
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL XX, NO. XX, 2006 1

On Mining Instance-Centric Classification Rules
Jianyong Wang and George Karypis

Abstract— Many studies have shown that rule-based classi-
fiers perform well in classifying categorical and sparse high-
dimensional databases. However, a fundamental limitation with
many rule-based classifiers is that they find the rules by em-
ploying various heuristic methods to prune the search space,
and select the rules based on the sequential database covering
paradigm. As a result, the final set of rules that they use may
not be the globally best rules for some instances in the training
database. To make matters worse, these algorithms fail to fully
exploit some more effective search space pruning methods in
order to scale to large databases.

In this paper we present a new classifier, HARMONY, which
directly mines the final set of classification rules. HARMONY
uses an instance-centric rule-generation approach and it can
assure for each training instance, one of the highest-confidence
rules covering this instance is included in the final rule set,
which helps in improving the overall accuracy of the classifier. By
introducing several novel search strategies and pruning methods
into the rule discovery process, HARMONY also has high
efficiency and good scalability. Our thorough performance study
with some large text and categorical databases has shown that
HARMONY outperforms many well-known classifiers in terms
of both accuracy and computational efficiency, and scales well
w.r.t. the database size.

Index Terms—Data mining, classification rule, instance-
centric, classifier.

I. INTRODUCTION

As one of the most fundamental data mining tasks, clas-
sification has been extensively studied and various types of
classification algorithms have been proposed. Among which,
one category is the rule-based classifiers [29], [30], [13], [33].
They build a model from the training database as a set of high-
quality rules, which can be used to predict the class labels of
unlabeled instances. Many studies have shown that rule-based
classification algorithms perform very well in classifying both
categorical databases [30], [28], [27], [33] and sparse high-
dimensional databases such as those arising in the context of
document classification [6], [5].

Some traditional rule-based algorithms like FOIL [30],
RIPPER [13], and CPAR [33] discover a set of classification
rules one-rule-at-a-time and employ a sequential covering
methodology to eliminate from the training set the positive
instances that are covered by each newly discovered rule. This
rule induction process is done in a greedy fashion as it employs
various heuristics (e.g., information gain) to determine how
each rule would be extended. Due to this heuristic rule-
induction process and the sequential covering framework, the
final set of discovered rules are not guaranteed to be the best

Jianyong Wang is with the Department of Computer Science and
Technology, Tsinghua University, Beijing, 100084, China. E-mail: jiany-
ong@tsinghua.edu.cn.

George Karypis is with the Department of Computer Science and Engineer-
ing, Digital Technology Center and Army HPC Research Center, University
of Minnesota, Minneapolis, MN 55455, U.S.A. Email: karypis@cs.umn.edu.

possible. For example, due to the removal of some training
instances, the information gain is computed based on the
incomplete information; thus, the variable (or literal) chosen
by these algorithms to extend the current rule will be no longer
the globally optimal one. Moreover, for multi-class problems,
these algorithms need to be applied multiple times, each time
mining the rules for one class. If the training database is large
and contains many classes, the algorithms will be inefficient.

Since the introduction of association rule mining [2], many
association-based classifiers have been proposed [19], [24],
[7], [4], [8], [25], [16], [5], [34], [15]. Some typical examples
like CBA [28] and CMAR [27] adopt efficient association rule
mining algorithms (e.g., Apriori [3] and FP-growth [22]) to
first mine a large number of high-confidence rules satisfying
a user-specified minimum support and confidence thresholds
and then use various sequential-covering-based schemes to
select from them a set of high-quality rules to be used for
classification. Since these schemes defer the selection step only
after a large intermediate set of high-confidence rules have
been identified, they tend to achieve somewhat better accuracy
than the heuristic rule induction schemes [33]. However, the
drawback of these approaches is that the number of initial
rules is usually extremely large, significantly increasing the
rule discovery and selection time.

In this paper we propose a new classification algorithm,
HARMONY1, which can overcome the problems of both
the rule-induction-based and the association-rule-based algo-
rithms. HARMONY directly mines for each training instance
one of the highest confidence classification rules that it sup-
ports and satisfies a user-specified minimum support con-
straint, and builds the classification model from the union of
these rules over the entire set of instances. Thus HARMONY
employs an instance-centric rule generation framework and
is guaranteed to find and include the best possible rule for
each training instance. Moreover, since each training instance
usually supports many of the discovered rules, the overall
classifier can better generalize to new instances and thus
achieve better classification performance.

To achieve high computational efficiency, HARMONY
mines the classification rules for all the classes simultaneously
and directly mines the final set of classification rules by push-
ing deeply some effective pruning methods into the projection-
based frequent itemset mining framework. All these pruning
methods preserve the completeness of the resulting rule-set in
the sense that they only remove from consideration rules that
are guaranteed not to be of high quality. We have performed
numerous performance studies with various databases and
shown that HARMONY can achieve better accuracy while

1 HARMONY stands for Highest confidence clAssification Rule Mining
fOr iNstance-centric classifYing.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL XX, NO. XX, 2006 2

maintaining high efficiency.
The rest of the paper is organized as follows. Section II

introduces some basic definitions and notations. Section III
describes the problem formulation. Section IV introduces some
related work. Section V discusses in detail the HARMONY
algorithm and some extensions to the algorithm. The perfor-
mance study is presented in Section VI. Finally, the paper
concludes with Section VII.

II. NOTATIONS AND DEFINITIONS

A training database TrDB is a set of training instances,
where each training instance, denoted as a triple 〈tid, X, cid〉,
contains a set of items (i.e., X) and is associated with a
unique training instance identifier tid, and a class identifier
cid ∈ {c1, c2, ..., ck} (A class identifier is also called a class
label, and we assume there are totally k distinct class labels
in TrDB). Table I illustrates an example training database,
which contains totally eight instances and two classes. Let
I={i1, i2, . . . , in} be the complete set of distinct items ap-
pearing in TrDB. An itemset Y is a non-empty subset of I
and is called an l-itemset if it contains l items. An itemset
{x1, . . . , xl} is also denoted by x1 · · ·xl. A training instance
〈tid, X, cid〉 is said to contain itemset Y if Y ⊆ X. The
number of instances in TrDB containing itemset Y is called
the (absolute) support of itemset Y , denoted by supY . The
number of instances containing itemset Y and associated with
a class label ci (where i ∈ {1, 2, ..., k}) is called the support of
Y ∪{ci}, denoted by supci

Y . A classification rule has the form:
‘Y → ci : supci

Y , confci

Y ’, where Y is called the body, ci the

head, supci

Y the support, and conf ci

Y = sup
ci
Y

sup
Y

the confidence of
the rule, respectively. In addition, we use |TrDB| to denote
the number of instances in database TrDB, and for brevity, we
sometimes use the instance identifier tid to denote an instance
〈tid, X, cid〉.

TABLE I

AN EXAMPLE TRAINING DATABASE TrDB .

Instance identifier Set of items Class identifier
01 a, c, e, g 1
02 b, d, e, f 0
03 d, e, f 0
04 a, b, c, e 1
05 a, c, e 1
06 b, d, e 0
07 a, b, e 1
08 a, b, d, e 0

Given a minimum support threshold, min sup, an itemset Y
is frequent if supY ≥min sup. A frequent itemset Y supported
by any training instance 〈tj , Xj, ci〉 (1 ≤ j ≤ |TrDB| and
1 ≤ i ≤ k) is also called a frequent covering itemset of
instance tj , and ‘Y → ci : supci

Y , confci

Y ’ is called a frequent
covering rule of instance tj . Among the frequent covering
rules of any instance tj , those with the highest confidence are
called the Highest Confidence Covering Rules w.r.t. instance
tj . We denote a Highest Confidence Covering Rule w.r.t.
instance tj by HCCRtj , and use HCCRsup

tj
and HCCRconf

tj

to denote its support and confidence.

III. PROBLEM DEFINITION

The goal of this paper is to design an accurate and efficient
rule-based classifier with good scalability, which should be
able to overcome the problems of both the traditional rule-
based and the recently proposed association-based classifiers.
As mentioned in Section I, instead of using the sequential
database covering to select the rules, our solution mines a
set of high quality rules in an instance-centric manner and
can assure that at least one of the highest confidence frequent
covering rules (if there is any) w.r.t. any training instance is
included in the final result set of classification rules.

Specifically, given a training database TrDB and a mini-
mum support threshold min sup, the problem of this study is to
find one of the highest confidence frequent covering rules for
each of the training instances in TrDB, and build a classifier
from these classification rules. Note the input training database
must be in the form that is consistent with the corresponding
definition in Section II, otherwise, the training database should
be first converted to that form. For example, a numerical
database should be first discretized into a categorical one in
order to use HARMONY to build the model. In addition,
although this study mainly focuses on mining any one of the
highest confidence frequent covering rules for each training
instance, it is straightforward to revise HARMONY to mine
the complete set of the highest confidence frequent covering
rules or K highest confidence frequent covering rules for each
training instance as discussed in Section V-D.2.

