Multilevel k-way Hypergraph Partitioning* George Karypis and Vipin Kumar {karypis, kumar}@cs.umn.edu Department of Computer Science & Engineering, University of Minnesota, Minneapolis, MN 55455 #### **Abstract** In this paper, we present a new multilevel k-way hypergraph partitioning algorithm that substantially outperforms the existing state-of-the-art K-PM/LR algorithm for multi-way partitioning. both for optimizing local as well as global objectives. Experiments on the ISPD98 benchmark suite show that the partitionings produced by our scheme are on the average 15% to 23% better than those produced by the K-PM/LR algorithm, both in terms of the hyperedge cut as well as the (K-1) metric. Furthermore, our algorithm is significantly faster, requiring 4 to 5 times less time than that required by K-PM/LR. #### 1 Introduction Hypergraph partitioning is an important problem with extensive application to many areas, including VLSI design [9], efficient storage of large databases on disks [13], and data mining [12]. The problem is to partition the vertices of a hypergraph into k roughly equal parts, such that a certain objective function defined over the hyperedges is optimized. A commonly used objective function is to minimize the number of hyperedges that span different partitions; however, a number of other objective functions are also considered useful [9]. The most commonly used approach for computing a k-way partitioning is based on the recursive bisection paradigm, that reduces the problem of computing a k-way partitioning to that of performing a sequence of bisections. The problem of computing an optimal bisection of a hypergraph is at least NP-hard [23]; however, many heuristic algorithms have been developed. The survey by Alpert and Kahng [9] provides a detailed description and comparison of various such schemes. Recently a new class of hypergraph bisection algorithms has been developed [10, 24, 14, 21], that are based upon the multilevel paradigm. In these algorithms, a sequence of successively smaller (coarser) hypergraphs is constructed. A bisection of the smallest hypergraph is computed. This bisection is then successively projected to the next level finer hypergraph, and 'This work was supported the Army Research Office contract DA/DAAG55-98-1-0441, the NSF CCR-9423082, and the Army High Performance Computing Research Center cooperative agreement number DAAH04-95-C-0003/contract number DAAH04-95-C-0008. This work was also supported by IBM Partnership Award. Related papers are available via WWW at URL: http://www.cs.umn.edu/~karypis Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. DAC 99, New Orleans, Louisiana ©1999 ACM 1-58113-092-9/99/0006..\$5.00 at each level an iterative refinement algorithm (e.g., KL [1] or FM [2]) is used to further improve the bisection. Experiments presented in [24, 14, 21] have shown that multilevel hypergraph bisection algorithms can produce substantially better partitionings than those produced by non-multilevel schemes. In particular, hMETIS [18], a multilevel hypergraph bisection algorithm based upon the work in [24] has been shown to find substantially better bisections than current state-of-the-art iterative refinement algorithms for the ISPD98 benchmark set that contains many large circuits [16]. Despite the success of multilevel recursive bisection algorithms, there are a number of advantages of computing the k-way partitioning directly (rather than computing it successively via recursive bisection). First, a recursive bisection algorithm does not allows us to directly optimize objectives that are global in nature and depend on having a direct view of all k partitions. Some examples of such objectives are the sum of external degrees (SOED), scaled cost, and absorption [9]. Second, a k-way partitioning algorithm is capable of enforcing tighter balancing constraints while retaining the ability to sufficiently explore the feasible solution space to optimize the partitioning objective. This is especially true when the partitioning solution must simultaneously satisfy multiple balancing constraints [19]. Third, a method that obtains a k-way partitioning directly can potentially produce much better partitionings than a method that computes a k-way partitioning via recursive bisection [7]. For these reasons, researchers have investigated a number of kway partitioning algorithms that try to compute a k-way partitioning directly, rather than via recursive bisection. The most notable of them are the generalization of the FM algorithm for k-way partitioning [3, 6], the spectral multi-way ratio-cut [5], the primal-dual algorithm of [4], the geometric embedding [8], the