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Abstract—An enduring issue in higher education is student
retention and timely graduation. Early-warning and degree
planning systems have been identified as a key approach to tackle
this problem. Accurately predicting a student’s performance
can help recommend degree pathways for students and identify
students at-risk of dropping from their program of study.
Various approaches have been developed for predicting students’
next-term grades. Recently, course-specific approaches based on
linear regression and matrix factorization have been proposed.
To predict a student’s grade, course-specific approaches utilize
the student’s grades from courses taken prior to that course.
However, there are a lot of factors other than student’s historical
grades that influence his/her performance, such as the difficulty
of the courses, the quality and pedagogy of the instructor, the
academic level of the students when taking the courses and so
on. In this paper, we propose a course-specific regression model
enriched with features about students, courses and instructors.
Our proposed models were evaluated on datasets from two
large public universities for academic programs with varying
flexibility. The experimental results showed that incorporating
content features can boost the performance of the course-specific
model. For some degree programs with high flexibility, our
experiments showed that predicting the grades with informative
content features demonstrated better prediction accuracy.

I. INTRODUCTION

The past few years have seen the rise of technologies
that capture and leverage massive quantities of education-
related data to deliver and improve all levels of learning
and education in our society. The Department of Education
Report [1] specifically highlighted the current successes of
learning analytics and critical need for further research focused
on development of robust applications that lead to better
student outcomes, improved instructor pedagogy, enhanced
curriculum and higher graduation rates for all students ir-
respective of their backgrounds from kindergarten through
college. Currently, higher education institutions face a critical
challenge of retaining students and ensuring their successful
graduation [2]. Towards this end, several universities seek
to deploy accurate and effective degree planners that assist

students in choosing academic pathways towards a successful
and timely graduation; and early-warning systems that aid
academic advisors in identifying students who are at the risk
of failing or dropping out of a program for timely intervention.

In this paper we present approaches that analyze in a
systematic and careful manner, the large and diverse type of
education-related data collected at two large public Universi-
ties with the objective of assisting students to make informed
decisions about their future course selections. Specifically, we
develop methods that perform next-term grade prediction i.e.,
predict the grade for students in future courses that they have
not taken yet.

Course-specific models have been applied to predict stu-
dent’s next-term grades by using grades of prior courses,
which better addresses pertinent challenges associated with
the reliable estimation of the low-rank models [3]. However,
course-specific models that use the grades of prior courses can
only capture the information of student’s knowledge evolution.
Course-specific models also suffer from inaccurate prediction
if the degree program is flexible (i.e., has several electives).
In addition, there are some other factors that can influence
student’s grades, such as his/her academic level when taking
a certain course, instructor’s teaching quality and courses’ dif-
ficulty. To solve this problem we incorporate content features,
which can capture diverse information about students, courses
and instructors. Based on course-specific models, we present
a model which not only uses the grades of prior courses but
also different kinds of content features.

We evaluated our proposed method on a dataset from
George Mason University (GMU) collected from Fall 2009
to Spring 2016 and on a dataset from University of Minnesota
(UMN) collected from Fall 2003 to Spring 2014. The results
showed that our proposed method outperformed competing
methods to some degree. Another finding was that when
the prior-course information was sparse, the included content
features were more likely to help. However, as the availability



of content features in the two universities is different, namely
in GMU we have more informative content features, for majors
with flexible degree programs in GMU, the course-specific
model with content features achieves the best performance; for
majors with flexible degree programs in UMN, the proposed
course-specific model with grades of prior courses and content
features performs better. This suggests that the availability
of the content features can influence the performance of the
proposed model.

The paper is organized as follows. Section 2 investigates the
related work in the area of student’s performance prediction.
Section 3 describes the notations we used in the paper. Sec-
tion 4 discusses our proposed method and other comparison
methods. Section 5 is about protocol. In Section 6, we present
our experimental results and analysis. The last section gives
some conclusions and future direction.

II. RELATED WORK

In recent years, data mining and machine learning tech-
niques have been applied to improve educational quality
including areas related to learning and content analytics [4],
[5], knowledge tracing [6], [7], learning material enhancement
[8] and early warning systems [9], [10]. A key problem in
this area is that of predicting student performance at course
activities, examinations, final grades or in terms of a student’s
GPA [11], [12], [13].

Various approaches have been developed in the context of
intelligent tutors that model and predict the success or failure
of a student in a specific task. Models such as regression
[14], [15], [16], HMMs and bagged decision trees [17],
collaborative filtering [18], matrix completion [19], [20], [21],
and tensor factorization [22], [23] have been applied to this
problem.

