
HOSLIM: Higher-Order Sparse LInear Method
for Top-N Recommender Systems

Evangelia Christakopoulou and George Karypis
Email: {evangel,karypis@cs.umn.edu}

Computer Science & Engineering
University of Minnesota, Minneapolis, MN

Abstract. Current top-N recommendation methods compute the rec-
ommendations by taking into account only relations between pairs of
items, thus leading to potential unused information when higher-order re-
lations between the items exist. Past attempts to incorporate the higher-
order information were done in the context of neighborhood-based meth-
ods. However, in many datasets, they did not lead to significant im-
provements in the recommendation quality. We developed a top-N rec-
ommendation method that revisits the issue of higher-order relations,
in the context of the model-based Sparse LInear Method (SLIM). The
approach followed (Higher-Order Sparse LInear Method, or HOSLIM)
learns two sparse aggregation coefficient matrices S and S′ that cap-
ture the item-item and itemset-item similarities, respectively. Matrix S′

allows HOSLIM to capture higher-order relations, whose complexity is
determined by the length of the itemset. Following the spirit of SLIM,
matrices S and S′ are estimated using an elastic net formulation, which
promotes model sparsity. We conducted extensive experiments which
show that higher-order interactions exist in real datasets and when in-
corporated in the HOSLIM framework, the recommendations made are
improved. The experimental results show that the greater the presence
of higher-order relations, the more substantial the improvement in rec-
ommendation quality is, over the best existing methods. In addition, our
experiments show that the performance of HOSLIM remains good when
we select S′ such that its number of nonzeros is comparable to S, which
reduces the time required to compute the recommendations.

1 Introduction

In many widely-used recommender systems [1], users are provided with a ranked
list of items in which they will likely be interested in. In these systems, which
are referred to as top-N recommendation systems, the main goal is to identify
the most suitable items for a user, so as to encourage possible purchases. In the
last decade, several algorithms for top-N recommendation tasks have been de-
veloped [12], the most popular of which are the neighborhood-based (which focus
either on users or items) and the matrix-factorization ones. The neighborhood-
based algorithms [6] focus on identifying similar users/items based on a user-
item purchase/rating matrix. The matrix-factorization algorithms [5] factorize

the user-item matrix into lower rank user factor and item factor matrices, which
represent both the users and the items in a common latent space.

Though matrix factorization methods have been shown to be superior for
solving the problem of rating prediction, item-based neighborhood methods are
shown to be superior for the top-N recommendation problem [3,6,9,10]. In fact
the winning method in the recent million song dataset challenge [3] was a rather
straightforward item-based neighborhood top-N recommendation approach.

The traditional approaches for developing item-based top-N recommendation
methods (k-Nearest Neighbors, or k-NN) [6] use various vector-space similarity
measures (e.g., cosine, extended Jaccard, Pearson correlation coefficient, etc.) to
identify for each item the k most similar other items based on the sets of users
that co-purchased these items. Then, given a set of items that have already
been purchased by a user, they derive their recommendations by combining the
most similar unpurchased items to those already purchased. In recent years, the
performance of these item-based neighborhood schemes has been significantly
improved by using supervised learning methods to learn a model that both cap-
tures the similarities (or aggregation coefficients) and also identifies the sets of
neighbors that lead to the best overall performance [9,10]. One of these methods
is SLIM [10], which learns a sparse aggregation coefficient matrix from the user-
purchase matrix, by solving an optimization problem. It was shown that SLIM
outperforms other top-N recommender methods [10].

However, there is an inherent limitation to both the old and the new top-N
recommendation methods as they capture only pairwise relations between items
and they are not capable of capturing higher-order relations. For example, in a
grocery store, users tend to often buy items that form the ingredients in recipes.
Similarly, the purchase of a phone is often combined with the purchase of a screen
protector and a case. In both of these examples, purchasing a subset of items in
the set significantly increases the likelihood of purchasing the rest. Ignoring this
type of relations, when present, can lead to suboptimal recommendations.