dual-net method [11], and the K-PM/LR algorithm [17]. A key problem faced by some of these algorithms is that the k-way FM refinement algorithm easily gets trapped in local minima. The recently developed K-PM/LR algorithm by Cong and Lim [17] attempts to solve this problem by refining a k-way partitioning by applying a sequence of 2-way FM refinement to pairs of domains. The pairing of domains is based on the gain of the last pass, and the pairwise cell movement passes continues until no further gain can be obtained. The experiments presented in [17] have shown that K-PM/LR outperforms the k-way FM partitioning algorithm of Sanchis [3, 6] by up to 86.2% and outperforms the recursive FM partitioning algorithm by up to 17.3%. Nevertheless, all of the above partitioners tend to produce solutions that are inferior to those produced by the state-of-the-art multilevel recursive bisection algorithms, especially when they are used to optimize an objective that can directly be optimized by the recursive bisection framework (e.g., minimize the hyperedge cut) In this paper we present a new k-way partitioning algorithm that is based on the multilevel paradigm. The multilevel paradigm can be used to directly construct a k-way partitioning of a hypergraph using the framework illustrated in Figure 1. The hypergraph is coarsened successively as before. But the coarsest hypergraph is now directly partitioned into k parts, and this k-way partitioning is successively refined as the partitioning is projected back into the original hypergraph. A key contribution of our work is a simple and yet powerful scheme for refining a k-way partitioning in the multilevel context. This k-way partitioning refinement scheme is substantially simpler and faster than either the k-way FM [3], or the K-PM/LR algorithm [17], but is equally effective in the multilevel context. Figure 1: The various phases of the multilevel k-way partitioning algorithm. We evaluate the performance of our multilevel k-way partitioning algorithm both in terms of the partitioning quality as well as computational requirements on the ISPD98 benchmark [16]. Our experiments show that the multilevel k-way hypergraph partitioning algorithm produces high quality partitioning in a relatively small amount of time. The quality of the partitionings produced by our scheme are on the average 15% to 23% better than those produced by the K-PM/LR [17] algorithm, both in terms of the hyperedge cut as well as the (K-1) metric. Furthermore, our algorithm is significantly faster, requiring 4 to 5 times less time than that required by K-PM/LR and provides partitions that adhere to tighter balancing constraints. Compared to the state-of-the-art multilevel recursive bisection, our experiments show that with respect to the hyperedge cut, our algorithm produces partitions of comparable quality, whereas with respect to the SOED, our algorithm produces partitions that are up to 18% better. Furthermore, our multilevel k-way partitioning algorithm is in general two times faster than multilevel recursive bisection, and this ratio increases with the size of the hypergraph. ### 2 Multilevel k-way Hypergraph Partitioning Formally, a hypergraph G=(V,E) is defined as a set of vertices V and a set of hyperedges E, where each hyperedge is a subset of the vertex set V [22], and the size of a hyperedge is the cardinality of this subset. The k-way hypergraph partitioning problem is defined as follows: Given a hypergraph G=(V,E) and an overall load imbalance tolerance c such that $c \geq 1.0$, the goal is to partition the set V into k disjoint subsets, V_1, V_2, \ldots, V_k such that the number of vertices in each set V_i is bounded by $|V|/(ck) \le |V_i| \le c|V|/k$, and a function defined over the hyperedges is optimized. The requirement that the size of each partition is bounded is referred to as the partitioning constraint, and the requirement that a certain function is optimized is referred to as the partitioning objective. One of the most commonly used objective function is to minimize the hyperedge-cut of the partitioning; i.e., the total number of hyperedges that span multiple partitions. Another objective that is often used is to minimize the sum of external degrees (SOED) of all hyperedges that span multiple partitions. Given a k-way partitioning and a hyperedge e, the external degree of e is defined to be 0, if e is not cut by the partitioning, otherwise it is equal to the number of partitions that is spanned by e. An objective related to SOED is to minimize the (K-1) metric [9, 17]. In the case of the (K-1) metric, the cost of a hyperedge that spans K partitions is (K-1), whereas for the