Based on the scope of this paper, we only review approaches
for next-term student grade prediction in detail.

Knowing student’s performance in advance can help in-
structors identify at-risk students early and advise them in
choosing appropriate courses that fit their current knowledge
state better. As such, several methods have been developed to
tackle the next-term prediction problem. Most of the methods
are inspired from recommender systems literature [24], [25],
such as matrix factorization [3] and collaborative filtering
[18], [26], [27]. Approaches based on standard classification
approaches such as random forests trees have also been applied
[28], [25]. A majority of the algorithms proposed are “one-
size-fits-all”, namely, trying to model all the students with
one model. To model students with different characteristics,
personalized grade prediction approaches have been proposed
[29], [30]. Using features mined from student interaction with
learning management systems, Elbadrawy et. al. proposed a
personalized mutli-regression model [31] for in-class grade
prediction. This was also extended to predict in-class as-
signment grades within the setting of Massive Open Online
Courses [32].

Recently course-specific models proposed by Polyzou et.
al. [3] achieved better prediction accuracy than existing ap-

proaches, assuming that students acquire knowledge in an
cumulative manner. Course-specific models are cumulative, in
the sense that to predict a student’s grade in a target course,
the students’ grades from courses taken prior to the target
course are utilized. Course-sepcific regression models cannot
correctly capture students’ knowledge state when the same
knowledge can be acquired by taking different subsets of
courses. To solve this problem, Morsy et. al. [33] developed
Cumulative Knowledge-based Regression Model (CKRM),
which represents the knowledge state of students in knowledge
component vectors. In educational environment, the student-
course enrollment patterns exhibit grouping structures which
leads to not missing at random grade data (NMAR). To handle
the NMAR characteristics of the grade data, Elbadrawy et.
al. [34] proposed domain-aware grade prediction algorithms.
Ren et. al. [35] proposed Matrix Factorization with Temporal
Course-wise Influence (MFTI) algorithm which can capture
the course-wise influence between courses.

However, one of the drawbacks of course-specific models
is that they show poor performance if the degree program
is flexible [3]. In addition, the grades of the prior courses
cannot completely capture all the factors that affect students’
performance. In this paper, based on course-specific models,
we proposed a hybrid model to predict students’ next-term
performance by taking some informative factors into consid-
eration.

III. PROBLEM FORMULATION AND NOTATION

Formally, we assume that we have records of n students
and m courses, comprising a n × m sparse grade matrix
G, where gs,c ∈ [0 − 4] is the grade a student s earned in
course c. The objective of next-term grade prediction problem
is to estimate the grade ĝs,c, a student s will achieve in
course c in the next term. Besides the grade matrix G, we
have information that can be associated with the student (e.g.,
academic level, previous GPA, major) and course offering
(e.g., discipline, course level, prior courses frequently taken,
instructor, etc) that can be combined to extract a feature vector
per dyad. We denote this feature vector as x of p dimensions.
As a convention, bold uppercase letters are used to represent
matrices (e.g., X) and bold lowercase letters represents vectors
(e.g., x).

IV. METHODS

A. Course-Specific Regression with Prior Courses

Polyzou et.al. [3] motivate the use of course-specific re-
gression models that leverage the sequential structure of un-
dergraduate degree programs. These regression models assume
that the performance of a student in a future course is strongly
correlated with past performance on a subset of courses
related to the degree program taken earlier. Specifically, this
regression model estimates the grades for a future class as a
sparse linear combination of grades obtained on prior courses.
For a course c the grades that students obtained on courses
taken prior to c are extracted from the grade matrix G, and
denoted by Gpr

c . Each row of this matrix corresponds to



students that have taken the course c. Assume that nc students
have taken the course c so far and mc represents the union set
of courses taken by students prior to c, then the dimensions
of Gpr

c is nc ×mc. g:,c is the vector representing the grades
that students obtained for course c. We learn the parameters of
this Course-Specific Regression (CSR) model by solving the
least square regression problem enforcing `1 and `2 norms.
The optimization problem is given below:

min ||1wc0 + Gpr
c wpr

c − g:,c||22︸ ︷︷ ︸
loss

+λ1||wpr
c ||22︸ ︷︷ ︸

`2

+λ2||wpr
c ||1︸ ︷︷ ︸

`1

(1)
where 1 is a vector of ones of dimension nc, wpr

c ∈ Rmc

denotes the weight vectors associated with each course c and
wc,0 is the bias term. The `1 norm promotes sparsity and `2
norm prevents overfitting.

