 08),
prunes invalid items based on the support equivalence
item pruning method and the unpromising item prun-
ing method (lines 09-10). If the set of valid local items
is empty or the whole conditional database cdb can be
pruned based on the unpromising conditional database
pruning method, it returns directly (lines 11-13). Oth-
erwise, it sorts the left frequent local items according to

the correlation coefficient ascending order (line 14), and
grows the current prefix (line 16), builds the conditional
database for the new prefix (line 17), and recursively
calls itself to mine the highest confidence rules from the
new prefix (line 18).

Discussion. The above RuleMiner() algorithm
takes as input a uniform support threshold for all
classes; however, it can be easily revised to take class-
specific support thresholds as input. That is, the user
can specify a support threshold for each class. This
is sometimes beneficial for some imbalanced databases.
However, due to limited space, we will do not elaborate
the details and leave it to the interested readers.

ALGORITHM 1.2: BuildModel(HCCR)

INPUT: (1) HCCR: the set of the highest confidence covering rules.
OUTPUT: (1) CM : the classification model (i.e., k groups of ranked
rules).

01. Cluster rules into k groups(HCCR);//according to class label
02. for each group of rules
03. Sort rules();//in confidence and support descending order

ALGORITHM 1.3: NewInstanceClassification(CM, ti)

INPUT: (1) CM : the classification model, (2) ti: a test instance.
OUTPUT: (1) PCL: a predicted class label (or a set of class labels).

01. for j=1 to k //CMj : the j-th group of rules in CM
//SCRj : the score for ti computed from CMj

02. SCRj ←ComputeScore(CMj, ti);
03. PCL ← PredictClassLabel(SCR).

3.2 Building the Classification Model

After the set of the highest confidence covering rules
have been mined, it will be straightforward to build
the classification model. HARMONY first groups the
set of the highest confidence covering rules into k
groups according to their rule heads (i.e., class labels),
where k is the total number of distinct class labels
in the training database. Within the same group of
rules, HARMONY sorts the rules in their confidence
descending order, and for the rules with the same
confidence, sorts them in support descending order. In
this way, HARMONY prefers the rules with higher
confidence, and the rules with higher support if the
confidence is the same. The BuildModel algorithm
is shown in ALGORITHM 1.2.

3.3 Classifying a New Instance

After the classification model, CM, has been built, it
can be used to classify a new test instance, ti, using
the NewInstanceClassification algorithm shown in
ALGORITHM 1.3. HARMONY first computes a
score w.r.t. ti for each group of rules in CM (lines 01-
02), and predicts for ti a class label or a set of class labels

if the underlying classification is a multi-class multi-
label problem (i.e., each instance can be associated with
several class labels).

Scoring function. In HARMONY, the score for a
certain group of rules is defined in three different ways.
The first scoring function is called HIGHEST, which
computes the score as the highest confidence among the
covering rules w.r.t. test instance ti (by a ‘covering
rule’, we mean its rule body is a subset of ti). The
second method is based on the ALL function. It is the
default scoring function in HARMONY and computes
the score as the sum of the confidences of all the covering
rules w.r.t. ti. The third function is called TOP-K,
where K is a user-specified parameter. It computes
the score for a group of rules as the sum of the top
K highest confidences of the covering rules w.r.t. ti.
The HIGHEST and ALL functions can be thought of
as two special cases of the TOP-K function when K
is set at 1 and +∞. For a multi-class single-label
classification problem, HARMONY simply chooses the
class label with the highest score as the predicted class
label. While for a multi-class multi-label classification
problem, the prediction is a little complicated.

Multi-class multi-label classification. In [5],
the dominant factor -based method was proposed to
predict the class labels for a multi-class multi-label
classification problem and works as follows. Given a
user-specified dominant factor γ, let the class label
with the highest score be cmax and the corresponding
highest score w.r.t. test instance ti be SCOREcmax

ti ,
then any class label whose corresponding score is no
smaller than SCOREcmax

ti ×γ is a predicted class label
for ti. This method has been verified to be effective in
practice [5]. However, in many imbalanced classification
problems, the average confidence of each group of
classification rules may be quite different from each
other, this uniform dominant factor -based method will
not work well. A large dominant factor may lead to low
recalls (i.e., the percentage of the total test instances
for the given class label that are correctly classified)
for the classes with low average rule confidences, while
a small dominant factor can lead to low precisions
(i.e., the percentage of predicted instances for the
given class label that are correctly classified) for the
classes with high average rule confidences. To overcome
this problem, HARMONY adopts a weighted dominant
factor -based method. Let the average confidence of
the group of classification rules w.r.t. class label ck be
confavg

ck
, the score w.r.t. instance ti and class label ck

be SCOREck

ti . Instance ti is predicted to belong to class

ck if it satisfies the equation:

SCOREck

ti ≥ SCOREcmax

ti × γ × (
confavg

ck

confavg
cmax

)δ

Here, δ (δ ≥ 0) is called the score differentia
factor and the larger the δ, the more the difference

of the weighted dominant factors (i.e., γ × (
confavg

ck

conf
avg
cmax

)δ)

among different class labels. It is set to 1 by default in
HARMONY.

4 Related Work

There are two classes of algorithms that are directly re-
lated to this work. One is the traditional rule-induction-
based methods and the other is the recently proposed
association-rule-based methods. Both of these classes
share the same idea of trying to find a set of classifica-
tion rules to build the model. The rule-induction-based
classifiers like C4.5 [26], FOIL [27], RIPPER [13], and
CPAR [30] use various heuristics such as information
gain (including Foil gain) and gini index to identify the
best variable (or literal) by which to grow the current
rule, and many of them follow a sequential database
covering paradigm to speed up rule induction. The
association-based classifiers adopt another approach to
find the set of classification rules. They first use some
efficient association rule mining algorithms to discover
the complete (or a large intermediate) set of associ-
ation rules, from which the final set of classification
rules can be chosen based on various types of sequen-
tial database covering techniques. Some typical exam-
ples of association-based methods include CBA [25],
CMAR [24], and ARC-BC [5].

In contrast to the rule-induction-based algorithms,
HARMONY does not apply any heuristic pruning meth-
ods and the sequential database covering approach.
Instead, it follows an instance-centric framework and
mines the covering rules with the highest confidence
for each instance, which can achieve better accuracy.
At the same time, by maintaining one of the currently
best rules for each training instance and pushing deeply
several effective pruning methods into the projection-
based frequent itemset mining framework [20, 1, 18],
HARMONY directly mines the final set of classification
rules, which avoids the time consuming rule generation
and selection process used in several association-based
classifiers [25, 24, 5].

The idea of directly mining a set of high confidence
classification rules is similar to those in [7, 14]. Unlike
these methods, HARMONY does not need the user to
specify the minimum confidence and/or chi-square. In-
stead, it mines for each training instance one of the high-
est confidence frequent rules that it covers. In addition,
by maintaining one of the currently best classification

rules for each instance, HARMONY is able to incorpo-
rate some new pruning methods under the unpromis-
ing item (or conditional database) pruning framework,
which has been proven very effective in pushing deeply
the length-decreasing support constraint or tough block
constraints into closed itemset mining [28, 18].

Table 2: UCI database characteristics.

Database # instances # items # classes

adult 48842 131 2

chess 28056 66 18

connect 67557 66 3

led7 3200 24 10

letRegcog 20000 106 26

mushroom 8124 127 2

nursery 12960 32 5

pageBlocks 5473 55 5

penDigits 10992 90 10

waveform 5000 108 3

5 Empirical Results

5.1 Test Environment and Databases

We implemented HARMONY in C and performed the
experiments on a 1.8GHz Linux machine with 1GB
memory. We first evaluated HARMONY as a frequent
itemset mining algorithm to show the effectiveness of
the pruning methods, the algorithm efficiency and scal-
ability. Then we compared HARMONY with some well-
known classifiers on both categorical and text databases.

The UCI Databases. Many previous studies used
some small databases to evaluate both the accuracy
and efficiency of a classifier. For example, most of the
26 databases used in [25, 24, 30] only contain several
hundred instances, which means the test databases
contain too few test instances (i.e., only a few tens)
if the 10-fold cross validation is adopted to evaluate the
classification accuracy. In this paper, we mainly focus
on relatively large databases. By large, we mean the
database should contain no fewer than 1000 instances.