IV. RELATED WORK

There are two classes of algorithms that are directly re-
lated to this work. One is the traditional rule-induction-based
methods and the other is the recently proposed association-
rule-based methods. Both of these classes share the same idea
of trying to find a set of classification rules to build the model.
The rule-induction-based classifiers like C4.5 [29], FOIL [30],
RIPPER [13], and CPAR [33] use various heuristics such
as information gain (including Foil gain) and gini index to
identify the best variable (or literal) by which to grow the
current rule, and many of them follow a sequential database
covering paradigm to speed up rule induction. The association-
based classifiers adopt another approach to find the set of
classification rules. They first use some efficient association
rule mining algorithms to discover the complete (or a large
intermediate) set of association rules, from which the final
set of classification rules can be chosen based on various
types of sequential database covering techniques. Some typical
examples of association-based (or Emerging Pattern-based)
methods include CBA [28], CAEP [17], CMAR [27], ARC-
BC [5], and DeEPs [26].

In contrast to the rule-induction-based algorithms, HAR-
MONY does not apply any heuristic pruning methods and the
sequential database covering approach. Instead, it follows an
instance-centric framework and mines the covering rules with
the highest confidence for each instance, which can achieve
better accuracy. At the same time, by maintaining the currently
best rules for each training instance and pushing deeply several
effective pruning methods into the projection-based frequent

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL XX, NO. XX, 2006 3

itemset mining framework [22], [1], [20], HARMONY directly
mines the final set of classification rules, which avoids the
time consuming rule generation and selection process used in
several association-based classifiers [28], [27], [5].

The idea of directly mining a set of high confidence rules is
similar to those in [7], [15]. The author of [7] investigated a
brute-force technique for mining the set of high-confidence
classification rules, and proposed several effective pruning
strategies to control the combinatorial explosion in the number
of rule candidates. The FARMER algorithm [15] finds the
interesting rule groups for microarray databases. It mines the
rules in a row enumeration space, and fully exploits some
pruning methods to prune the search space based on the
user-specified constraints like minimum support, confidence,
and chi-square. Unlike [7], [15], HARMONY does not need
the user to specify the minimum confidence and/or chi-
square. Instead, it mines for each training instance one of the
highest confidence frequent rules that it covers. In addition,
by maintaining the currently best classification rules for each
instance, HARMONY is able to incorporate some new pruning
methods under the unpromising item (or conditional database)
pruning framework, which has been proven very effective in
pushing deeply the length-decreasing support constraint or
tough block constraints into closed itemset mining [31], [20].
In addition, recently we noticed that a similar approach [14]
to this research was independently proposed at the same
time frame, and showed its high accuracy in classifying gene
expression data.

V. HARMONY: AN INSTANCE-CENTRIC CLASSIFIER

In this section, we will describe in detail the HARMONY
algorithm. We first elaborate on how to adapt the traditional
projection-based frequent itemset mining framework to effi-
ciently enumerate the classification rules, then we focus on
how to push deeply some effective pruning methods into the
rule enumeration framework and give the whole algorithm.
Finally we will discuss several important extensions to HAR-
MONY.

A. Classification Rule Enumeration

The projection-based itemset enumeration framework has
been widely used in many frequent itemset mining algo-
rithms [22], [1], [20], and will be used by HARMONY as
the basis in enumerating the classification rules. Given a
training database TrDB and a minimum support min sup,
HARMONY first computes the frequent items by scanning
TrDB once, and sorts them to get a list of frequent items
(denoted by f list) according to a certain ordering scheme.
Assume the min sup is 3 and the lexicographical ordering is
the default ordering scheme, the f list computed from Table I
is {a, b, c, d, e}. HARMONY applies the divide-and-conquer
method plus the depth-first search strategy. In our example,
HARMONY first mines the rules whose body contains item
‘a’, then mines the rules whose body contains ‘b’ but no
‘a’, ..., and finally mines the rules whose body contains only
‘e’. In mining the rules with item ‘a’, item ‘a’ is treated as
the current prefix, and its conditional database (denoted by

TrDB|a) is built and the divide-and-conquer method is ap-
plied recursively with the depth-first search strategy. To build
conditional database TrDB|a, HARMONY first identifies the
instances in TrDB containing ‘a’ and removes the infrequent
items, then sorts the left items in each instance according to the
f list order, finally TrDB|a is built as {〈01, ce, 1〉, 〈04, bce, 1〉,
〈05, ce, 1〉, 〈07, be, 1〉, 〈08, be, 0〉 } (infrequent items ‘d’ and
‘g’ are removed). Following the divide-and-conquer method,
HARMONY first mines the rules with prefix ‘ab’, then mines
rules with prefix ‘ac’ but no ‘b’, and finally mines rules with
prefix ‘ae’ but no ‘b’ nor ‘c’.

During the mining process, when HARMONY gets a new
prefix, it will generate a set of classification rules w.r.t. the
training instances covered by the prefix. For each training
instance, it always maintains one of its currently highest
confidence rules mined so far. Assume the current prefix P
is ‘a’ (i.e., P =‘a’). As shown in the above example, P covers
five instances with tids 01, 04, 05, 07, and 08. HARMONY
computes the covering rules according to the class distribution
w.r.t. the prefix P . In this example, supP =5, sup0

P =1, sup1
P =4,

and HARMONY generates two classification rules:

Rule 1: a → 0 : 1, 1
5

Rule 2: a → 1 : 4, 4
5

Rule 1 covers the instance with tid 08, while Rule 2 covers
the instances with tids 01, 04, 05 and 07. Up to this point,
we have HCCR01 = HCCR04 = HCCR05 = HCCR07 =
Rule 2, and HCCR08 = Rule 1.

1) Ordering of the Local Items: In the above rule enu-
meration process, we used the lexicographical ordering as an
illustration to sort the set of local frequent items in order to
get the f list. Many frequent itemset mining algorithms either
adopt item support descending order [22] or support ascending
order [20] as the ordering scheme. However, because we are
interested in the highest confidence rules w.r.t. the training
instances, both the support descending order and ascending
order may not be the most efficient and effective ways. As a
result, we propose the following three new ordering schemes
as the alternatives.

Let the current prefix be P , its support be supP , the support
and confidence of the classification rule w.r.t. prefix P and
class label ci, ‘P → ci’, be supci

P and confci

P , respectively,
the set of local frequent items be {x1, x2, ..., xm}, the
number of prefix P ’s conditional instances containing item x j

(1 ≤ j ≤ m) and associated with class label ci (1 ≤ i ≤ k)
be supci

P∪{xj}, and the support of P ∪ {xj} be sup
P∪{xj}

=
∑k

i=1 supci

P∪{xj}.
Maximum confidence descending order. Given a local item
xj (1 ≤ j ≤ m) w.r.t. P , we can compute k rules with body
P ∪ {xj}, among which, the i-th rule with rule head ci is:

P ∪ {xj} → ci : supci

P∪{xj},
sup

ci
P∪{xj}

sup
P∪{xj}

The highest confidence among the k rules with body P ∪
{xj} is called the maximum confidence of local item xj , and
is defined as the following:

max ∀i,1≤i≤k
supci

P∪{xj}
sup

P∪{xj}
(1)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL XX, NO. XX, 2006 4

To mine the highest confidence covering rules as quickly as
possible, a good heuristic is to sort the local frequent items in
their maximum confidence descending order.
Entropy ascending order. The widely used entropy to
some extent measures the purity of a cluster of instances.
If the entropy of the set of instances containing P ∪ {x j}
(1 ≤ j ≤ m) is small, it is highly possible to generate some
high confidence rules with body P ∪{xj}. Thus another good
ordering heuristic is to rank the set of local frequent items in
their entropy ascending order, and the entropy w.r.t. item xj

is defined as follows:

− 1
log k

k∑
i=1

(
supci

P∪{xj}
sup

P∪{xj}
) log(

supci

P∪{xj}
sup

P∪{xj}
) (2)

Correlation coefficient ascending order. Both the maximum
confidence descending order and entropy ascending order do
not consider the class distribution of the conditional database
w.r.t. prefix P , which may cause some problems in some cases.
Let us see an example. Assume the number of class labels k=2,
supc1

P = 12, and supc2
P = 6, then we can get two rules with

body P as follows:

Rule 3: P → c1 : 12, 12
18

Rule 4: P → c2 : 6, 6
18

Suppose there are two local items, x1 and x2,
and supc1

P∪{x1}=2, supc2
P∪{x1}=1, supc1

P∪{x2}=1, and
supc2

P∪{x2}=2. According to Equation 1 and Equation 2,
the maximum confidence and entropy w.r.t. item x1 are equal
to the corresponding maximum confidence and entropy w.r.t.
x2. Thus we cannot determine which one of x1 and x2

should be ranked higher. However, because the conditional
database TrDB|P∪{x1} has the same class distribution as
conditional database TrDB|P , we cannot generate rules with
body P ∪ {x1} and a confidence higher than those with
body P (i.e., Rule 3 and Rule 4). The two rules with body
P ∪ {x1} are shown as the following.

Rule 5: P ∪ {x1} → c1 : 2, 2
3

Rule 6: P ∪ {x1} → c2 : 1, 1
3

If we examine the rules generated from prefix itemset P ∪
{x2} as shown in Rule 7 and Rule 8, we can see Rule 8 has
higher confidence than Rule 4, and can be used to replace
Rule 4 for the instances covered by Rule 8. In this case , item
x2 should be ranked before item x1.