SOED metric, the cost is K. Next we describe the three phases of the multilevel k-way partitioning algorithm in detail. Coarsening Phase During the coarsening phase, a sequence of successively smaller hypergraphs is constructed. As in the case of the multilevel hypergraph bisection algorithm [24], the coarsening phase serves the following three purposes. First it leads to a small hypergraph such that a good k-way partitioning of the small hypergraph is not significantly worse than the k-way partitioning directly obtained for the original hypergraph. Second, the different successively coarsened versions of the hypergraph allow local refinement techniques such as FM to become effective. Third, hypergraph coarsening also helps in successively reducing the sizes of the hyperedges. That is, at each level of coarsening, large hyperedges are contracted to smaller hyperedges. This is particularly helpful, since iterative refinement heuristics (e.g., KL or FM) are very effective in refining small hyperedges but are quite ineffective in refining hyperedges with a large number of vertices belonging to different partitions. Three primary schemes have been developed for selecting what groups of vertices will be merged together to form single vertices in the next level coarse hypergraphs. The first scheme called edgecoarsening (EC) [24, 14, 21], selects the groups by finding a maximal set of pairs of vertices (i.e., matching) that belong in many hyperedges. In this scheme, each group consists of at most two vertices (some vertices are not combined at all), and each vertex belongs to exactly one group. The second scheme that is called hyperedge-coarsening (HEC) [24] finds a maximal independent set of hyperedges, and the sets of vertices that belong to each hyperedge becomes a group of vertices to be merged together. In this scheme, each group can have an arbitrary number of vertices (even though preference is given to smaller groups), and each vertex also belongs to exactly one group. Finally, the third scheme called FirstChoice (FC) [20] groups together vertices, such that each vertex in the group is highly connected with at least one other vertex in the same group (i.e., both vertices are present in many hyperedges). In this scheme, each group consists of an arbitrary number of vertices, and each vertex belongs to exactly one group. The coarsening phase ends when the coarsest hypergraph has a small number of vertices. Since our goal is to compute a k-way partitioning, the number of vertices in this smaller hypergraph should be a function of k, to ensure that a reasonably balanced partitioning can be computed by the initial partitioning algorithm. In our experiments, for a k-way partition, we stop the coarsening process when the number of vertices becomes less than ck, where c = 100. **Initial Partitioning Phase** The second phase of the multilevel k-way partitioning algorithm is to compute a k-way partitioning of the coarsest hypergraph such that the balancing constraint is satisfied and the partitioning objective is optimized. Since during coars- ening, the weights of the vertices and hyperedges of the coarser hypergraph were set to reflect the weights of the vertices and hyperedges of the finer hypergraph, the coarsest hypergraph contains sufficient information to intelligently enforce the balancing constraint and optimize the partitioning objective. In our algorithm, the *k*-way partitioning of the coarsest hypergraph is computed using our multilevel hypergraph bisection algorithm [24], that is available in the hMETIS package [18]. Uncoarsening Phase During the uncoarsening phase, a partitioning of the coarser hypergraph is successively projected to the next level finer hypergraph, and a partitioning refinement algorithm is used to optimize the objective function without violating the partitioning balancing constraints. Since the next level finer hypergraph has more degrees of freedom, such refinement algorithms tend to improve the solution quality. In the case of bisection refinement, the FM algorithm [2] has been shown to produce very good results [24]. However, refining a k-way partitioning is significantly more complicated because vertices can move from a partition to many other partitions; thus, increasing the optimization space combinatorially. An extension of the FM refinement algorithm in the case of k-way refinement is described in [3]. This algorithm uses k(k-1) priority queues, one for each type of move. In each step of the algorithm, the moves with the highest gain are found from each of these k(k-1) queues, and the move with the highest gain that preserves or improves the balance, is performed. After