The potential of improving the performance of top-N recommendation meth-
ods was recognized by Mukund et al. [6], which incorporated combinations of
items (i.e., itemsets) in their method. In that work, the most similar items were
identified not only for each individual item, but also for all sufficiently frequent
itemsets that are present in the active user’s basket. This method referred to
as HOKNN (Higher-Order k-NN) computes the recommendations by combining
itemsets of different size. However, in most datasets this method did not lead to
significant improvements. We believe that the reason for this is that the recom-
mendation score of an item is computed simply by an item-item or itemset-item
similarity measure, which does not take into account the subtle relations that
exist when these individual predictors are combined.

In this paper, we revisit the issue of utilizing higher-order information, in the
context of model-based methods. The research question answered is whether the
incorporation of higher-order information in the recently developed model-based
top-N recommendation methods will improve the recommendation quality fur-
ther. The contribution of this paper is two-fold: First, we verify the existence

of higher-order information in real-world datasets, which suggests that higher-
order relations do exist and thus if properly taken into account, they can lead
to performance improvements. Second, we develop an approach referred to as
Higher-Order Sparse Linear Method, (HOSLIM) in which the itemsets capturing
the higher-order information are treated as additional items and their contri-
bution to the overall recommendation score is estimated using the model-based
framework introduced by SLIM. We conduct a comprehensive set of experiments
on different datasets from various applications. The results show that this combi-
nation improves the recommendation quality beyond the current best results of
top-N recommendation. In addition, we show the effect of the support threshold
chosen on the quality of the method. Finally, we present the requirements that
need to be satisfied, in order to ensure that HOSLIM computes the predictions
in an efficient way.

The rest of the paper is organized as follows. Section 2 introduces the nota-
tions used in this paper. Section 3 presents the related work. Section 4 explains
the method proposed. Section 5 provides the evaluation methodology and the
dataset characteristics. In Section 6, we provide the results of the experimental
evaluation. Finally, Section 7 contains some concluding remarks.

2 Notations

In this paper, all vectors are represented by bold lower case letters and they are
column vectors (e.g., p, q). Row vectors are represented by having the transpose
superscript T , (e.g., pT). All matrices are represented by upper case letters (e.g.,
R, W). The ith row of a matrix A is represented by aTi . A predicted value is
denoted by having a ∼ over it (e.g., r̃).

The number of users will be denoted by n and the number of items will be
denoted by m. Matrix R will be used to represent the user-item implicit feedback
matrix of size n×m, containing the items that the users have purchased/viewed.
Symbols u and i will be used to denote individual users and items, respectively.
An entry (u, i) in R, rui, will be used to represent the feedback information for
user u on item i. R is a binary matrix. If the user has provided feedback for a
particular item, then the corresponding entry in R is 1, otherwise it is 0. We will
refer to the items that the user has bought/viewed as purchased items and to
the rest as unpurchased items.

Let I be the set of sets of items that are co-purchased by at least σ users in
R, where σ denotes the minimum support threshold. We will refer to these sets
as itemsets and we will use p to denote the cardinality of I (i.e., p = |I|). Let R′

be a matrix whose columns correspond to the different itemsets in I (the size
of this matrix is n × p). In this matrix r′uj will be one, if user u has purchased
all the items corresponding to the itemset of the jth column of R′ and zero
otherwise. We refer to R′ as the user-itemset implicit feedback matrix. We will
use Ij to denote the set of items that constitute the itemset of the jth column
of R′. In the rest of the paper, every itemset will be of size two (unless stated
otherwise) and considered to be frequent, even if it is not explicitly said so.

3 Related Work

In this paper, we combine the idea of higher-order models introduced by HOKNN
with SLIM. The overview of these two methods is presented in the following
subsections.

3.1 Higher-Order k-Nearest Neighbors Top-N Recommendation
Algorithm (HOKNN)

Mukund et al. [6] had pointed out that the recommendations could potentially
be improved, by taking into account higher-order relations, beyond relations
between pairs of items. They did that by incorporating combinations of items
(itemsets) in the following way: The most similar items are found not for each
individual item, as it is typically done in the neighborhood-based models, but
for all possible itemsets up to a particular size l.