Rule 7: P ∪ {x2} → c1 : 1, 1
3

Rule 8: P ∪ {x2} → c2 : 2, 2
3

This example suggests that the more similar the class
distribution between conditional databases TrDB|P and
TrDB|P∪{xj} (1 ≤ j ≤ m), the lower is the possibility to
generate higher confidence rules from TrDB|P∪{xj}. Because
the correlation coefficient is a good metric in measuring the
similarity between two vectors (the larger the coefficient, the
more similar the two vectors), it can be used to rank the local
items. In HARMONY, the correlation coefficient ascending
order is adopted to sort the local items.

Let supP be 1
k

∑k
i=1 supci

P , supP∪{xj} be
1
k

∑k
i=1 supci

P∪{xj}, σP be
√

1
k

∑k
i=1(supci

P)2 − supP

2,

σ
P∪{xj} be

√
1
k

∑k
i=1(supci

P∪{xj})
2 − supP∪{xj}

2, the
correlation coefficient between prefix P and P ∪ {xj}
(1 ≤ j ≤ m) is defined as follows.

1
k

∑k
i=1(supci

P × supci

P∪{xj} − sup
P
× supP∪{xj})

σ
P
× σ

P∪{xj}
(3)

B. Search Space Pruning

Unlike the association-based algorithms, HARMONY di-
rectly mines the final set of classification rules. By maintain-
ing the current highest confidence among the covering rules
for each training instance during the mining process, some
effective pruning methods can be proposed to improve the
algorithm efficiency.

1) Support Equivalence Item Elimination: Given the cur-
rent prefix P , among its set of local frequent items
{x1, x2, ..., xm}, some may have the same support as P . We
call them support equivalence items and can be safely pruned
according to the following Lemma 1.

Lemma 1: (Support equivalence item pruning) Any local
item xj w.r.t. prefix P can be safely pruned if it satisfies
sup

P∪{xj} = supP .
Proof. Because sup

P∪{xj} = sup
P

holds, TrDB|P and
TrDB|P∪{xj} contain the same set of conditional instances;
thus, their class distributions are also the same and the
following equation must hold:

∀i, 1 ≤ i ≤ k, supci

P∪{xj} = supci

P

Given any itemset, Y , which can be used to extend P (Y
can be empty), can also be used to extend P ∪ {xj}, and the
following must hold:

∀i, 1 ≤ i ≤ k, supci

P∪{xj}∪Y = supci

P∪Y

We can further have the following equation:

∀i, 1 ≤ i ≤ k,
sup

ci
P∪{xj}∪Y

sup
P∪{xj}∪Y

= sup
ci
P∪Y

sup
P∪Y

This means the confidence of the rule ‘P∪{xj}∪Y → ci’ is
equal to the confidence of the rule ‘P∪Y → ci’, and we cannot
generate higher confidence rules from prefix P ∪ {xj} ∪ Y in
comparison with the rules with body P ∪ Y . Thus, item xj

can be safely pruned.
Note P ∪ Y is a subset of P ∪ {xj} ∪ Y , by pruning item

xj , we prefer the more generic classification rules. A similar
strategy was adopted in [7], [15].

2) Unpromising Item Elimination: Given the current prefix
P , any one of its local frequent items, xj (1 ≤ j ≤ m), any
itemset Y that can be used to extend P ∪ {xj} (where Y can
be empty and P ∪ {xj} ∪ Y is frequent), and any class label
ci (1 ≤ i ≤ k), the following equation must hold:

confci

P∪{xj}∪Y =
supci

P∪{xj}∪Y

sup
P∪{xj}∪Y

≤
supci

P∪{xj}∪Y

min sup

≤
supci

P∪{xj}
min sup

Because confci

P∪{xj}∪Y ≤ 1 also holds, we have the
following equation:

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL XX, NO. XX, 2006 5

confci

P∪{xj}∪Y ≤ min{1,
supci

P∪{xj}
min sup

} (4)

Lemma 2: (Unpromising item pruning) For any condi-
tional instance 〈tl, Xl, ci〉 ∈ TrDB|P∪{xj} (∀l, 1 ≤ l ≤
|TrDB|P∪{xj}|, and 1 ≤ i ≤ k), if the following always
holds, item xj is called an unpromising item and can be safely
pruned.

HCCRconf
tl

≥ min{1,
supci

P∪{xj}
min sup

} (5)

Proof. By combining Equation 4 and Equation 5 we get that
for any itemset Y (Y can be empty) the following must hold:

confci

P∪{xj}∪Y ≤ HCCRconf
tl

This means that any rule mined by growing prefix P ∪
{xj} will have a confidence that is no greater than the current
highest confidence covering rules (with the same rule head) of
any conditional instance in TrDB|P∪{xj}; thus, item xj can
be safely pruned.

3) Unpromising Conditional Database Elimination: Given
the current prefix P , any itemset Y (where Y can be empty
and P ∪ Y is frequent), any class label ci (1 ≤ i ≤ k), the
confidence of rule ‘P ∪ Y → ci’, confci

P∪Y , must satisfy the
following equation:

confci

P∪Y =
supci

P∪Y

sup
P∪Y

≤ supci

P∪Y

min sup
≤ supci

P

min sup

In addition, because confci

P∪Y ≤ 1 also holds, we have the
following equation:

confci

P∪Y ≤ min{1,
supci

P

min sup
} (6)

Lemma 3: (Unpromising conditional database pruning)
For any conditional instance 〈tl, Xl, ci〉 ∈ TrDB|P (∀l, 1 ≤
l ≤ |TrDB|P |, and 1 ≤ i ≤ k), if the following always holds,
the conditional database TrDB|P can be safely pruned.

HCCRconf
tl

≥ min{1,
supci

P

min sup
} (7)

Proof. By combining Equation 6 and Equation 7 we can get
that for any itemset Y (Y can be empty) and ∀l, 1 ≤ l ≤
|TrDB|P |, 〈tl, Xl, ci〉 ∈ TrDB|P (1 ≤ i ≤ k), the following
must hold:

confci

P∪Y ≤ HCCRconf
tl

This means that any rule mined by growing prefix P will
have a confidence that is no greater than the current highest
confidence rules (with the same rule head) of any conditional
instance in TrDB|P ; thus, the whole conditional database
TrDB|P can be safely pruned.

C. The algorithm

After we described how to enumerate the classification
rules, and how to design the local item ordering scheme
and some effective search space pruning methods in order to
accelerate the mining of the highest confidence covering rules
in terms of each training instance, we introduce the integrated
HARMONY algorithm in this section.

The HARMONY algorithm is shown in ALGORITHM 1.
It consists of three sub-algorithms: RULEMINER() takes as
input the training database TrDB and the minimum support
min sup, and outputs the set of highest confidence covering
classification rules, HCCR; BUILDMODEL() takes HCCR
as input and outputs a classification model, CM ; NEWIN-
STANCECLASSIFICATION() classifies a new test instance ti
using the model CM .

ALGORITHM 1: HARMONY(TrDB, min sup, ti)

INPUT: (1) TrDB: a training database, (2) min sup: a minimum support threshold, and
(3) ti: a new test instance.
OUTPUT: (1) HCCR: the set of the highest confidence frequent covering rules w.r.t.
each instance in TrDB, (2) CM: a classification model, (3) PCL: the predicted class
label(s) w.r.t. test instance ti.

01. HCCR ← RULEMINER(TrDB, min sup);
02. CM ← BUILDMODEL(HCCR);
03. PCL ← NEWINSTANCECLASSIFICATION(CM, ti).

1) Classification Rule Generation: In Section V-A and
Section V-B we introduced how to efficiently enumerate the
classification rules under the divide-and-conquer and depth-
first search paradigm, and proposed several pruning methods
to speed up the enumeration of the highest confidence covering
rules. By integrating the pruning methods with the rule enu-
meration, we get the classification rule generation algorithm,
as shown in the RULEMINER() algorithm.

The RULEMINER() algorithm first initializes the highest
confidence classification rules w.r.t. each training instance to
empty (lines 01-02), then enumerates the classification rules
by calling subroutine ruleminer(∅, TrDB) (line 03). Subroutine
ruleminer() takes as input a prefix itemset pi and its corre-
sponding conditional database cdb. For each conditional in-
stance, it checks if a classification rule with higher confidence
can be computed from the current prefix pi, if so, it replaces
the corresponding instance’s current highest confidence rule
with the new rule (lines 04-07). It then finds the frequent
local items by scanning cdb (line 08), prunes invalid items
based on the support equivalence item pruning method and
the unpromising item pruning method (lines 09-10). If the set
of valid local items is empty or the whole conditional database
cdb can be pruned based on the unpromising conditional
database pruning method, it returns directly (lines 11-13).
Otherwise, it sorts the left frequent local items according to
the correlation coefficient ascending order (line 14), and grows
the current prefix (line 16), builds the conditional database for
the new prefix (line 17), and recursively calls itself to mine
the highest confidence rules from the new prefix (line 18).

ALGORITHM 1.1: RULEMINER(TrDB, min sup)

INPUT: (1) TrDB: a training database, and (2) min sup: a minimum support threshold.
OUTPUT: (1) HCCR: the set of the highest confidence frequent covering rules w.r.t.
each instance in TrDB.