the move, all of the k(k-1) priority queues are updated. The complexity of k-way refinement is significantly higher than that of 2-way refinement, and is only practical for small values of k. Furthermore, as the experiments in [17] suggest, the k-way FM algorithm is also very susceptible of being trapped into a local minima that is far from being optimal. The hill-climbing capability of the FM algorithm serves a very important purpose. It allows movement of an entire cluster of vertices across a partition boundary. Note that it is quite possible that as the cluster is moved across the partition boundary, the value of the objective function increases, but after the entire cluster of vertices moves across the partition, then the overall value of the objective function comes down. In the context of multilevel schemes, this hill-climbing capability becomes less important. The reason is that these clusters of vertices are often coarsened into a single vertex at successive coarsening phases. Hence, movement of a vertex at a coarse level really corresponds to the movement of a group of vertices in the original hypergraph. If the hill-climbing part of the FM algorithm is eliminated (i.e., if vertices are moved only if they lead to positive gain), then it becomes less useful to maintain a priority queue. This is because vertices whose move results in a large positive gain will most likely be moved anyway even if they are not moved earlier (in the priority order). Hence, a variation of the FM algorithm that simply visits the vertices in a random order and moves them if they result in a positive gain is likely to work well in the multilevel context. Furthermore, the complexity of this algorithm will be independent of the number of partitions being refined, leading to a fast algorithm. This observation has lead to us to develop a greedy refinement algorithm. It consists of a number of iterations. In each iteration all the vertices are checked to see if they can be moved so that the partitioning objective function is optimized, subject to the partitioning balancing constraint (as described in Section 2). As the results in Section 3 show, despite the simplicity of our refinement algorithms, they produce high quality partitionings in small amount of time. More precisely, our greedy k-way refinement algorithm works as follows. Consider a hypergraph $G_i = (V_i, E_i)$, and its partitioning vector P_i . The vertices are visited in a random order. Let v be such a vertex, let $P_i[v] = a$ be the partition that v belongs to. If v is a node internal to partition a then v is not moved. If v is at the boundary of the partition, then ν can potentially be moved to one of the partitions $N(\nu)$ that vertices adjacent to ν belong to (the set $N(\nu)$ is often refer to as the *neighborhood* of ν). Let $N'(\nu)$ be the subset of $N(\nu)$ that contains all partitions b such that movement of vertex ν to partition b does not violate the balancing constraint. Now the partition $b \in N'(\nu)$ that leads to the greatest positive reduction (gain) in the objective function is selected and ν is moved to that partition. The above greedy refinement algorithm can be used to compute a partitioning that minimizes a variety of objective functions, by appropriately computing the gain achieved in moving a vertex. Our current implementation allows a choice of two different objective functions. The first minimizes the hyperedge cut and the second minimizes the SOED. Experiments with this greedy k-way refinement algorithm show that it converges after a small number of iterations. In our experiments, we found that for most hypergraphs, the algorithm converged within four to eight iterations. ## 3 Experimental Results We experimentally evaluated the quality of the partitionings produced by our multilevel k-way hypergraph partitioning algorithm (hMEIIS-Kway) on the 18 hypergraphs that are part of the ISPD98 circuit partitioning benchmark suite [16]. The characteristics of these hypergraphs are shown in Table 1. In addition to the circuits, the ISPD98 benchmark also contains the actual areas for each one of the cell. However, to make it easy to compare our results with those of other researchers [17], we used only unit cell-areas in our experiments. Furthermore, for some circuits, the actual areas of some cells is higher than 1/8 of the overall area, making it impossible to produced balanced 8-, 16-, and 32-way partitionings. We performed all of our experiments on a 300MHz Pentium II-based Linux workstation. | Benchmark | No. of vertices | No. of hyperedges | |-----------|-----------------|-------------------| | ibm01 | 12506 | 14111 | | ibm02 | 19342 | 