3.2 Sparse LInear Method for top-N Recommendation (SLIM)

SLIM computes the recommendation score on an unpurchased item i of a user
u as a sparse aggregation of all the user’s purchased items:

r̃ui = rTu si, (1)

where rTu is the row-vector of R corresponding to user u and si is a sparse size-m
column vector which is learned by solving the following optimization problem:

minimize
si

1
2 ||ri −Rsi||22 + β

2 ||si||
2
2 + λ||si||1,

subject to si ≥ 0
sii = 0,

(2)

where ||si||22 is the l2 norm of si and ||si||1 is the entry-wise l1 norm of si.
The l1 regularization gets used so that sparse solutions are found [13]. The l2
regularization prevents overfitting. The constants β and λ are regularization
parameters. The non-negativity constraint is applied so that the matrix learned
will be a positive aggregation of coefficients. The sii = 0 constraint makes sure
that when computing the weights of an item, that item itself is not used as
this would lead to trivial solutions. All the si vectors can be put together into
a matrix S, which can be thought of as an item-item similarity matrix that is
learned from the data. So, the model introduced by SLIM can be presented as
R̃ = RS.

4 HOSLIM: Higher-Order Sparse LInear Method for
Top-N Recommendation

The ideas of the higher-order models can be combined with the SLIM learning
framework in order to estimate the various item-item and itemset-item similari-
ties. In this approach, the likelihood that a user will purchase a particular item is

computed as a sparse aggregation of both the items purchased and the itemsets
that it supports. The predicted score for user u on item i is given by

r̃ui = rTu si + r′
T
u s′i, (3)

where si is a sparse vector of size m of aggregation coefficients for items and s′i
is sparse vector of size p of aggregation coefficients for itemsets.

Thus, the model can be presented as:

R̃ = RS +R′S′, (4)

where R is the user-item implicit feedback matrix, R′ is the user-itemset implicit
feedback matrix, S is the sparse coefficient matrix learned corresponding to items
(size m × m) and S′ is the sparse coefficient matrix learned corresponding to
itemsets (size p×m). The ith columns of S and S′ are the si and s′i of Equation
3.

Top-N recommendation gets done for the uth user by computing the scores
for all the unpurchased items, sorting them and then taking the top-N values.

The sparse matrices S and S′ encode the similarities (or aggregation coeffi-
cients) between the items/itemsets and the items. The ith columns of S and S′

can be estimated by solving the following optimization problem:

minimize
si,s′i

1
2 ||ri −Rsi −R′s′i||22 +β

2 ||si||
2
2 + β

2 ||s
′
i||22

+λ||si||1 + λ||s′i||1
subject to si ≥ 0

s′i ≥ 0
sii = 0, and
s′ji = 0, where {i ∈ Ij}.

(5)

The constraint sii = 0 makes sure that when computing rui, the element rui
is not used. If this constraint was not enforced, then an item would recommend
itself. Following the same logic, the constraint s′ji = 0 ensures that the itemsets
j for which i ∈ Ij will not contribute to the computation of rui.

The optimization problem of Equation 5 can be solved using coordinate de-
scent and soft thresholding [7].

5 Experimental Evaluation

5.1 Datasets

We evaluated the performance of HOSLIM on a wide variety of datasets, both
synthetic and real. The datasets we used include point-of-sales, transactions,
movie ratings and social bookmarking. Their characteristics are shown in Table 1.

The groceries dataset corresponds to transactions of a local grocery store.
Each user corresponds to a customer and the items correspond to the distinct
products purchased over a period of one year. The synthetic dataset was gen-
erated by using the IBM synthetic dataset generator [2], which simulates the

Table 1: Dataset Characteristics

Name #Users #Items #Transactions Density
Average

Basket Size

groceries 63,035 15,846 1,997,686 0.2% 31.69
synthetic 5000 1000 68,597 1.37% 13.72
delicious 2,989 2,000 243,441 4.07% 81.44
ml 943 1,681 99,057 6.24% 105.04
retail 85146 16470 820,414 0.06% 9.64
bms-pos 435,319 1,657 2,851,423 0.39% 6.55
bms1 26,667 496 90,037 0.68% 3.37
ctlg3 56,593 39,079 394,654 0.017% 6.97