01. for all ti ∈ TrDB

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL XX, NO. XX, 2006 6

02. HCCRti
← ∅;

03. call ruleminer(∅, TrDB).

SUBROUTINE 1.1 : ruleminer(pi, cdb)

INPUT: (1) pi: a prefix itemset, and (2) cdb: the conditional database w.r.t. prefix pi.

04. if(pi �= ∅)
05. for all 〈tl, Xl , cj〉 ∈ cdb

06. if(HCCRconf
tl

<
sup

cj
pi

suppi
)

07. HCCRtl
← rule ‘pi→ cj’;

08. I ← find frequent items(cdb,min sup);
09. S ← support equivalence item pruning(I); I← I - S;
10. S ← unpromising item pruning(I, cdb); I ← I - S;
11. if(I �= ∅)
12. if(unpromising conditional database pruning(I,pi,cdb))
13. return;
14. correlation coefficient asscending ordering(I);
15. for all x ∈I do
16. pi

′ ← pi ∪ {x};
17. cdb

′ ← build cond database(pi
′
, cdb);

18. call ruleminer(pi
′
, cdb

′
);

2) Building the Classification Model: After the set of
highest confidence covering rules have been mined, it will be
straightforward to build the classification model. HARMONY
first groups the set of highest confidence covering rules into
k groups according to their rule heads (i.e., class labels),
where k is the total number of distinct class labels in the
training database. Within the same group of rules, HARMONY
sorts the rules in their confidence descending order, and for
the rules with the same confidence, sorts them in support
descending order. In this way, HARMONY prefers the rules
with higher confidence, and the rules with higher support if
the confidence is the same. The BUILDMODEL algorithm is
shown in ALGORITHM 1.2.

ALGORITHM 1.2: BUILDMODEL(HCCR)

INPUT: (1) HCCR: the set of highest confidence covering rules.
OUTPUT: (1) CM: the classification model (i.e., k groups of ranked rules).

01. Cluster rules into k groups(HCCR);//according to class label
02. for each group of rules
03. Sort rules();//in confidence and support descending order

ALGORITHM 1.3: NEWINSTANCECLASSIFICATION(CM, ti)

INPUT: (1) CM: the classification model, (2) ti: a test instance.
OUTPUT: (1) PCL: a predicted class label (or a set of class labels).

01. for j=1 to k //CMj : the j-th group of rules in CM
//SCRj : the score for ti computed from CM j

02. SCRj ←ComputeScore(CMj, ti);
03. PCL ← PredictClassLabel(SCR).

3) New Instance Classification: After the classification
model, CM, has been built, it can be used to classify a new
test instance, ti, using the NEWINSTANCECLASSIFICATION

algorithm shown in ALGORITHM 1.3. HARMONY first
computes a score w.r.t. ti for each group of rules in CM
(lines 01-02), and predicts for ti a class label or a set of
class labels if the underlying classification is a multi-class
multi-label problem (i.e., each instance can be associated with
several class labels).

Scoring function. In HARMONY, the score for a certain
group of rules is defined in three different ways. The first
scoring function is called HIGHEST, which computes the score
as the highest confidence among the covering rules w.r.t. test
instance ti (by a ‘covering rule’, we mean its rule body is

a subset of ti). The second method is based on the ALL
function. It is the default scoring function in HARMONY
and computes the score as the sum of the confidences of all
the covering rules w.r.t. ti. The third function is called TOP-
K, where K is a user-specified parameter. It computes the
score for a group of rules as the sum of the top K highest
confidences of the covering rules w.r.t. ti. The HIGHEST and
ALL functions can be thought of as two special cases of the
TOP-K function when K is set at 1 and +∞. For a multi-
class single-label classification problem, HARMONY simply
chooses the class label with the highest score as the predicted
class label. However, for a multi-class multi-label classification
problem, the prediction is a little complicated.

Multi-class multi-label classification. In [5], the dominant
factor-based method was proposed to predict the class labels
for a multi-class multi-label classification problem and works
as follows. Given a user-specified dominant factor γ, let the
class label with the highest score be cmax and the corre-
sponding highest score w.r.t. test instance ti be SCOREcmax

ti ,
then any class label whose corresponding score is no smaller
than SCOREcmax

ti ×γ is a predicted class label for ti. This
method has been verified to be effective in practice [5].
However, in many imbalanced classification problems, the
average confidence of each group of classification rules may be
quite different from each other, this uniform dominant factor-
based method will not work well. A large dominant factor
may lead to low recalls (i.e., the percentage of the total test
instances for the given class label that are correctly classified)
for the classes with low average rule confidences, while a
small dominant factor can lead to low precisions (i.e., the
percentage of predicted instances for the given class label that
are correctly classified) for the classes with high average rule
confidences. To overcome this problem, HARMONY adopts
a weighted dominant factor-based method. Let the average
confidence of the group of classification rules w.r.t. class label
ck be confavg

ck
, the score w.r.t. instance ti and class label ck

be SCOREck

ti . Instance ti is predicted to belong to class ck

if it satisfies the equation:

SCOREck

ti ≥ SCOREcmax

ti × γ × (
confavg

ck

confavg
cmax

)δ

Here, δ (δ ≥ 0) is called the score differentia factor and the
larger the δ, the more the difference of the weighted dominant

factors (i.e., γ × (
confavg

ck

confavg
cmax

)δ) among different class labels. It
is set to 1 by default in HARMONY.

D. Extensions to HARMONY

1) Using Class-Specific Support Threshold: The classifica-
tion rule enumeration algorithm described in Section V-C.1
assumes a uniform minimum support as an input, which may
cause some problems for the imbalanced training databases.
By an imbalanced training database, we mean the class dis-
tribution is not balanced, that is, some classes may contain
a much larger number of instances than the other classes.
If a large minimum support is used as input, the algorithm
will encounter difficulties in mining high confidence rules
for the small classes, while a small minimum support will

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL XX, NO. XX, 2006 7

lead to the overfitting problem for some large classes. This
intuition suggests we should use different minimum supports
for different size classes.

HARMONY provides two ways in specifying class-specific
minimum supports. The first way allows the user to directly
specify a minimum support for each class (in the following
we will use min supi to denote the minimum support of
the i-th class). However, when there exist a lot of classes in
the database, to specify a proper minimum support for each
class is not an easy task. As a result, in the second option,
HARMONY requires the user to provide a minimum support,
min sup, which corresponds to the minimum support of the
smallest class, and it will automatically compute a minimum
support for each class from min sup and the class distribution.
Let the number of training instances w.r.t. class ci be |ci|, then
min supi is computed as follows:

min supi = min sup × (
|ci|

min∀j,1≤j≤k
|cj|)

ξ

Here, ξ (ξ ≥ 0) is called the support differentia factor. In
HARMONY, ξ is set to 0 by default, which can be used to
compute a uniform minimum support for all the classes.

By using class-specific minimum supports, Lemma 2 and
Lemma 3 still applies, but we need to replace min sup with
min supi in Equation 5 and Equation 7. For example, Equa-
tion 5 should be changed to the following form:

HCCRconf
tl

≥ min{1,
supci

P∪{xj}
min supi

}

In addition, to make the algorithm work, we also need to
require the line 06 of SUBROUTINE 1.1 satisfy suppi ≥
min supj .

2) Mining K-Rules for Each Instance: A training instance
may support multiple highest-confidence classification rules,
but the above classification rule enumeration algorithm de-
scribed in Section V-C.1 only reports the first discovered one.
Usually this arrangement can assure the set of final rules is
large enough to build an accurate classifier in the case that the
training database contains a large number of training instances.
However, the set of final rules generated in this way may not be
sufficient if the database is small. To overcome this problem,
HARMONY provides an option to mine K highest-confidence
rules w.r.t. a training instance if it supports multiple highest-
confidence rules, where K is a user-specified parameter.

In order to mine K-rules for each instance, Equation 5 needs
to be changed to the following form:

(HCCRconf
tl

> min{1,
supci

P∪{xj}
min sup

})∨

(HCCRconf
tl

= min{1,
supci

P∪{xj}
min sup

}) ∧ (n >= K)

Where n is the number of highest confidence classification
rules discovered so far w.r.t. tl.

Similarly, Equation 7 should have the following form:

(HCCRconf
tl

> min{1,
supci

P

min sup
})∨

(HCCRconf
tl

= min{1,
supci

P

min sup
}) ∧ (n >= K)

In addition, it is evident that the condition of line 06 in
SUBROUTINE 1.1 should be rewritten to the following
form:

(HCCRconf
tl

<
sup

cj

pi

suppi
) ∨ (HCCRconf

tl
=

sup
cj

pi

suppi
) ∧ (n < K)

3) Traditional Definition of a Frequent Rule: The above
classification rule enumeration algorithm described in Sec-
tion V-C.1 can also be adapted to accord with the more
traditional definition of an association rule, that is, instead
of only requiring the rule body be frequent, it requires the
entire rule be frequent. To simply achieve this goal, we also
need to require the line 06 of SUBROUTINE 1.1 satisfy
sup

cj

pi ≥ min sup (or sup
cj

pi ≥ min supj in the case of
applying class-specific support threshold).