In [12], the author used 23 UCI databases to
compare FOIL and CPAR algorithms. Among these
23 databases, 10 of them are large databases and will
be used to compare HARMONY with FOIL, CPAR,
and SVM 4. The characteristics of these databases are
summarized in Table 2. All the 10 databases were
obtained from the author of [12] and the 10-fold cross
validation is used for comparison with FOIL, CPAR,
and SVM. Among these databases, connect is a too
dense database, during the 10-fold cross validation in

4The numerical attributes in these databases have been dis-
cretized by the author of [12], and the discretization technique is
different from those used in [25, 24, 30]; thus, the performance
reported here may be different from the previous studies even for
the same algorithm and the same database.

our experiments HARMONY only used the items whose
supports are no greater than 20,000 to generate rules for
this database.

Table 3: Top 10 topics in reuters-21578.
Category Name # train labels # test labels

acq 1650 719

corn 181 56

crude 389 189

earn 2877 1087

grain 433 149

interest 347 131

money-fx 538 179

ship 197 89

trade 369 118

wheat 212 71

total 7193 2787

Table 4: Class distribution in sports database.
Class Name Number of labels

baseball 3412

basketball 1410

football 2346

hockey 809

boxing 122

bicycle 145

golf 336

total 8580

Text Databases. We also used two text databases
in our empirical evaluation. The first database is the
popularly used ‘ModeApte’ split version of the reuters-
21578 collection, which was preprocessed and provided
by the authors of [11], and both the database and its
description are available at [10]. After preprocessing, it
contains totally 8575 distinct terms, 9603 training docu-
ments, and 3299 test documents. Like many other stud-
ies [21, 16, 5, 11], we are more interested in the top 10
most common categories (i.e., topics). These ten largest
categories form 6488 training documents and 2545 test
documents. A small portion of the training and test
documents are associated with multiple category la-
bels (that is, reuter-21578 is a multi-class multi-label
database). In our experiments, we treated each one of
the training documents with multiple labels as multiple
documents, each one with a distinct label. The top 10
categories and their corresponding number of labels in
the training and test databases are described in Table 3.
The second text database is sports, which was obtained
from San Jose Mercury (TREC). In our experiments,
we removed some highly frequent terms, and finally it
contains totally 8580 documents, 7 classes, and about
1748 distinct terms. The seven classes and their corre-
sponding number of documents are shown in Table 4.

5.2 Experimental Results

5.2.1 Evaluate HARMONY as a Frequent
Itemset Mining Algorithm

To mine the highest confidence covering rule(s) for each
instance, a näıve method is like the association-based
classifiers: first use an efficient association rule mining
algorithm to compute the complete set of classification
rules, from which the set of the highest confidence
covering rules w.r.t. each instance can be selected.
Our empirical results show that this method is usually
inefficient if the database is large and a more efficient
way is to push some effective pruning methods into the
frequent itemset mining framework and to directly mine
the final set of classification rules.

Ordering of the local items. In HARMONY, we
provide three options for item ordering, that is, CoR-
relation coefficient Ascending order (denoted by CRA),
Entropy Ascending order (denoted by EA), and Maxi-
mum Confidence Descending order (denoted by MCD).
We first evaluated the effectiveness of these item order-
ing schemes against Support Descending order (denoted
by SD) that is popularly used in frequent itemset min-
ing. Our experiments have shown that the three newly
proposed item ordering schemes are always more effi-
cient than the support descending ordering scheme. In
addition, these schemes also lead to slightly different
classification accuracy. This is partly because different
item ordering schemes may mine a different highest con-
fidence covering rule w.r.t. a certain training instance,
which may have different supports, although their con-
fidence is the same. The experimental results also show
that although the correlation coefficient ascending or-
dering scheme is not always the winner, on average it
is more efficient and has better accuracy than all the
other schemes. As a result, in HARMONY, it is chosen
as the default option for item ordering. Table 5 shows
the comparison result for the sports database at abso-
lute support of 200. We can see that the correlation co-
efficient ascending ordering scheme is more efficient and
also has slightly higher classification accuracy which was
measured using 10-fold cross validation.

Table 5: Item ordering test on sports database.

Ordering scheme CRA EA MCD SD

Runtime(in seconds) 55.7 88.6 110.8 156.3

Accuracy(in %) 85.57 85.51 85.53 85.52

Effectiveness of the pruning methods. We
also evaluated the effectiveness of the pruning methods.
Figure 1a shows the results for database penDigits
with absolute support threshold varying from 512 to

8. At first glance of Equation 3.5 and Equation 3.7,
the unpromising item and conditional database pruning
methods seem to be less effective at lower support,
however this is not the case when considering more
covering rules with higher confidence can be found at
lower support and can be used to more quickly raise the
currently maintained highest confidences. As we can
see from Figure 1a, if we turn off the pruning methods
used in HARMONY (denoted by ‘without pruning’), it
can become over an order of magnitude slower at low
support.