19584 | | ibm03 | 22853 | 27401 | | ibm04 | 27220 | 31970 | | ibm05 | 28146 | 28446 | | ibm06 | 32332 | 34826 | | ibm07 | 45639 | 48117 | | ibm08 | 51023 | 50513 | | ibm09 | 53110 | 60902 | | ibm10 | 68685 | 75196 | | ibm11 | 70152 | 81454 | | ibm12 | 70439 | 77240 | | ibm13 | 83709 | 99666 | | ibm14 | 147088 | 152772 | | ibm15 | 161187 | 186608 | | ibm16 | 182980 | 190048 | | ibm17 | 184752 | 189581 | | ibm18 | 210341 | 201920 | Table 1: The characteristics of the various hypergraphs used to evaluate the multilevel hypergraph partitioning algorithms. ### 3.1 Comparison with the Multilevel Recursive Bisection In our first set of experiments, we compare the performance of our multilevel k-way partitioning algorithm to that of the multilevel recursive bisection algorithm for computing 8-, 16-, and 32-way partitionings. Our multilevel k-way partitioning algorithm was compared against the multilevel bisection algorithm [24] that is part of the MEIS [18] hypergraph partitioning package. For the rest of this paper, we will refer to this recursive bisection algorithm as hMETIS-RB, and we will refer to our multilevel k-way partitioning algorithm as hMETIS-Kway. Both hMETIS-RB and hMETIS-Kway used the FC scheme for coarsening [20]. For refinement, hMETIS-RB used the FM algorithm whereas the hMETIS-Kway used the greedy refinement algorithm described in Section 2. To compute a bisection using hMETIS-RB, we performed a total of 20 different runs, and then we further improved the best bisection using the V-cycle refinement technique [24]. To ensure that the overall k-way partitioning does not become significantly unbalanced, each bisection was computed using a [48,52] balancing constraint (i.e., the smaller part must contain at least 48% of the vertices). Consequently, the effective overall balancing constraints for the 8-, 16-, and 32-way partitionings were $[0.48^3 = 0.111, .52^3 = 0.141]$, $[0.48^4 = 0.053, .52^4 = 0.073]$, and $[0.48^5 = 0.025, .52^5 = 0.038]$, respectively. In other words, these balancing constraints allow an overall maximum load imbalance of 12.5%, 17.0%, and 21.7%, for the 8-, 16-, and 32-way partitionings, respectively. We also performed a total of 20 different runs for hMETIS-Kway, and we also used the V-cycle refinement technique to further improve the quality of the best k-way partitioning. In all the experiments, hMETIS-Kway used an overall load imbalance tolerance of 1.10, meaning that the weight of the heaviest partition will be less than 10% higher than the average weight of the kpartitions. | | HMETIS-RB | | | HMETS-Kway | | | |----------|-----------|----------|----------|------------|----------|----------| | Circuit | 8-way | 16-way | 32-way | 8-way | 16-way | 32-way | | ibm01 | 760 | 1258 | 1723 | 795 | 1283 | 1702 | | ibm02 | 1720 | 3150 | 4412 | 1790 | 3210 | 4380 | | ibm03 | 2503 | 3256 | 4064 | 2553 | 3317 | 4120 | | ibm04 | 2857 | 3989 | 5094 | 2902 | 3896 | 5050 | | ibm05 | 4548 | 5465 | 6211 | 4464 | 5612 | 5948 | | ibm06 | 2452 | 3356 | 4343 | 2397 | 3241 | 4231 | | ibm07 | 3454 | 4804 | 6300 | 3422 | 4764 | 6212 | | ibm08 | 3696 | 4916 | 6489 | 3544 | 4718 | 6154 | | ibm09 | 2756 | 3902 | 5502 | 2680 | 3968 | 5490 | | ibm10 | 4301 | 6190 | 8659 | 4263 | 6209 | 8612 | | ibm11 | 3592 | 5260 | 7514 | 3713 | 5371 | 7534 | | ibm12 | 5913 | 8540 | 11014 | 6183 | 8569 | 11392 | | ibm13 | 3042 | 5522 | 7541 | 2744 | 5329 | 7610 | | ibm14 | 5501 | 8362 | 12681 | 5244 | 8293 | 12838 | | ibm15 | 6816 | 8691 | 13342 | 6855 | 9201 | 13853 | | ibm16 | 6871 | 10230 | 15589 | 6737 | 10250 | 15335 | | ibm17 | 9341 | 15088 | 20175 | 9420 | 15206 | 19812 | | ibm18 | 5310 | 8860 | 13410 | 5540 | 9025 | 13102 | | ARQ | 1.002 | 0.996 | 1.006 | 0.998 | 1.004 | 0.994 | | Run-time | 21872.22 | 25941.12 | 30325.48 | 10551.7 | 14227.52 | 19572.45 | Table 2: The number of hyperedges that are cut by the multilevel recursive bisection algorithm (hMEIIS-RB) and the multilevel k-way partitioning algorithm (hMEIIS-Kway) for 8-, 16-, and 32-way partitionings, and the amount of time that is required. Table 2 shows the number of hyperedges that are cut by both hMeIIS-RB and hMeIIS-Kway for an 8-, 16-, and 32-way partitioning for all the circuits of the ISPD98 benchmark. For this set of experiments, the objective of hMeIIS-Kway algorithm was to minimize the hyperedge cut. As can be seen from Table 2, hMeIIS-Kway produces partitions whose cut is comparable to those produced by hMeIIS-RB. The row labeled "ARQ" shows the Average Relative Quality of one scheme versus the other. For example, the ARQ value of 1.002 for the 8-way partitioning of hMeIIS-RB means that the cuts produced by hMeIIS-RB are on the average 