Adapting the algorithm to the traditional definition of a
classification rule also enables us to design some search space
pruning methods. Let the current prefix be P , a local item of
P , xj , is called infrequent and can be safely pruned according
to Lemma 4.

Lemma 4: (Infrequent item pruning) Item xj is called an
infrequent item w.r.t. prefix P and can be safely pruned from
P ’s conditional database if it satisfies the following equation:

max
∀i,1≤i≤k

supci

P∪{xj} < min sup (8)

Proof. Follows easily from the traditional definition of a
classification rule.

4) Maximum Support Threshold: Some dense databases
contain some highly frequent items, which appear in almost
all the training instances. From the classification point of view,
these items are indifferentiable and cannot be used to generate
high quality classification rules. Removing these items usually
does not hurt the classification accuracy, but it can significantly
improve the algorithm efficiency. Thus, in HARMONY there
is an option for the user to specify a maximum support
threshold, max sup, in order to remove the overly frequent
items.

VI. EMPIRICAL RESULTS

A. Test Environment and Databases

We implemented the HARMONY algorithm in C and
performed a thorough experimental study. We first evalu-
ated HARMONY as a frequent itemset mining algorithm to
show the effectiveness of the pruning methods, the algorithm
efficiency and scalability. Then we compared HARMONY
with some well-known classifiers on both categorical and text
databases. All the experiments except the scalability test were
performed on a 1.8GHz Linux machine with 1GB memory.
The UCI Databases. Many previous studies used some small
databases to evaluate both the accuracy and efficiency of a
classifier. For example, most of the 26 databases used in [28],
[27], [33] only contain several hundred instances, which means
the test databases contain too few test instances (i.e., only a
few tens) if the 10-fold cross validation is adopted to evaluate
the classification accuracy. In this paper, we mainly focus on

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL XX, NO. XX, 2006 8

TABLE II

LARGE UCI DATABASE CHARACTERISTICS.

Database # instances # items # classes
adult 48842 131 2
chess 28056 66 18
connect 67557 66 3
led7 3200 24 10
letRegcog 20000 106 26
mushroom 8124 127 2
nursery 12960 32 5
pageBlocks 5473 55 5
penDigits 10992 90 10
waveform 5000 108 3

TABLE III

SMALL UCI DATABASE CHARACTERISTICS.

Database # instances # items # classes
anneal 798 106 6
auto 205 142 7
breast 699 48 2
glass 214 52 7
heart 303 53 5
hepatitus 155 58 2
horseColic 368 94 2
ionosphere 351 104 2
iris 150 23 3
pimaIndians 768 42 2
ticTacToe 958 29 2
wine 178 68 3
zoo 101 43 7

relatively large databases (by large, we mean the database
should contain no fewer than 1000 instances), although we
also report the comparison results for some small databases.

In [12], the author used 23 UCI databases to compare FOIL
and CPAR algorithms 2. Among these 23 databases, 10 of
them are large databases and the left 13 databases are small
ones. The characteristics of these two classes of databases are
summarized in Table II and Table III, respectively. All the
23 databases were obtained from the author of [12] and the
10-fold cross validation is used for comparison with FOIL
and CPAR. Because databases connect and ionosphere are too
dense, during the 10-fold cross validation in our experiments
HARMONY only used the items whose supports are no greater
than 20,000 and 190 for connect and ionosphere respectively,
to generate classification rules (i.e., max sup=20,000 and
max sup=190 for these two databases respectively).

TABLE IV

TOP 10 TOPICS IN REUTERS-21578.

Category Name # train labels # test labels
acq 1650 719
corn 181 56
crude 389 189
earn 2877 1087
grain 433 149
interest 347 131
money-fx 538 179
ship 197 89
trade 369 118
wheat 212 71
total 7193 2787

Text Databases. We also used two text databases in our
empirical evaluation. The first database is the popularly used
‘ModeApte’ split version of the reuters-21578 collection,
which was preprocessed and provided by the authors of [11],
and both the database and its description are available at [10].
After preprocessing, it contains totally 8575 distinct terms,

2The numerical attributes in these databases have been discretized by the
author, and the discretization technique is different from those used in [28],
[27], [33]; thus, the performance reported here may be different from the
previous studies even for the same algorithm and the same database.

TABLE V

CLASS DISTRIBUTION IN sports DATABASE.

Class Name Number of labels
baseball 3412
basketball 1410
football 2346
hockey 809
boxing 122
bicycle 145
golf 336
total 8580

9603 training documents, and 3299 test documents. Like many
other studies [23], [18], [5], [11], we are more interested in the
top 10 most common categories (i.e., topics). These ten largest
categories form 6488 training documents and 2545 test docu-
ments. A small portion of the training and test documents are
associated with multiple category labels (that is, reuter-21578
is a multi-class multi-label database). In our experiments, we
treated each one of the training documents with multiple labels
as multiple documents, each one with a distinct label. The
top 10 categories and their corresponding number of labels
in the training and test databases are described in Table IV.
The second text database is sports, which was obtained from
San Jose Mercury (TREC). In our experiments, we removed
some highly frequent terms, and finally it contains totally
8580 documents, 7 classes, and about 1748 distinct terms. The
seven classes and their corresponding number of documents
are shown in Table V.

B. Experimental Results

1) Evaluate HARMONY as a Frequent Itemset Mining
Algorithm: To mine the highest confidence covering rule(s)
for each instance, a naı̈ve method is like the association-
based classifiers: first use an efficient association rule mining
algorithm to compute the complete set of classification rules,
from which the set of the highest confidence covering rules
w.r.t. each instance can be selected. Our empirical results show
that this method is usually inefficient if the database is large
and a more efficient way is to push some effective pruning
methods into the frequent itemset mining framework and to
directly mine the final set of classification rules.
Ordering of the local items. In HARMONY, we provide
three options for item ordering, that is, CoRrelation coefficient
Ascending order (denoted by CRA), Entropy Ascending order
(denoted by EA), and Maximum Confidence Descending order
(denoted by MCD). We first evaluated the effectiveness of
these item ordering schemes against Support Descending order
(denoted by SD) that is popularly adopted in frequent itemset
mining. Our experiments on many databases have shown
that the three newly proposed item ordering schemes are
always more efficient that the traditional support descending
ordering scheme. In addition, these schemes also lead to
slightly different classification accuracy. This is partly because
different item ordering schemes may mine a different highest
confidence covering rule w.r.t. a certain training instance,
which may have different supports, although their confidences
are the same. The experimental results also show that although
the correlation coefficient ascending ordering scheme is not
always the winner, on average it is more efficient and has better

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL XX, NO. XX, 2006 9

accuracy than the other schemes. As a result, in HARMONY,
it is chosen as the default option for item ordering. Table VI
shows the comparison result for sports database at absolute
support of 200. We can see that the correlation coefficient
ascending ordering scheme is more efficient and also has
slightly higher classification accuracy (which was measured
using 10-fold cross validation) than other schemes.

TABLE VI

ITEM ORDERING TEST ON sports DATABASE.

Ordering scheme CRA EA MCD SD
Runtime(in seconds) 55.7 88.6 110.8 156.3
Accuracy(in %) 85.57 85.51 85.53 85.52

Effectiveness of the pruning methods. We also evaluated
the effectiveness of the pruning methods. Figure 1a shows the
results for database penDigits with absolute support threshold
varying from 512 to 8. At first glance of Equation 5 and
Equation 7, the unpromising item and conditional database
pruning methods seem to be less effective at lower support,
however this is not the case when considering more covering
rules with higher confidence can be found at lower support and
can be used to more quickly raise the currently maintained
highest confidences. As we can see from Figure 1a, if we
turn off the pruning methods used in HARMONY (denoted by
‘without pruning’), it can become over an order of magnitude
slower at low support.
Scalability test. Figure 1b shows the results of the scalability
test performed on an Intel Pentium IV processor computer with
256 MB memory using database letRecog with relative support
set at 0.5% . The three curves in Figure 1b were generated by
setting parameter K at values 1, 2, and 3, and using one fourth,
one half, three fourths, and the whole of database letRecog, as
the input databases with different base size, respectively. We
can see that HARMONY has linear scalability in the runtime
with increasing number of instances.
Efficiency test. As we mentioned above, the traditional
frequent (closed) itemset mining algorithms can be revised
to mine the complete set of high confidence classification
rules, from which a subset of high quality rules can be further
identified. Our efficiency tests for HARMONY in comparison
with FPgrowth* and FPclose, two recently developed efficient
frequent/closed itemset mining algorithms [21], show that such
a method is not realistic at low support, while our experiments
demonstrate that the classification accuracy is usually higher
at low support.

Figure 2 shows the comparison results for database sports.
As we can see, although at high support, both FPgrowth*
and FPclose are faster than HARMONY, once we continue to
lower the support, they will be much slower. For example, at
absolute support of 100, HARMONY is several orders of mag-
nitude faster than FPgrowth* and FPclose. Figure 2b shows
the classification accuracy at different support thresholds using
the 10-fold cross validation. We can see that HARMONY can
achieve higher accuracy at lower support like 100. It is also
interesting to see that the accuracy at a too low support 50 is
worse than that at support 100 for this database, due to the
‘overfitting’ problem.