Scalability test. Figure 1b shows the scalability test
result for databases letRecog, waveform, and mushroom
with relative support set at 0.5%. In the experiments,
we replicated the instances from 2 to 16 times. We
can see that HARMONY has linear scalability in the
runtime with increasing number of instances.

1

10

100

1000

8163264128256512

R
u

n
ti

m
e
 i

n
 s

e
c
o

n
d

s

Absolute support threshold

Without pruning
With pruning

a) Pruning (penDigits)

20

40

60

80

100

120

140

160

180

200

2 4 6 8 10 12 14 16

R
u

n
ti

m
e
 i

n
 s

e
c
o

n
d

s

Replication factor

letRecog
waveform
mushroom

b) Scalability (0.5%)

Figure 1: Pruning and scalability test.

1

10

100

1000

64128256512

R
u

n
ti

m
e
 i

n
 s

e
c
o

n
d

s

Absolute support threshold

FPgrowth*
FPclose

HARMONY

a) Runtime comparison

50

60

70

80

90

800 400 200 100 50

Absolute support threshold

C
la

s
s
if

ic
a
ti

o
n
 a

c
c
u
r
a
c
y
 %

b) Classification accuracy

Figure 2: Efficiency test (sports).

Efficiency test. As we mentioned above, the tradi-
tional frequent (closed) itemset mining algorithms can
be revised to mine the complete set of high confidence
classification rules, from which a subset of high quality
rules can be further identified. Our efficiency tests for
HARMONY in comparison with FPgrowth* and FP-
close, two recently developed efficient frequent/closed

Table 6: Breakeven performance on the Reuters-21578 database with some well-known classifiers.

Categories HARMONY HARMONY HARMONY Find Similar Näıve Bayes Bayes Nets Decision Trees SVM
min sup=60 min sup=70 min sup=80 (linear)

acq 95.3 95.3 95.3 64.7 87.8 88.3 89.7 93.6

corn 78.2 78.6 75.2 48.2 65.3 76.4 91.8 90.3

crude 85.7 85.0 88.0 70.1 79.5 79.6 85.0 88.9

earn 98.1 98.2 97.6 92.9 95.9 95.8 97.8 98.0

grain 91.8 90.4 90.1 67.5 78.8 81.4 85.0 94.6

interest 77.3 76.6 75.1 63.4 64.9 71.3 67.1 77.7

money-fx 80.5 81.9 82.1 46.7 56.6 58.8 66.2 74.5

ship 86.9 82.9 82.8 49.2 85.4 84.4 74.2 85.6

trade 88.4 88.0 86.1 65.1 63.9 69.0 72.5 75.9

wheat 62.8 60.6 58.7 68.9 69.7 82.7 92.5 91.8

micro-avg 92.0 91.7 91.4 64.6 81.5 85.0 88.4 92.0

1

10

100

481632

R
u

n
ti

m
e
 i

n
 s

e
c
o

n
d

s

Absolute support threshold

FPgrowth*
FPclose

HARMONY

a) Runtime comparison

98

98.5

99

99.5

100

128 64 32 16 8 4

Absolute support threshold

C
la

s
s
if

ic
a
ti

o
n
 a

c
c
u
r
a
c
y
 %

b) Classification accuracy

Figure 3: Efficiency test (mushroom).

itemset mining algorithms [19], show that such an ap-
proach is not realistic at low support, while our exper-
iments demonstrate that the classification accuracy is
usually higher at low support.

Figure 2 shows the comparison results for database
sports. As we can see, although at high support, both
FPgrowth* and FPclose are faster than HARMONY,
once we continue to lower the support, they will be
much slower. For example, at absolute support of 100,
HARMONY is several orders of magnitude faster than
FPgrowth* and FPclose. Figure 2b shows the classifica-
tion accuracy at different support thresholds using the
10-fold cross validation. We can see that HARMONY
can achieve higher accuracy at lower support like 100.
It is also interesting to see that the accuracy at a too
low support 50 is worse than that at support 100 for
this database, due to the ‘overfitting’ problem.