0.2% higher than the corresponding cuts produced by hMeIIS-Kway. An ARQ value that is less than 1.0 indicates that the particular scheme on the average performs better. Looking at the various ARQ values, we see that on average, hMeIIS-Kway performs 0.2% and 0.6% better than hMeIIS-RB for the 8- and 32-way par- titionings, respectively, and 0.4% worse for the 16-way partitioning. The fact that hMeIIS-Kway cuts the same number of hyperedges as hMeIIS-RB, is especially interesting if we consider (i) the simplicity of the greedy refinement scheme used by hMeIIS-Kway as opposed to the much more sophisticated FM algorithm used by hMeIIS-RB, and (ii) the fact that compared to hMeIIS-Kway, hMeIIS-RB operates under more relaxed balancing constraints. The last row of Table 2 shows the total amount of time required by the two algorithms in order to compute the 8-, 16-, and 32-way partitionings. As we can see, hMEIIS-Kway is 2.07, 1.82, and 1.55 times faster than hMEIIS-RB for computing an 8-, 16-, and a 32-way partitioning, respectively. Note that this relative speed advantage of hMEIIS-Kway decreases as k increases. This is primarily due to the fact that the recursive bisection algorithm used in the initial partitioning takes a larger fraction of the overall time (as the size of the coarsest hypergraph is proportional to the number of partitions). hMEIIS-Kway will continue running faster than hMEIIS-RB if the size of the hypergraph is increased proportionally to the number of partitions. | | HMETS-RB | | | hMeliS-RB hMeliS-Kway | | | ay | |---------|----------|--------|--------|-----------------------|--------|--------|----| | Circuit | 8-way | 16-way | 32-way | 8-way | 16-way | 32-way | | | ibm01 | 1768 | 2938 | 4566 | 1750 | 2883 | 4149 | | | ibm02 | 3940 | 8040 | 13039 | 3850 | 7556 | 11821 | | | ibm03 | 5909 | 8719 | 11667 | 5820 | 8205 | 11077 | | | ibm04 | 6461 | 9595 | 13008 | 6214 | 8992 | 12495 | | | ibm05 | 11572 | 16070 | 22708 | 10749 | 15206 | 20020 | | | ibm06 | 6160 | 9631 | 13988 | 5784 | 8661 | 12779 | | | ibm07 | 7885 | 12116 | 16806 | 7586 | 11040 | 15559 | | | ibm08 | 9031 | 13040 | 18819 | 7979 | 10976 | 15327 | | | ibm09 | 6073 | 9016 | 13193 | 5822 | 8634 | 12460 | | | ibm10 | 9458 | 14543 | 21060 | 9144 | 13130 | 19941 | | | ibm11 | 7940 | 12023 | 17857 | 7874 | 11706 | 17118 | | | ibm12 | 12975 | 19563 | 27026 | 12910 | 17848 | 25228 | | | ibm13 | 7010 | 12792 | 18484 | 6079 | 11819 | 17350 | | | ibm14 | 12360 | 19189 | 30484 | 11258 | 18232 | 29699 | | | ibm15 | 15198 | 21314 | 32039 | 14586 | 20826 | 31874 | | | ibm16 | 14853 | 23237 | 37234 | 14616 | 22924 | 34879 | | | ibm17 | 20423 | 34177 | 48256 | 19930 | 33344 | 45961 | | | ibm18 | 12940 | 21765 | 34069 | 12177 | 19598 | 30558 | | | ARQ | 1.048 | 1.068 | 1.076 | 0.954 | 0.936 | 0.929 | | Table 3: The sum of external degrees (SOED) of the hyperedges that are cut by the partitionings produced by the multilevel recursive bisection algorithm (hMEIIS-RB) and the multilevel k-way partitioning algorithm (hMEIIS-Kway) for 8-, 16-, and 32-way partitionings, and the amount of time that is required. To test the effectiveness of hMEIIS-Kway for optimizing the SOED, we ran another set of experiments in which the objective of hMEIIS-Kway was to minimize the SOED. Table 3 shows the sum of external degrees (SOED) of the partitionings produced by both hMEIIS-RB and hMEIIS-Kway for an 8-, 16-, and 32-way partitioning for all the circuits of the ISPD98 benchmark. From this table we can see that for all cases, hMEIIS-Kway produces partitionings whose SOEDs are better than those produced by hMEIIS-RB. On the average, hMEIIS-Kway performs 4.8%, 6.8%, and 7.6% better than hMEIIS-RB for the 8-way, 16-way, and 32-way partitionings, respectively. These results show that hMEIIS-Kway is effective in incorporating global objective functions which can only be optimized in the context of a k-way refinement algorithm. ## 3.2 Comparison with K-PM/LR We compared the performance of our multilevel k-way partitioning algorithm against the multi-way partitioning algorithm K-PM/LR developed by Cong and Lim [17]. Table 4 shows the number of hyperedges that are cut by both hMETIS-Kway and K-PM/LR for an 8- and a 16-way partitioning1. In these experiments, for both hMETIS-Kway and K-PM/LR, the partitioning objective was to minimize the hyperedge cut. The results for hMETIS-Kway are the same as shown in Table 2, whereas the results from K-PM/LR are taken from [17]. Note that the results for K-PM/LR were obtained by using balancing constraints that correspond to those obtained by recursive bisection if it used a [0.45, 0.55] balancing constraint at each level. Consequently, the