1

10

100

1000

8163264128256512

R
un

tim
e

in
 s

ec
on

ds

Absolute support threshold

Without pruning
With pruning

a) Pruning (penDigits)

40

50

60

70

80

90

100

110

120

130

6000 8000 10000 12000 14000 16000 18000 20000

R
un

tim
e

in
 s

ec
on

ds

Number of instances

K=3
K=2
K=1

b) Scalability (letRecog, min sup=0.5%)

Fig. 1. Pruning and scalability test.

1

10

100

1000

64128256512

R
un

tim
e

in
 s

ec
on

ds

Absolute support threshold

FPgrowth*
FPclose

HARMONY

a) Runtime comparison

50

60

70

80

90

800 400 200 100 50

Absolute support threshold

C
la

ss
if

ic
at

io
n
 a

cc
u
ra

cy
 %

b) Classification accuracy

Fig. 2. Efficiency test (sports).

Figure 3a shows similar comparison results for categor-
ical database mushroom. HARMONY is faster than both
FPgrowth* and FPclose at absolute support lower than 32.
Figure 3b shows that HARMONY has better accuracy at low
support threshold.

2) Classification Evaluation: The reuters–21578
(ModApte) text database. For a multi-class multi-label
database like reuters-21578, most previous studies used

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL XX, NO. XX, 2006 10

TABLE VII

BREAKEVEN PERFORMANCE ON Reuters-21578 WITH SOME WELL-KNOWN CLASSIFIERS.

Categories HARMONY HARMONY HARMONY Findsim NBayes BayesNets Trees SVM ARC-BC
min sup=60 min sup=70 min sup=80 (linear) δ=50, min sup=10%

acq 95.3 95.3 95.3 64.7 87.8 88.3 89.7 93.6 90.9
corn 78.2 78.6 75.2 48.2 65.3 76.4 91.8 90.3 69.6
crude 85.7 85.0 88.0 70.1 79.5 79.6 85.0 88.9 77.9
earn 98.1 98.2 97.6 92.9 95.9 95.8 97.8 98.0 92.8
grain 91.8 90.4 90.1 67.5 78.8 81.4 85.0 94.6 68.8
interest 77.3 76.6 75.1 63.4 64.9 71.3 67.1 77.7 70.5
money-fx 80.5 81.9 82.1 46.7 56.6 58.8 66.2 74.5 70.5
ship 86.9 82.9 82.8 49.2 85.4 84.4 74.2 85.6 73.6
trade 88.4 88.0 86.1 65.1 63.9 69.0 72.5 75.9 68.0
wheat 62.8 60.6 58.7 68.9 69.7 82.7 92.5 91.8 84.8
micro-avg 92.0 91.7 91.4 64.6 81.5 85.0 88.4 92.0 82.1

1

10

100

481632

R
un

tim
e

in
 s

ec
on

ds

Absolute support threshold

FPgrowth*
FPclose

HARMONY

a) Runtime comparison

98

98.5

99

99.5

100

128 64 32 16 8 4

Absolute support threshold

C
la

ss
if

ic
at

io
n
 a

cc
u
ra

cy
 %

b) Classification accuracy

Fig. 3. Efficiency test (mushroom).

TABLE VIII

RUNTIME ON reuters-21578 DATABASE.

Runtime HARMONY HARMONY HARMONY
(min sup=60) (min sup=70) (min sup=80)

training 72.6 51.1 37.6
testing 0.363 0.337 0.309

the breakeven point of precision and recall to measure the
classifier performance [6], [23], [18], [32], [9], [5], [11],
which is defined as the point at which precision is equal
to the recall. To our best knowledge, the best breakeven
performance for the reuters-21578 database is the linear
SVM [18]. For comparison with earlier results, we first
found the overall breakeven point in terms of all top 10
categories by adjusting the dominant factor γ, then reported
the average of precision and recall for each category as their
corresponding breakeven performance [18].

Table VII shows the comparison results with some previous
results. The results for Findsim (i.e., Find-Similar), NBayes
(i.e., Naı̈ve-Bayes), Bayes-Nets, Trees (i.e., Decision-Trees),
and LinearSVM were obtained from [18], while the results
for ARC-BC are reported as given in [5]. The micro-avg

is the overall breakeven performance over all 10 categories.
For HARMONY, we used three different uniform absolute
support thresholds, 60, 70, and 80, respectively. From Ta-
ble VII we can see that both HARMONY and LinearSVM
have similar breakeven performance and perform much better
than all the other classifiers, including Find-Similar, Naı̈ve-
Bayes, Bayes-Nets, Decision-Trees, and the association-based
classifier ARC-BC. Among the 10 categories, HARMONY
achieves the best performance at support of 60 for five cate-
gories, acq, earn, money-fx, ship, and trade. While LinearSVM
performs best for another three categories, crude, grain, and
interest. Decision-Trees also performs good and has the best
performance for two small categories, corn and wheat. SVM
is very well known for classifying high dimensional text
databases. Our results show that HARMONY can achieve
similar performance to SVM. Table VIII shows the runtime in
seconds for HARMONY at three different support thresholds.
We can see that HARMONY is very efficient in classifying the
reuters–21578 text database. For example, at absolute support
of 60, it takes 72.6 seconds to build the model from 7193
training documents, and 0.363 seconds to classify 2545 test
documents.

TABLE X

EFFECTIVENESS OF THE score differentia factor δ (CLASS-SPECIFIC

min sup, reuters-21578).

δ 0 0.3 0.6 0.9 1.2
γ 0.4987 0.5029 0.517 0.544 0.569
micro-avg 91.2 91.6 92.2 92.4 92.1

The micro-avg values for HARMONY in Table VII were
computed by using a uniform minimum support for all 10
categories and our experiments show that choosing a uniform
minimum absolute support which is smaller than 60 does not
help in further improving classification accuracy. However,
if we choose some proper class-specific support thresholds
for different categories, HARMONY can still achieve better
performance. In Table IX, the second row shows the cor-
responding minimum support chosen for the 10 categories,
while the third row shows the breakeven performance. From
the results we can see that with these class-specific support
thresholds, HARMONY achieves a better micro-avg value,
92.4. This example illustrates that adopting different support
thresholds for different classes does achieve better results.

The micro-avg values for HARMONY in Table VII and
Table IX were computed by setting the score differentia
factor at its default value 1. By choosing different differ-

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL XX, NO. XX, 2006 11

TABLE IX

BREAKEVEN PERFORMANCE ON THE Reuters-21578 DATABASE WITH CLASS-SPECIFIC min sup.

Categories acq corn crude earn grain interest money-fx ship trade wheat micro-avg
min sup 55 60 60 75 60 55 70 50 60 45 -
Breakeven 95.6 78.2 86.6 97.9 90.7 76.8 83.5 88.5 89.3 68.1 92.4

entia factor values, HARMONY may have different micro-
avg performance. Table X shows the micro-avg performance
and the corresponding dominant factor γ for HARMONY
with the class-specific support thresholds shown in Table IX
and by varying the parameter of score differentia factor δ
from 0 to 1.2. δ = 0 means the weighted dominant factor-
based scoring method degenerates to the dominant factor-
based method used in [5]. By adopting a proper value of
δ, the weighted dominant factor-based scoring method can
achieve a better micro-avg performance. For example, by
setting δ at 0.9, the overall precision equals the overall recall
at γ = 0.544, and the corresponding micro-avg breakeven
performance for HARMONY is 92.4, which is higher than
the corresponding micro-avg at δ = 0 (i.e., 91.2). As our
experiments show usually a differentia factor value around 1
can achieve good accuracy, in HAMONY we set a default
value of 1 for differentia factor.
The sports text database. From Table VII we see that
HARMONY has similar performance to SVM for the reuters-
21578 text database, we then compared the two algorithms
using the sports text database which was obtained from
San Jose Mercury. We split it into two parts: the training
set contains 5718 instances and the test set contains 2852
instances. We first tried the polynomial, radial basis function,
and sigmoid kernels for SVM, however, SVM cannot finish
within a reasonable time slot for the sports database (for
example, sigmoid SVM could not terminate after running for
more than 80,000 seconds). Thus, here we only report the
performance for linear SVM. Table V shows the comparison
results for HARMONY and linear SVM. In the experiments
we chose four different minimum supports for HARMONY,
75, 100, 125, and 150, while for linear SVM, we chose four
values for parameter C (i.e., the trade-off between training
error and margin), 0.25, 0.5, 1, and 2, respectively. Under
these parameter settings, HARMONY and SVM have similar
runtime efficiency. From Table XI we see that SVM has
slightly better accuracy than HARMONY.

TABLE XI

ACCURACY COMPARISON BETWEEN HARMONY AND SVM (sports).