Figure 3a shows similar comparison results for
categorical database mushroom. HARMONY is faster
than both FPgrowth* and FPclose at absolute support
lower than 32. Figure 3b shows that HARMONY has
better accuracy at low support threshold.

5.2.2 Classification Evaluation

The reuters–21578 (ModApte) text database.
For a multi-class multi-label database like reuters-

21578, most previous studies used the breakeven point
of precision and recall to measure the classifier perfor-
mance [6, 21, 16, 29, 9, 5, 11], which is defined as the
point at which precision is equal to the recall. To our
best knowledge, the best breakeven performance for the
reuters-21578 database is the linear SVM [16]. For com-
parison with earlier results, we first found the overall
breakeven point in terms of all top 10 categories by ad-
justing the dominant factor γ, then reported the average
of precision and recall for each category as their corre-
sponding breakeven performance [16].

Table 6 shows the comparison results with some
previous results. The results for Find-Similar, Näıve-
Bayes, Bayes-Nets, Decision-Trees, and Linear-SVM
were obtained from [16]. The micro-avg is the overall
breakeven performance over all 10 categories. For
HARMONY, we used three different absolute support
thresholds, 60, 70, and 80, respectively. From Table 6
we can see that both HARMONY and Linear-SVM
have similar breakeven performance and perform much
better than all the other classifiers. Among the 10
categories, HARMONY achieves the best performance
at support of 60 for five categories, acq, earn, money-
fx, ship, and trade. While Linear-SVM performs best
for another three categories, crude, grain, and interest.
Decision-Trees also performs good and has the best
performance for two small categories, corn and wheat.
SVM is very well known for classifying high dimensional
text databases. Our results show that HARMONY can
achieve similar performance to SVM.

The UCI databases. We evaluated HARMONY
on the UCI databases in comparison with FOIL,
CPAR, and SVM. FOIL and CPAR are two well-known
algorithms for classifying categorical data. The results
in [30] show that CPAR has better accuracy than
c4.5 [26] and ripper [13], and has comparable accuracy
to the association-based algorithms CMAR [24] and
CBA [25], but is orders of magnitude faster; thus, we
will do not compare HARMONY with c4.5, ripper,
and the association-based algorithms. The results for
FOIL and CPAR were provided by Frans Coenen and

are available at [12]. Because most databases we used
contain more than two class labels, when comparing
with SVM, we used SV Mmulticlass (Version: 1.01),
which is an implementation of the multi-class Support
Vector Machine and is available at http : //www.cs.
cornell.edu/People/tj/svm light/svm multiclass.html.
In the experiments, we ran SVM with its default set-
ting5. All the results including the accuracy and
runtime are computed using the 10-fold cross vali-
dation. The reported accuracy is the corresponding
average value of the 10-fold cross validation results,
while the runtime is the total runtime of the 10-fold
cross validation, including both training and testing
time. In the experiments, we fixed the absolute support
threshold at 50 for HARMONY with all 10 UCI
databases.

Table 7: Accuracy comparison on 10 large UCI
databases (min sup=50 for HARMONY).

Database FOIL CPAR SVM HARMONY

adult 82.5 76.7 84.16 81.9

chess 42.6 32.8 29.83 44.87

connect 65.7 54.3 72.5 68.05

led7 62.3 71.2 73.78 74.56

letRecog 57.5 59.9 67.76 76.81

mushroom 99.5 98.8 99.67 99.94

nursery 91.3 78.5 91.35 92.83

pageBlocks 91.6 76.2 91.21 91.6

penDigits 88.0 83.0 93.2 96.23

waveform 75.6 75.4 83.16 80.46

average 75.66 70.68 78.663 80.725

Table 7 shows the accuracy comparison results,
which reveal that HARMONY has much better overall
accuracy than FOIL and CPAR, and has comparable ac-
curacy with SVM. The average accuracy of HARMONY
over all 10 UCI databases is about 5% higher than FOIL,
10% higher than CPAR, and 2% higher than SVM. SVM
performs very well for the databases with few class la-
bels, like adult, connect, and waveform, but has much
worse accuracy than HARMONY for the databases with
many class labels, like chess and letRecog. Compared
with SVM, HARMONY has reasonably stable and good
performance over all 10 UCI databases. Note in the
experiments we fixed the minimum support at 50 for
all 10 UCI databases. If we choose some tuned sup-
ports, HARMONY can achieve better performance than
what we reported here for some databases. For exam-
ple, if we choose the minimum support at 5 for the
chess database, HARMONY has an accuracy of 58.43%,
which is over 13% higher than the accuracy at support
50, while it only becomes about two times slower.