Columns corresponding to #users, #items and #transactions
show the number of users, number of items and number of
transactions, respectively, in each dataset. The column corre-
sponding to density shows the density of each dataset (i.e.,
density=#transactions/(#users×#items)). The average basket size
is the average number of transactions for each user.

behavior of customers in a retail environment. The parameters we used for gen-
erating the dataset were: average size of itemset= 4 and total number of itemsets
existent= 1, 200. The delicious dataset [11] was obtained from the eponymous
social bookmarking site. The items on this dataset correspond to tags. A non-
zero entry indicates that the corresponding user wrote a post using the cor-
responding tag. The ml dataset corresponds to MovieLens 100K dataset, [8]
which represents movie ratings. All the ratings were converted to one, showing
whether a user rated a movie or not. The retail dataset [4] contains the retail
market basket data from a Belgian retail store. The bms-pos dataset [14] con-
tains several years worth of point-of-sales data from a large electronics retailer.
The bms1 dataset [14] contains several months worth of clickstream data from
an e-commerce website. The ctlg3 dataset corresponds to the catalog purchasing
transactions of a major mail-order catalog retailer.

5.2 Evaluation Methodology

We employed a 10-fold leave-one-out cross-validation to evaluate the perfor-
mance of the proposed model. For each fold, one item was selected randomly for
each user and this was placed in the test set. The rest of the data comprised
the training set. We used only the data in the training set for both the itemset
discovery and model learning.

We measured the quality of the recommendations by comparing the size-N
recommendation list of each user and the item of that user in the test set. The
quality measure used was the hit-rate (HR). HR is defined as follows,

HR =
#hits

#users
, (6)

where “#users” is the total number of users (n) and “#hits” is the number of
users whose item in the test set is present in the size-N recommendation list.

5.3 Model Selection

We performed an extensive search over the parameter space of the various meth-
ods, in order to find the set of parameters that gives us the best performance for
all the methods. We only report the performance corresponding to the param-
eters that lead to the best results. The l1 regularization λ was chosen from the
set of values: {0.0001, 0.001, 0.01, 0.1, 1, 2, 5}. The lF regularization parameter β
ranged in the set: {0.01, 0.1, 1, 3, 5, 7, 10}. The larger β and λ were, the stronger
the regularizations were. The number of neighbors examined lied in the interval
[1 − 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]. The
support threshold σ took on values {10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65,
70, 75, 80, 85, 90, 95, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650,
700, 750, 800, 850, 900, 950, 1000, 1500, 2000, 2500, 3000}.

6 Experimental Results

The experimental evaluation consists of two parts. First, we analyze the various
datasets in order to assess the extent to which higher-order relations exist in
them. Second, we present the performance of HOSLIM and compare it to SLIM
as well as HOKNN.

6.1 Verifying the existence of Higher-Order Relations

We verified the existence of higher-order relations in the datasets, by measuring
how prevalent are the itemsets with strong association between the items that
comprise it (beyond pairwise associations). In order to identify such itemsets,
(which will be referred to as “good”), we conducted the following experiment.
We found all frequent itemsets of size 3 with σ equal to 10. For each of these
itemsets we computed two quality metrics. The first is

dependency max =
P (ABC)

max(P (AB), P (AC), P (BC))
, (7)

which measures how much greater the probability of a purchase of all the items
of an itemset is than the maximum probability of the purchase of an induced
pair. The second is

dependency min =
P (ABC)

min(P (AB), P (AC), P (BC))
, (8)

which measures how much greater the probability of the purchase of all the
items of an itemset is than the minimum probability of the purchase of an
induced pair. These metrics are suited for identifying the “good” itemsets, as