HARMONY 94.2 94.9 94.3 94.1
(min sup) (75) (100) (125) (150)
SVM 95.79 95.79 95.76 95.72
(C) (2.0) (1.0) (0.5) (0.25)

The UCI databases. We evaluated HARMONY on the UCI
databases in comparison with FOIL, CPAR, and SVM. FOIL
and CPAR are two well-known algorithms for classifying
categorical data. The results in [33] show that CPAR has better
accuracy than c4.5 [29] and ripper [13], and has comparable
accuracy to the association-based algorithms CMAR [27]
and CBA [28], but is orders of magnitude faster; thus, we

will do not compare HARMONY with c4.5, ripper, and the
association-based algorithms. The results for FOIL and CPAR
were provided by Frans Coenen and are available at [12].
Because most databases we used contain more than two class
labels, when comparing with SVM, we used SV Mmulticlass

(Version: 1.01), which is an implementation of the multi-class
Support Vector Machine and is available at http : //www.cs.
cornell.edu/People/tj/svm light/svm multiclass.html.
In the experiments, we ran SVM with its default setting. All
the results including the accuracy and runtime are computed
using the 10-fold cross validation. The reported accuracy
is the corresponding average value of the 10-fold cross
validation results, while the runtime is the total runtime
of the 10-fold cross validation, including both training and
testing time. In the experiments, we fixed the absolute support
threshold at 50 for HARMONY with all 10 UCI databases,
and at 10 for all 13 small UCI databases.

Table XII shows the accuracy comparison results, which
reveal that HARMONY has much better overall accuracy
than FOIL and CPAR, and has comparable accuracy with
SVM. The average accuracy of HARMONY over all 10 UCI
databases is about 5% higher than FOIL, 10% higher than
CPAR, and 2% higher than SVM. SVM performs very well
for the databases with few class labels, like adult, connect, and
waveform, but has much worse accuracy than HARMONY
for the databases with many class labels, like chess and
letRecog. Compared with SVM, HARMONY has reasonably
stable and good performance over all 10 UCI databases. Note
in the experiments we fixed the minimum support at 50 for
all 10 UCI databases. If we choose some tuned supports,
HARMONY can achieve better performance than what we
reported here for some databases. For example, if we choose
the minimum support at 5 for the chess database, HARMONY
has an accuracy of 58.43%, which is over 13% higher than
the accuracy at support 50, while it only becomes about two
times slower.

TABLE XII

ACCURACY COMPARISON ON 10 LARGE UCI DATABASES (min sup=50 FOR

HARMONY).

Database FOIL CPAR SVM HARMONY
adult 82.5 76.7 84.16 81.9
chess 42.6 32.8 29.83 44.87
connect 65.7 54.3 72.5 68.05
led7 62.3 71.2 73.78 74.56
letRecog 57.5 59.9 67.76 76.81
mushroom 99.5 98.8 99.67 99.94
nursery 91.3 78.5 91.35 92.83
pageBlocks 91.6 76.2 91.21 91.6
penDigits 88.0 83.0 93.2 96.23
waveform 75.6 75.4 83.16 80.46
average 75.66 70.68 78.663 80.725

Table XIII compares the runtime (in seconds) of the four
algorithms. Note that FOIL and CPAR were implemented
in java and were tested on a different machine from that

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL XX, NO. XX, 2006 12

TABLE XIII

RUNTIME COMPARISON ON 10 LARGE UCI DATABASES (min sup=50 FOR

HARMONY).

Database FOIL CPAR SVM HARMONY
adult 10251.0 809.0 2493.1 1395.5
chess 10122.8 1736.0 13289.4 11.34
connect 35572.5 24047.1 74541.1 85.44
led7 11.5 5.7 17.12 1.29
letRecog 4365.6 764.0 17825.2 778.91
mushroom 38.3 15.4 16.6 8.78
nursery 73.1 51.7 322.4 6.21
pageBlocks 43.1 15.5 11.2 2.5
penDigits 821.1 101.9 512.7 82.6
waveform 295.3 38.1 36.2 130.0
total 61594.3 27584.4 109065.02 2502.57

TABLE XIV

COMPARISON OF # RULES ON 10 LARGE UCI DATABASES (min sup=50

FOR HARMONY).

Database FOIL CPAR HARMONY
adult 331.8 183.1 6431.3
chess 1116.7 1504.8 2881.5
connect 285.8 816.1 6664.0
led7 80.6 31.4 268.7
letRecog 560.9 643.0 2255.8
mushroom 16.2 30.8 95.9
nursery 57.4 83.6 391.64
pageBlocks 123.1 56.2 78.1
penDigits 204.6 166.9 1434.5
waveform 159.7 114.3 958.6
average 293.68 363.02 2146.0

of HARMONY and SVM. As a result, their runtime cannot
be directly compared to those reported for HARMONY and
SVM but they only provide an overall idea on the relative
computational requirements of the various schemes. Table XIII
shows that on average the runtime of HARMONY is over an
order of magnitude smaller than those of FOIL, CPAR, and
SVM. For some large databases like chess, the runtime of
HARMONY can be over two orders of magnitude smaller
than those of FOIL and CPAR, and over three orders of
magnitude smaller than that of SVM. Table XIV compares
the number of classification rules discovered by three rule-
based algorithms, FOIL, CPAR, and HARMONY. We can see
that on average, HARMONY finds many more rules than both
FOIL and CPAR. The reason why HARMONY finds more
rules is that it mines classification rules in an instance-centric
manner: it guarantees that at least one of the highest confidence
covering rules for each instance is discovered.

Table XV depicts the accuracy comparison among FOIL,
CPAR, SVM, and HARMONY on 13 small UCI databases,
from which we can see that on average HARMONY and
FOIL have similar classification accuracy and both perform
a little better than CPAR and SVM. In the experiments we
fixed the minimum absolute support at 10 on all 13 small
UCI databases for HARMONY, if we use tuned minimum
support, HARMONY can achieve better accuracy for most
databases. In addition, because these databases contain a small
number of training instances, the number of classification
rules mined by HARMONY may not be sufficient to build an
accurate classification model; thus, we implemented a variant
of HARMONY based on the discussion in Section V-D.2,
which mines K highest confidence frequent covering rules
for each training instance if it supports no fewer than K such
rules. By varying K parameter from 1 to 5, and choosing the
minimum absolute support from {5, 10, 15}, we got a set of

classification results, among which the best results for 13 small
UCI databases are shown in Table XVI. Similarly, we ran SVM
with radial basis function (i.e., rbf) kernel and the tuned best
accuracy was reported by choosing the value of parameter γ
from {0.5, 0.75, 1.0}. We can see that with tuned parameters,
HARMONY achieves better overall classification accuracy
than FOIL, CPAR, Linear SVM, and rbf SVM, on the other
hand, rbf SVM achieves better classification accuracy than
HARMONY for databases anneal, glass, wine, and zoo, and
FOIL has better accuracy than other classifiers for database
ticTacToe. Table XVI also shows that HARMONY achieves its
highest accuracy with different minimum supports for different
databases. Currently HARMONY cannot dynamically adjust
the minimum support to get the best classification accuracy,
instead one needs to manually choose a proper minimum
support in order for HARMONY to get good classification
results. However, this issue is not unique to HARMONY, many
classifiers (such as FOIL, CPAR, and SVM) also require a user
to manually specify some input parameter values.

TABLE XV

ACCURACY COMPARISON ON 13 SMALL UCI DATABASES (min sup=10

FOR HARMONY).

Database FOIL CPAR SVM HARMONY
anneal 96.9 90.2 83.83 91.51
auto 46.1 48.0 55.5 61
breast 94.4 94.8 96.8 92.42
glass 49.3 48.0 46.0 49.8
heart 57.4 51.1 60.36 56.46
hepatitus 77.5 76.5 81.83 83.16
horseColic 83.5 82.3 83.31 82.53
ionosphere 89.5 92.9 89.44 92.03
iris 94.0 94.7 94.67 93.32
pimaIndians 73.8 75.6 74.18 72.34
ticTacToe 96.0 72.2 70.78 92.29
wine 86.4 92.5 94.895 91.94
zoo 96.0 96.0 86.0 93.0
average 80.06 78.06 78.28 80.82

TABLE XVI

TUNED ACCURACY ON 13 SMALL UCI DATABASES FOR HARMONY AND

SVM.

Database min sup K rules HARMONY SVM (rbf)
∈ {5, 10, 15} ∈ [1, 5] γ∈{0.5, 0.75, 1.0}

anneal 5 4 95.65 97.26
auto 10 1 61.5 58.9
breast 15 2 96.14 95.09
glass 10 1 49.8 50.53
heart 15 1 58.4 57.46
hepatitus 15 5 85.99 85.5
horseColic 5 4 84.64 84.06
ionosphere 10 2 93.45 89.43
iris 5 5 95.99 93.33
pimaIndians 5 5 73.79 71.06
ticTacToe 10 4 94.09 88.52
wine 10 5 94.9 97.25
zoo 5 1 96 97
average N/A N/A 83.1 81.95

TABLE XVII

EFFECTIVENESS OF THE support differentia factor ξ (min sup=10,

hepatitus).