Table 8 compares the runtime (in seconds) of the
four algorithms. Note that FOIL and CPAR were

5We used its default linear kernel function.

Table 8: Runtime comparison on 10 large UCI
databases (min sup=50 for HARMONY).

Database FOIL CPAR SVM HARMONY

adult 10251.0 809.0 2493.1 1395.5

chess 10122.8 1736.0 13289.4 11.34

connect 35572.5 24047.1 74541.1 85.44

led7 11.5 5.7 17.12 1.29

letRecog 4365.6 764.0 17825.2 778.91

mushroom 38.3 15.4 16.6 8.78

nursery 73.1 51.7 322.4 6.21

pageBlocks 43.1 15.5 11.2 2.5

penDigits 821.1 101.9 512.7 82.6

waveform 295.3 38.1 36.2 130.0

total 61594.3 27584.4 109065.02 2502.57

implemented in java and were tested on a different
machine from that of HARMONY and SVM. As a
result, their runtime cannot be directly compared to
those reported for HARMONY and SVM but they only
provide an overall idea on the relative computational
requirements of the various schemes. Table 8 shows that
on average the runtime of HARMONY is over an order
of magnitude smaller than those of FOIL, CPAR, and
SVM. For some large databases like chess, the runtime
of HARMONY can be over two orders of magnitude
smaller than those of FOIL and CPAR, and over three
orders of magnitude smaller than that of SVM.

Table 9: Test of scoring functions (min sup=50)

Database HIGHEST TOP 3 TOP 5 ALL

adult 82.52 82.59 82.61 81.9

chess 43.06 40.44 37.81 44.87

connect 67.7 67.35 67.16 68.05

led7 72.98 73.34 71.2 74.56

letRecog 73.69 72.99 71.79 76.81

mushroom 99.95 99.95 99.95 99.94

nursery 94.62 93.98 93.72 92.83

pageBlocks 91.34 91.34 91.34 91.6

penDigits 94.49 94.24 93.93 96.23

waveform 78.82 78.82 79.52 80.46

average 79.917 79.504 79.513 80.725

Scoring function test. In the above classifica-
tion evaluation, HARMONY adopted its default scor-
ing function, ALL, to compute the score for a certain
group of rules. In our experiments, we also evaluated
the effectiveness of different scoring functions in HAR-
MONY, including ALL, HIGHEST, and TOP-K (K
was set at 3 and 5 in the experiments). The results
w.r.t. the UCI databases are shown in Table 9. We
see that the ALL function can achieve overall better ac-
curacy than the other functions, while other functions
can also have better accuracy for some databases. For
example, the HIGHEST function achieves better accu-
racy for database nursery, and the TOP-K function can
achieve better performance for database adult.

6 Conclusion

Designing accurate, efficient, and scalable classifiers is
an important research topic in data mining, and the
rule-based classifiers have been proven very effective in
classifying the categorical or high-dimensional sparse
data. However, to achieve high accuracy, a good rule-
based classifier needs to find a sufficient number of high
quality classification rules and use them to build the
model. In this paper, we proposed an instance-centric
classification rule mining paradigm and designed an
accurate classifier, HARMONY. Several effective search
space pruning methods and search strategies have also
been proposed, which can be pushed deeply into the
rule discovery process. Our performance study shows
that HARMONY has high accuracy and efficiency in
comparison with many well known classifiers for both
the categorical and high dimensional text data. It also
has good scalability in terms of the database size.

Acknowledgements

We are grateful to Frans Coenen at the University of
Liverpool and Shane Bergsma at the University of Al-
berta for providing us the discretized UCI databases and
the reuters-21578 database, respectively, and promptly
answering our various questions. We also thank Osmar
R. Zäıane and Maria-Luiza Antonie at the University
of Alberta for answering our questions related to the
ARC-BC algorithm.

References

[1] R. Agarwal, C. Aggarwal, V. Prasad. A Tree Projec-
tion Algorithm for Generation of Frequent Item Sets,
Journal of Parallel and Distributed Computing. 61(3),
2001.