Table 2: Coverage by Affected Users/Non-zeros

Name
Percentage (%) with at least one
“good” itemset of dependency:

max≥ 2 max≥ 5 min≥ 2 min≥ 5
users non-zeros users non-zeros users non-zeros users non-zeros

groceries 95.17 68.30 88.11 47.91 97.53 84.69 96.36 73.09
synthetic 98.04 76.50 98.00 75.83 98.06 76.80 98.06 76.79
delicious 81.33 59.02 55.34 22.88 81.80 59.97 72.57 44.14
ml 99.47 69.77 28.42 3.75 99.89 77.94 63.63 37.62
retail 23.54 13.69 8.85 4.10 49.70 40.66 38.48 25.63
bms-pos 59.66 81.51 32.61 44.77 66.71 91.92 51.53 80.09
bms1 31.52 63.18 29.47 60.82 31.55 63.22 31.54 63.21
ctlg3 34.95 24.85 34.94 24.81 34.95 24.85 34.95 24.85

The percentage of users/non-zeros with at least one “good” itemset. The itemsets con-
sidered have a support threshold of 10, except in the case of delicious and ml, where the
support threshold is 50, (as delicious and ml are dense datasets and thus a large number
of itemsets is induced).

they discard the itemsets that are frequent just because their induced pairs are
frequent. Instead, the above-mentioned metrics discover the frequent itemsets
that have all or some infrequent induced pairs, meaning that these itemsets
contain higher-order information.

Given these metrics, we then selected the itemsets of size three that have
quality metrics greater than 2 and 5. The higher the quality cut-off, the more
certain we are that a specific itemset is “good”.

For these sets of high quality itemsets, we analyzed how well they cover the
original datasets. We used two metrics of coverage. The first is the percentage of
users that have at least one “good” itemset, while the second is the percentage of
the non-zeros in the user-item matrix R covered by at least one “good” itemset
(shown in Table 2). A non-zero in R is considered to be covered, when the
corresponding item of the non-zero value participates in at least one “good”
itemset supported by the associated user.

We can see from Table 2 that not all datasets have uniform coverage with
respect to high quality itemsets. The groceries and synthetic datasets contain a
large number of “good” itemsets that cover a large fraction of non-zeros in R
and nearly all the users. On the other hand, the ml, retail and ctlg3 datasets
contain “good” itemsets that have significantly lower coverage with respect to
both coverage metrics. The coverage characteristics of the good itemsets that
exist in the remaining datasets is somewhere in between these two extremes.
These results suggest that the potential gains that HOSLIM can achieve will
vary across the different datasets and should perform better for groceries and
synthetic datasets.

Table 3: Comparison of 1st order with 2nd order models
SLIM models k-NN models

SLIM HOSLIM Improved k-NN HOKNN Improved
Dataset β λ HR σ β λ HR % nnbrs HR nnbrs σ HR %

groceries 5 0.001 0.259 10 10 0.0001 0.338 32.03 1000 0.174 800 10 0.240 37.93
synthetic 0.1 0.1 0.733 10 3 1 0.860 17.33 41 0.697 47 10 0.769 10.33
delicious 10 0.01 0.148 50 10 0.01 0.156 5.41 80 0.134 80 10 0.134 0
ml 1 5 0.338 180 5 0.0001 0.349 3.25 15 0.267 15 10 0.267 0
retail 10 0.0001 0.310 10 10 0.1 0.317 2.26 1000 0.281 1,000 10 0.282 0.36
bms-pos 7 2 0.502 20 10 5 0.509 1.39 700 0.478 600 10 0.480 0.42
bms1 15 0.01 0.588 10 10 0.001 0.594 1.02 200 0.571 200 10 0.571 0
ctlg3 5 0.1 0.581 15 5 0.1 0.582 0.17 700 0.559 700 11 0.559 0

For each method, columns corresponding to the best HR and the set of parameters with which it is achieved
are shown. For SLIM (1st order), the set of parameters consists of the l2 regularization parameter β and the
l1 regularization parameter λ. For HOSLIM (2nd order), the parameters are β, λ and the support thresh-
old σ. For k-NN (1st order), the parameter used is the number of nearest neighbors (nnbrs). For HOKNN
(2nd order), the parameters are the number of nearest neighbors (nnbrs) and the support threshold σ. The
columns “Improved” show the percentage of improvement of the 2nd order models above the 1st order mod-
els. More specifically, the 1st column “Improved” shows the percentage of improvement of HOSLIM beyond
SLIM. The 2nd column “Improved” shows the percentage of improvement of HOKNN beyond k-NN.