ξ 0 0.2 0.4 0.6 0.8 1 1.2 1.4
accuracy 83.16 85.33 85.33 83.5 84.33 84.83 84.16 83.83

We also evaluated the effectiveness of the support differ-
entia factor ξ using one imbalanced database, hepatitus. In
Table XVII, we set min sup at 10 and varied ξ from 0 to
1.4. We can see that the support differentia factor based class-
specific support threshold method is effective in improving the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL XX, NO. XX, 2006 13

accuracy for this database. For example, with ξ = 0.2 (or 0.4),
HARMONY has an accuracy of 85.33%, which is about 2%
higher than that at the default value ξ = 0. Our tests with
several databases suggest us that usually with a small support
differentia factor value (e.g., 0 < ξ ≤ 1), HARMONY
can achieve a good classification accuracy for imbalanced
databases.

VII. CONCLUSION

Designing accurate, efficient, and scalable classifiers is
an important research topic in data mining, and the rule-
based classifiers have been proven very effective in classifying
the categorical or high-dimensional sparse data. However, to
achieve high accuracy, a good rule-based classifier needs to
find a sufficient number of high quality classification rules
and use them to build the model. In this paper, we proposed
an instance-centric classification rule mining paradigm and
designed an accurate classifier, HARMONY. Several effective
pruning methods and search strategies have also been pro-
posed, which can be pushed deeply into the projection-based
frequent itemset enumeration framework. Our performance
study shows that HARMONY has high accuracy and efficiency
in comparison with many well known classifiers for both the
categorical data and the high dimensional text data. It also has
good scalability in terms of the base size.

ACKNOWLEDGEMENTS

We are grateful to Frans Coenen and Shane Bergsma
for providing us the UCI databases and the reuters-21578
database, respectively, and Osmar R. Zaı̈ane for answering
our questions related to the ARC-BC algorithm. We also
thank the anonymous ICDE’05 and SDM’05 reviewers whose
comments helped a lot in improving this paper. This work
was supported in part by NSF CCR-9972519, EIA-9986042,
ACI-9982274, ACI-0133464, and ACI-0312828; the Digital
Technology Center at the University of Minnesota; and by
the Army High Performance Computing Research Center
(AHPCRC) under the auspices of the Department of the
Army, Army Research Laboratory (ARL) under Coopera-
tive Agreement number DAAD19-01-2-0014. The content of
which does not necessarily reflect the position or the policy
of the government, and no official endorsement should be
inferred. Access to research and computing facilities was
provided by the Digital Technology Center and the Minnesota
Super-computing Institute. Jianyong Wang was funded in part
by National Natural Science Foundation of China (NSFC)
under Grant No. 60573061 and Basic Research Foundation
of Tsinghua National Laboratory for Information Science and
Technology (TNList), and this paper is a major-value added
version of a conference paper that appeared in the 2005 SIAM
International Conference on Data Mining (SDM’05).

REFERENCES

[1] R. Agarwal, C. Aggarwal, V. Prasad. A Tree Projection Algorithm for
Generation of Frequent Item Sets, Journal of Parallel and Distributed
Computing. 61(3), 2001.

[2] R. Agrawal, T. Imielinski, A. Swami. Mining Association Rules between
Sets of Items in Large Databases, SIGMOD’93.

[3] R. Agrawal, R. Srikant. Fast Algorithms for Mining Association Rules,
VLDB’94.

[4] K. Ali, S Manganaris, R. Srikant. Partial Calssification Using Association
Rules, KDD’97.

[5] M. Antonie, O. Zaiane. Text Document Categorization by Term Associa-
tion, ICDM’02.

[6] C. Apte, F. Damerau, S.M. Weiss. Towards Language Independent
Automated Learning of Text Categorization Models, SIGIR’94.

[7] R.J. Bayardo. Brute-force Mining of High-confidence Classification rules,
KDD’97.

[8] R.J. Bayardo, R. Agrawal. Mining the most interesting rules, KDD’99.
[9] R. Bekkerman, R. EI-Yaniv, N. Tishby, Y. Winter. On Feature Distribution

Clustering for Text Categorization, SIGIR’01.
[10] S. Bergsma. The Reuters-21578 (ModApte) dataset, Department

of Computer Science, University of Alberta. Available at
http://www.cs.ualberta.ca/∼bergsma/650/.

[11] S. Bergsma, D. Lin. Title Similarity-Based Feature Weighting for Text
Categorization, CMPUT 650 Research Project Report, Department of
Computer Science, University of Alberta.

[12] F. Coenen. (2004) The LUCS-KDD Implementa-
tions of the FOIL, PRM, and CPAR algorithms,
http://www.csc.liv.ac.uk/∼frans/KDD/Software/FOIL PRM CPAR/foilPrmC
par.html, Computer Science Department, University of Liverpool, UK.

[13] W. Cohen. Fast effective rule induction, ICML’95.
[14] G. Cong, K. Tan, A. Tung, X. Xin. Mining Top-k Covering Rule Groups

for Gene Expression Data, SIGMOD’05.
[15] G. Cong, X. Xu, F. Pan, A. Tung, J. Yang. FARMER: Finding Interesting

Rule Groups in Microarray Datasets, SIGMOD’04.
[16] M. Deshpande, G. Karypis. Using Conjunction of Attribute Values for

Classification, CIKM’02.
[17] G. Dong, X. Zhang, L. Wong, J. Li. CAEP: Classification by aggregating

emerging patterns, DS’99.
[18] S. Dumais, J. Platt, D. Heckerman, M. Sahami. Inductive Learning

Algorithms and Representations for Text Categorization, CIKM’98.
[19] T. Fukuda, Y. Morimoto, S. Motishita. Constructing Efficient Decision

Trees by Using Optimized Numeric Association Rules, VLDB’96.
[20] K. Gade, J. Wang, G. Karypis. Efficient Closed Pattern Mining in the

Presence of Tough Block Constraints, KDD’04.
[21] G. Grahne, J. Zhu. Efficiently Using Prefix-trees in Mining Frequent

Itemsets, FIMI’03.
[22] J. Han, et al. Mining Frequent Patterns without Candidate Generation,

SIGMOD’00.
[23] T. Joachims. Text Categorization with Support Vector Machines: Learn-

ing with Many Relevant Features, ECML’98.
[24] B. Lent, A. Swami, J. Widom. Clustering Association Rules, ICDE’97.
[25] N. Lesh, M. Zaki, M. Ogihara. Mining Features for Sequence Classifi-

cation, KDD’99.
[26] J. Li, G. Dong, K. Ramamohanarao, L. Wong. DeEPs: A New Instance-

based Discovery and Classification System, Machine Learning, 54(2),
2004.

[27] W. Li, J. Han, J. Pei. CMAR: Accurate and Efficient Classification based
on multiple class-association rules, ICDM’01.

[28] B. Liu, W. Hsu, Y. Ma. Integrating Classification and Association Rule
Mining, KDD’98.

[29] J. Quinlan. C4.5: Programs for Machine Learning, Morgan Kaufman,
1993.

[30] J. Quinlan, R. Cameron-Jones. FOIL: A Midterm Report, ECML’93.
[31] J. Wang, G. Karypis. BAMBOO: Accelerating Closed Itemset Mining by

Deeply Pushing the Length-Decreasing Support Constraint, SDM’04.
[32] Y. Yang. An Evaluation of Statistical Approaches to Text Categorization,

Information Retrieval, Vol. 1, No. 1-2, 1999.
[33] X. Yin, J. Han. CPAR: Classification based on Predictive Association

Rules, SDM’03.
[34] M. Zaki, C. Aggarwal. XRULES: An Effective Structural Classifier for

XML Data, KDD’03.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL XX, NO. XX, 2006 14

Jianyong Wang received the PhD degree in com-
puter science in 1999 from the Institute of Comput-
ing Technology, the Chinese Academy of Sciences.
Since then, he has worked as an assistant profes-
sor in the Department of Computer Science and
Technology, Peking University in the areas of dis-
tributed systems and Web search engines, and visited
the School of Computing Science at Simon Fraser
University, the Department of Computer Science at
the University of Illinois at Urbana-Champaign, and
the Digital Technology Center and Department of

Computer Science and Engineering at the University of Minnesota, mainly
working in the area of data mining. He is currently an associate professor in
the Department of Computer Science and Technology, Tsinghua University,
Beijing, China. He is a member of the IEEE Computer Society, and the ACM
SIGKDD.

George Karypis received his Ph.D. degree in com-
puter science at the University of Minnesota and he
is currently an Associate Professor at the Depart-
ment of Computer Science and Engineering at the
University of Minnesota. His research interests spans
the areas of parallel algorithm design, data mining,
bioinformatics, information retrieval, applications of
parallel processing in scientific computing and op-
timization, sparse matrix computations, parallel pre-
conditioners, and parallel programming languages
and libraries. His research has resulted in the devel-

opment of software libraries for serial and parallel graph partitioning (METIS
and ParMETIS), hypergraph partitioning (hMETIS), for parallel Cholesky
factorization (PSPASES), for collaborative filtering-based recommendation
algorithms (SUGGEST), clustering high dimensional datasets (CLUTO), and
finding frequent patterns in diverse datasets (PAFI). He has coauthored over
one hundred journal and conference papers on these topics and a book
title “Introduction to Parallel Computing” (Publ. Addison Wesley, 2003, 2nd
edition). In addition, he is serving on the program committees of many
conferences and workshops on these topics, is an associate editor of the IEEE
Transactions on Parallel and Distributed Systems, and on the editorial board
of the International Journal of Data Mining and Bioinformatics.