[2] R. Agrawal, T. Imielinski, A. Swami. Mining Associ-
ation Rules between Sets of Items in Large Databases,
SIGMOD’93.

[3] R. Agrawal, R. Srikant. Fast Algorithms for Mining
Association Rules, VLDB’94.

[4] K. Ali, S Manganaris, R. Srikant. Partial Classification
Using Association Rules, KDD’97.

[5] M. Antonie, O. Zaiane. Text Document Categorization
by Term Association, ICDM’02.

[6] C. Apte, F. Damerau, S.M. Weiss. Towards Language
Independent Automated Learning of Text Categoriza-
tion Models, SIGIR’94.

[7] R.J. Bayardo. Brute-force Mining of High-confidence
Classification rules, KDD’97.

[8] R.J. Bayardo, R. Agrawal. Mining the most interesting
rules, KDD’99.

[9] R. Bekkerman, R. EI-Yaniv, N. Tishby, Y. Winter.
On Feature Distribution Clustering for Text Catego-
rization, SIGIR’01.

[10] S. Bergsma. The Reuters-21578 (ModApte)
dataset, Department of Computer Sci-
ence, University of Alberta. Available at
http://www.cs.ualberta.ca/∼bergsma/650/.

[11] S. Bergsma, D. Lin. Title Similarity-Based Feature
Weighting for Text Categorization, CMPUT 650 Re-
search Project Report, Department of Computer Sci-
ence, University of Alberta.

[12] F. Coenen. (2004) The LUCS-KDD Implementa-
tions of the FOIL, PRM, and CPAR algorithms,
http://www.csc.liv.ac.uk/∼ frans/KDD/Software/
FOIL PRM CPAR/foilPrmCpar.html, Computer
Science Department, University of Liverpool, UK.

[13] W. Cohen. Fast effective rule induction, ICML’95.
[14] G. Cong, X. Xu, F. Pan, A. Tung, J. Yang.

FARMER: Finding Interesting Rule Groups in Mi-
croarray Datasets, SIGMOD’04.

[15] M. Deshpande, G. Karypis. Using Conjunction of
Attribute Values for Classification, CIKM’02.

[16] S. Dumais, J. Platt, D. Heckerman, M. Sahami. Induc-
tive Learning Algorithms and Representations for Text
Categorization, CIKM’98.

[17] T. Fukuda, Y. Morimoto, S. Motishita. Constructing
Efficient Decision Trees by Using Optimized Numeric
Association Rules, VLDB’96.

[18] K. Gade, J. Wang, G. Karypis. Efficient Closed Pattern
Mining in the Presence of Tough Block Constraints, to
appear in KDD’04.

[19] G. Grahne, J. Zhu. Efficiently Using Prefix-trees in
Mining Frequent Itemsets, ICDM-FIMI’03.

[20] J. Han, J. Pei, Y. Yin. Mining Frequent Patterns
without Candidate Generation, SIGMOD’00.

[21] T. Joachims. Text Categorization with Support Vector
Machines: Learning with Many Relevant Features,
ECML’98.

[22] B. Lent, A. Swami, J. Widom. Clustering Association
Rules, ICDE’97.

[23] N. Lesh, M. Zaki, M. Ogihara. Mining Features for
Sequence Classification, KDD’99.

[24] W. Li, J. Han, J. Pei. CMAR: Accurate and Efficient
Classification based on multiple class-association rules,
ICDM’01.

[25] B. Liu, W. Hsu, Y. Ma. Integrating Classification and
Association Rule Mining, KDD’98.

[26] J. Quinlan. C4.5: Programs for Machine Learning,
Morgan Kaufman, 1993.

[27] J. Quinlan, R. Cameron-Jones. FOIL: A Midterm
Report, ECML’93.

[28] J. Wang, G. Karypis. BAMBOO: Accelerating Closed
Itemset Mining by Deeply Pushing the Length-
Decreasing Support Constraint, SDM’04.

[29] Y. Yang. An Evaluation of Statistical Approaches to
Text Categorization, Information Retrieval, Vol. 1, No.
1-2, 1999.

[30] X. Yin, J. Han. CPAR: Classification based on Predic-
tive Association Rules, SDM’03.

[31] M. Zaki, C. Aggarwal. XRULES: An Effective Struc-
tural Classifier for XML Data, KDD’03.

	Text1: Appears in SIAM 2005 Data Mining Conference