6.2 Performance Comparison

Table 3 shows the performance achieved by HOSLIM, SLIM, k-NN and HOKNN.
The results show that HOSLIM produces recommendations that are better than
the other methods in nearly all the datasets. We can also see that the incorpora-
tion of higher-order information improves the recommendation quality, especially
in the HOSLIM framework.

Moreover, we can observe that the greater the existence of higher-order re-
lations in the dataset, the more significant the improvement in recommendation
quality is. For example, the most significant improvement happens in the gro-
ceries and the synthetic datasets, in which the higher-order relations are the
greatest (as seen from Table 2). On the other hand, the ctlg3 dataset does not
benefit from higher-order models, since there are not enough higher-order re-
lations. These results are to a large extent in agreement with our expectations
based on the analysis presented in the previous section. The datasets for which
HOSLIM achieves the highest improvement are those that contain the largest
number of users and non-zeros that are covered by high-quality itemsets.

Figure 1 demonstrates the performance of the methods for different values
of N (i.e., 5, 10, 15 and 20). HOSLIM outperforms the other methods for all
different values of N as well. We choose N to be quite small, as a user will not
see an item that exists in the bottom of a top-100 or top-200 list.

 0

 0.2

 0.4

5 10 15 20

H
R

N

k-NN
HOKNN

SLIM
HOSLIM

(a) Groceries Dataset

 0

 0.2

 0.4

5 10 15 20

H
R

N

k-NN
HOKNN

SLIM
HOSLIM

(b) Retail Dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20

H
R

N

k-NN
HOKNN

SLIM
HOSLIM

(c) Synthetic Dataset

Fig. 1: HR for different values of N.

 0.25

 0.3

 0.35

 10 100 1000

H
R

m

HOSLIM
SLIM

(a) Groceries Dataset

 0.3

 0.31

 0.32

 10 100 1000 10000

H
R

m

HOSLIM
SLIM

(b) Retail Dataset

 0.7

 0.75

 0.8

 0.85

 10 100

H
R

m

HOSLIM
SLIM

(c) Synthetic Dataset

Fig. 2: Effect of the support threshold on HR.

6.3 Performance only on the users covered by “good” itemsets

In order to better understand how the existence of “good” itemsets affects the
performance of HOSLIM, we computed the correlation coefficient of the per-
centage improvement of HOSLIM beyond SLIM (presented in Table 3) with
the product of the affected users coverage and the number of non-zeros cov-
erage (presented in Table 2). The correlation coefficient is 0.712, indicating a
strong positive correlation between the coverage (in terms of users and non-zeros)
of higher-order itemsets in the dataset and the performance gains achieved by
HOSLIM.

6.4 Sensitivity on the support of the itemsets

As there are lots of possible choices for support threshold, we analyzed the
performance of HOSLIM, with varying support threshold σ. The reason behind
this is that we wanted to see the trend of the performance of HOSLIM with
respect to σ. Ideally, we would like HOSLIM to perform better than SLIM, for
as many values of σ, as possible; not for just a few of them.

Figure 2 shows the sensitivity of HOSLIM to the support threshold σ. We
can see that there is a wide range of support thresholds for which HOSLIM
outperforms SLIM. Also, a low support threshold means that HOSLIM benefits
more from the itemsets, leading to a better HR.

Table 4: Comparison of unconstrained HOSLIM
with constrained HOSLIM and SLIM

Dataset
constrained unconstrained

HOSLIM HR HOSLIM HR SLIM HR

groceries 0.327 0.338 0.259
synthetic 0.860 0.860 0.733
delicious 0.154 0.156 0.148
ml 0.340 0.349 0.338
retail 0.317 0.317 0.310
bms-pos 0.509 0.509 0.502
bms1 0.594 0.594 0.588
ctlg3 0.582 0.582 0.581

The performance of HOSLIM under the constraint
nnz(S′)+nnz(SHOSLIM) ≤ 2nnz(SSLIM) is compared
to that of HOSLIM without any constraints and SLIM.