balancing constraints for the 8- and 16-way partitioning are $[0.45^3 = 0.091, 0.55^3 = 0.166]$ and $[0.45^4 = 0.041, 0.55^4 = 0.092]$, respectively. Note that these balancing constraints are considerably more relaxed than the 10% overall load imbalanced used by hMETIS-Kway. If we translate the balancing constraints enforced by K-PM/LR to maximum allowable load imbalances for k-way partitioning, we see that K-PM/LR allows up to 32.8% and 47.2% load imbalance, for the 8-, and 16-way partitionings, respectively. From Table 4 we can see that hMEĪĪŚ-Kway produces partitionings that cut significantly fewer hyperedges than those cut by K-PM/LR. In fact, on the average, hMEĪĪŚ-Kway cuts 20% and 23% fewer hyperedges than K-PM/LR for the 8- and 16-way partitionings, respectively. Thus, even though hMEĪĪŚ-Kway operates under tighter balancing constraints, it is able to produce partitionings that cut substantially fewer hyperedges than K-PM/LR. | | HMETIS | S-Kway | K-PN | //LR | |----------|---------|----------|--------|--------| | Circuit | 8-way | 16-way | 8-way | 16-way | | ibm01 | 795 | 1283 | 1020 | 1699 | | ibm02 | 1790 | 3210 | 1751 | 3592 | | ibm03 | 2553 | 3317 | 3882 | 5736 | | ibm04 | 2902 | 3896 | 3559 | 5349 | | ibm05 | 4464 | 5612 | 4834 | 6419 | | ibm06 | 2397 | 3241 | 3198 | 4815 | | ibm07 | 3422 | 4764 | 4398 | 6854 | | ibm08 | 3544 | 4718 | 4466 | 6477 | | ibm09 | 2680 | 3968 | 4115 | 6046 | | ibm10 | 4263 | 6209 | 5252 | 8559 | | ibm11 | 3713 | 5371 | 6086 | 8871 | | ibm12 | 6183 | 8569 | 7736 | 11000 | | ibm13 | 2744 | 5329 | 3570 | 7066 | | ibm14 | 5244 | 8293 | 6753 | 9854 | | ibm15 | 6855 | 9201 | 8965 | 11345 | | ibm16 | 6737 | 10250 | 7543 | 10456 | | ibm17 | 9420 | 15206 | 10654 | 17653 | | ibm18 | 5540 | 9025 | 5765 | 9653 | | ARQ | 0.802 | 0.771 | 1.247 | 1.297 | | Run-time | 10551.7 | 14227.52 | 105840 | 134640 | Table 4: The number of hyperedges that are cut by hMEIS-Kway and the K-PM/LR partitioning algorithms for 8- and 16-way partitionings, and the amount of time required. Note that hMEIS-Kway was run on a Pentium II@300Mhz, whereas K-PM/LR was run on a Ultra Sparc1@143Mhz. The last row of Table 4 shows the amount of time required by hMEIIS-Kway and K-PM/LR. Note that the K-PM/LR was run on a Sun Ultra Sparc1 running at 143Mhz. Our experiments have shown that the Sun Ultra Sparc1 running at 143Mhz is about twice as slow than the Pentium II running at 300Mhz that we used for our hMEIIS-Kway experiments). Taking this CPU performance difference into account, we see that hMEIIS-Kway is 5 times faster for the 8-way partitioning, and 4.7 times faster for the 16-way partitioning. Thus, compared to K-PM/LR, hMEIIS-Kway not only cuts substantially fewer hyperedges but it is also significantly faster than K-PM/LR. Finally, Cong and Lim [17] also reported results using the minimization of the (K-1) metric as the objective function of K-PM/LR. Table 5 shows the cost of the solutions with respect to the | | HMETIS | S-Kway | K-P | M/LR | |---------|--------|--------|-------|--------| | Circuit | 8-way | 16-way | 8-way | 16-way | | ibm01 | 930 | 1592 | 1109 | 1821 | | ibm02 | 1750 | 4058 | 1892 | 4152 | | ibm03 | 3083 | 4745 | 4119 | 5662 | | ibm04 | 3320 | 4956 | 3671 | 5766 | | ibm05 | 5958 | 8982 | 6543 | 9344 | | ibm06 | 3300 | 5248 | 3988 | 5900 | | ibm07 | 4115 | 5948 | 4707 | 6854 | | ibm08 | 4312 | 6102 | 5426 | 7364 | | ibm09 | 3043 | 4564 | 4187 | 5978 | | ibm10 | 4763 | 6944 | 5518 | 8525 | | ibm11 | 4174 | 6303 | 5321 | 8420 | | ibm12 | 6598 | 9358 | 7530 | 10495 | | ibm13 | 3319 | 6394 | 3667 | 7382 | | ibm14 | 5962 | 9734 | 7427 | 12476 | | ibm15 | 8104 | 11182 | 11008 | 14448 | | ibm16 | 7529 | 12052 | 9322 | 14901 | | ibm17 | 10510 | 17740 | 11818 | 20830 | | ibm18 | 6410 | 10498 | 6982 | 11692 | | ARQ | 0.840 | 0.849 | 1.191 | 1.178 | Table 5: The (K-1) metric of the partitionings obtained by hMETIS-Kway and the K-PM/LR partitioning algorithms for 8- and 16-way partitionings. (K-1) metric obtained by both hMEIIS-Kway and K-PM/LR for an 8- and a 16-way partitioning. Note that for hMEIIS-Kway, the value for the (K-1) metric was obtained by performing the partitioning using the minimization of the SOED as the objective. From this table we can see that hMEIIS-Kway also produces partitionings that are consistently and significantly better than those produced by K-PM/LR. In particular, the (K-1)-metric cost of hMEIIS-Kway is, on the average, 15% and 14% smaller than the cost of K-PM/LR for the 8- and 16-way partitionings, respectively. ## 4 Conclusions The multilevel k-way partitioning scheme presented in this paper substantially outperforms the state-of-the-art K-PM/LR algorithm