6.5 Efficient recommendation by controlling the complexity

Until this point, the model selected was the one producing the best recommen-
dations, with no further constraints. However, in order for HOSLIM to be used
in real-life scenarios, it also needs to be applied fast. In other words, the model
should compute the recommendations fast and this means that it should have
non-prohibitive complexity.

The question that normally arises is the following: If we find a way to control
the complexity, how much will the performance of HOSLIM be affected? In
order to answer this question, we did the following experiment: As the cost of
computing the top-N recommendation list depends on the number of non-zeros
in the model, we selected from all learned models the ones that satisfied the
constraint:

nnz(S′) + nnz(SHOSLIM) ≤ 2nnz(SSLIM). (9)

With this constraint, we increased the complexity of HOSLIM a little beyond the
original SLIM (since the original number of non-zeros is now at most doubled).

Table 4 shows the HRs of SLIM and constrained and unconstrained HOSLIM.
It can be observed that the HR of the constrained HOSLIM model is close to
the optimal one. This shows that a simple model can incorporate the itemset
information and improve the recommendation quality in an efficient way, making
the approach proposed in this paper usable, in real-world scenarios.

7 Conclusion

In this paper, we revisited the research question of the existence of higher-order
information in real-world datasets and whether its incorporation could help the

recommendation quality. This was done in the light of recent advances in the top-
N recommendation methods. By coupling the incorporation of higher-order asso-
ciations (beyond pairwise) with state-of-the-art top-N recommendation methods
like SLIM, the quality of the recommendations made was improved beyond the
current best results.

References

1. Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible extensions.
Knowledge and Data Engineering, IEEE Transactions on, 17(6):734–749, 2005.

2. Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast algorithms for mining associ-
ation rules. In Proc. 20th Int. Conf. Very Large Data Bases, VLDB, volume 1215,
pages 487–499, 1994.

3. Fabio Aiolli. A preliminary study on a recommender system for the million songs
dataset challenge. PREFERENCE LEARNING: PROBLEMS AND APPLICA-
TIONS IN AI, page 1, 2012.

4. Tom Brijs, Gilbert Swinnen, Koen Vanhoof, and Geert Wets. Using association
rules for product assortment decisions: A case study. In Proceedings of the fifth
ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 254–260. ACM, 1999.

5. Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. Performance of recom-
mender algorithms on top-n recommendation tasks. In Proceedings of the fourth
ACM conference on Recommender systems, pages 39–46. ACM, 2010.

6. Mukund Deshpande and George Karypis. Item-based top-n recommendation algo-
rithms. ACM Transactions on Information Systems (TOIS), 22(1):143–177, 2004.

7. Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for
generalized linear models via coordinate descent. Journal of statistical software,
33(1):1, 2010.

8. Jonathan L Herlocker, Joseph A Konstan, Al Borchers, and John Riedl. An al-
gorithmic framework for performing collaborative filtering. In Proceedings of the
22nd annual international ACM SIGIR conference on Research and development
in information retrieval, pages 230–237. ACM, 1999.

9. Santosh Kabbur, Xia Ning, and George Karypis. Fism: Factored item similarity
models for top-n recommender systems. 2013.

10. Xia Ning and George Karypis. Slim: Sparse linear methods for top-n recommender
systems. In Data Mining (ICDM), 2011 IEEE 11th International Conference on,
pages 497–506. IEEE, 2011.

11. Rong Pan, Yunhong Zhou, Bin Cao, Nathan Nan Liu, Rajan Lukose, Martin Scholz,
and Qiang Yang. One-class collaborative filtering. In Data Mining, 2008. ICDM’08.
Eighth IEEE International Conference on, pages 502–511. IEEE, 2008.

12. Francesco Ricci and Bracha Shapira. Recommender systems handbook. Springer,
2011.

13. Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society. Series B (Methodological), pages 267–288, 1996.

14. Zijian Zheng, Ron Kohavi, and Llew Mason. Real world performance of associa-
tion rule algorithms. In Proceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 401–406. ACM, 2001.