for multi-way partitioning [17] both for minimizing the hyperedge cut as well as minimizing the (K-1) metric. The power of hMETIS-Kway is primarily derived from the robustness of the multilevel paradigm that allows the use of a simple k-way partitioning refinement heuristic instead of the $O(k^2)$ complexity k-way FM refinement [3] or a sequence of pair-wise FM refinements [17]. The simple k-way refinement heuristic is able to perform an excellent join optimizing the objective function, as it is applied to successively finer hypergraphs. Furthermore, as our experiments indicate, the multilevel k-way paradigm offers the additional benefit of producing high quality partitionings while enforcing tight balancing constraints. #### References - B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. The Bell System Technical Journal, 49(2):291-307, 1970. - [2] C. M. Fiduccia and R. M. Mattheyses. A linear time heuristic for improving network partitions. In In Proc. 19th IEEE Design Automation Conference, pages 175–181, 1982. - [3] L. A. Sanchis. Multiple-way network partitioning. IEEE Transactions on Computers, pages 62–81, 1989. - [4] C. W. Yeh, C. K. Cheng, and T. T. Lin. A general purpose multiple-way partitioning algorithm. In Proc. of the Design Automation Conference, pages 421-426, 1991. - [5] P. Chan, M. Schlag, and J. Zien. Spectral k-way ratio-cut partitioning and clustering. In Proc. of the Design Automation Conference, pages 749-754, 1993. - [6] L. A. Sanchis. Multiple-way network partitioning with different cost functions. IEEE Transactions on Computers, pages 1500-1504, 1993. ¹We were not able to compare results for 32-way partitioning, because they are not reported in [17]. - [7] Horst D. Simon and Shang-Hua Teng. How good is recursive bisection? Technical Report RNR-93-012, NAS Systems Division, NASA, Moffet Field, CA, 1993 - [8] C. J. Alpert and A. B. Kahng. Multi-way partitioning via space-filling curves and dynamic programming. In Proc. of the Design Automation Conference, pages 652–657, 1994. - [9] Charles J. Alpert and Andrew B. Kahng. Recent directions in netlist partitioning. Integration, the VLSI Journal, 19(1-2):1-81, 1995. - [10] S. Hauck and G. Borriello. An evaluation of bipartitioning technique. In Proc. Chapel Hill Conference on Advanced Research in VLSI, 1995. - [11] J. Cong, W. Labio, and N. Shivakumar. Multi-way VLSI circuit partitioning based on dual net representation. *IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems*, pages 396-409, 1996. - [12] B. Mobasher, N. Jain, E.H. Han, and J. Srivastava. Web mining: Pattern discovery from world wide web transactions. Technical Report TR-96-050, Department of Computer Science, University of Minnesota, Minneapolis, 1996. - [13] S. Shekhar and D. R. Liu. Partitioning similarity graphs: A framework for declustering problems. *Information Systems Journal*, 21(4), 1996. - [14] C. J. Alpert, J. H. Huang, and A. B. Kahng. Multilevel circuit partitioning. In Proc. of the 34th ACM/IEEE Design Automation Conference, 1997. - [15] George Karypis and Vipin Kumar. A coarse-grain parallel multilevel k-way partitioning algorithm. In Proceedings of the eighth SIAM conference on Parallel Processing for Scientific Computing, 1997. - [16] C. J. Alpert. The ISPD98 circuit benchmark suite. In Proc. of the Intl. Symposium of Physical Design, pages 80-85, 1998. - [17] Jason Cong and Sung Kyu Lim. Multiway Partitioning with Pairwise Movement. In Intl. Conference on Computer Aided Design, 1998. - [18] G. Karypis and V. Kumar. IMETS 1.5: A hypergraph partitioning package. Technical report, Department of Computer Science, University of Minnesota, 1998. Available on the WWW at URL http://www.cs.umn.edu/~metis. - [19] G. Karypis and V. Kumar. Multilevel algorithms for multi-constraint graph partitioning. In *Proceedings of Supercomputing*, 1998. Also available on WWW at URL http://www.cs.umn.edu/karypis. - [20] G. Karypis and V. Kumar. Multilevel k-way hypergraph partitioning. Technical Report TR 98-036, Department of Computer Science, University of Minnesota, 1998 - [21] Sverre Wichlund and Einar J. Aas. On Multilevel Circuit Partitioning. In Intl. Conference on Computer Aided Design, 1998. - [22] C. Berge. Graphs and Hypergraphs. American Elsevier, New york, 1976. - [23] Michael R. Garey and David S. Johnson. Computers and Instractability: A Guide to the Theory of NP-Completeness. W.H Freeman, San Francisco, CA, 1979. - [24] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multi-level hypergraph partitioning: Application in vlsi domain. *IEEE Transactions on VLSI Systems*, 1998 (to appear). A short version appears in the proceedings of DAC 1997.