Having learned the weight vectors and bias terms, the grade
estimate for a student s enrolling in course c is given by:

ĝs,c = wc0 + xTs,cwpr
c (2)

where xs,c ∈ Rm
c is a feature vector representing the grades

on prior courses that the student has taken so far. We denote
this Course-Specific Regression model with Prior Courses as
CSRPC.

In this approach, prior to estimating the model using
equation 1, we row-centered each row of matrix Gpr

c and
g:,c, which is done by subtracting the GPA of corresponding
students from the non-zero entries in each row of Gpr

c and g:,c
[3]. We found that row-centering gives better performance by
mitigating the negative influence of missing grades from prior
courses.

B. Course-Specific Regression with Content Features

The CSRPC model described above is able to provide accu-
rate estimates of student performance in a course provided that
the students taking that course has commonly taken sufficient
number of prior courses. We seek to extract key features
associated with students and courses and incorporate them
within the prediction formulation. Based on course-specific
idea, instead of training one global model for all the courses
as done in existing work [25], we propose to train independent
course-specific regression models with content features. We
refer to this model by CSRCF. In terms of formulation, the
proposed CSRCF is similar to CSRPC except that the feature
vector is a composite of student, course and instructor-related
features as described below.

We denote the weight vector learned by this formulation
as wf

c and the feature vectors xs,c ∈ Rp where p is the total
number of features. The predicted grade estimate is then given
by:

ĝs,c = wc0 + xTs,cwf
c (3)

The CSRCF model is estimated in a similar manner as CSRPC
and given by:

min ||1wc0 + Xf
c wf

c − g:,c||22︸ ︷︷ ︸
loss

+λ1||wf
c ||22︸ ︷︷ ︸

`2

+λ2||wf
c ||1︸ ︷︷ ︸

`1

(4)

where Xf
c is a matrix of stacked feature vectors from the

different students who have taken the course c in the past. Each
row of this matrix is a feature vector for a student enrolled in
the course c.

Content features for GMU
1) Student Features. Student-related features include their

demographic data, such as their age, race, gender, high
school GPA and so on. For each term, we have the
GPA of the student from the previous term and the
accumulative GPA as of last term. As students might take
courses from other departments which has less influence
than those from their own departments, we can extract
GPA of courses only from their own departments. When
taking a course, different students might come from
different academic level, therefore, it might be beneficial
to incorporate their academic level into the model.

2) Course Features. The features relating to a course include
its discipline, the credit hours and course level (e.g. 100,
200, 300, 400-level). As the difficulty of a course can
influence the performance of the students, we include
the course difficulty information into the model. We use
the GPA of the course from last term to represent the
difficulty of the course.

3) Instructor Features. As the factors from instructors can
also influence the performance of the students, we extract
content features about the instructors which include rank,
tenure status and the GPA of the courses he has taught.

Content features for UMN
1) Student Features. Same as in GMU apart from the features

related to demographic data. Considering a specific term
for which a student has taken a course, we extracted their
GPA of the previous term, the accumulative GPA as of
last term, the GPA over only courses from their own
departments, as well as, the students’ academic level.

2) Course Features. Same as the ones extracted for GMU.
3) Instructor Features. No instructor features are available.
We one-hot-encoded categorical features in Xf

c and stan-
dardized the continuous features.

C. Hybrid Model
We also combine the feature vectors Xf

c and Gpr
c obtained

from the student-course content and prior grades and learn
weight vectors per course, respectively. We refer to this hybrid
model as CSRHY and learn a course-specific regression model
as discussed above.

D. Baseline Methods
In the experiments, we compare the proposed methods with

the following baseline approaches.
1) BiasOnly (BO): BiasOnly method only takes into consid-

eration student’s bias, course’s bias and global bias which
are estimated using Equation 5.

ĝs,c = b0 + bs + bc (5)

where b0, bs and bc are the global bias, student bias and
course bias respectively.



2) Matrix Factorization (MF): The use of MF for grade
prediction is based on the assumption that the students
and courses’ knowledge space can be jointly represented
in low-dimensional latent feature space [3]. Each compo-
nent in the latent feature space corresponds to knowledge
components. The grade of student s in a future course c
is estimated as:

ĝs,c = b0 + bs + bc + pTs qc (6)

where b0, bs and bc are the global bias, student bias and
course bias respectively and ps, qc are the latent vectors
representing student s and course c.

3) Course-specific Matrix Factorization (CSMF): CSMF is
similar to MF except that the grade matrix Gc for CSMF
only includes the grades of students taking the course and
their grades of courses taken prior to the course we are
going to predict [3].

V. EXPERIMENTAL PROTOCOL

A. Dataset description and preprocessing

We evaluated our proposed methods on two datasets ob-
tained from George Mason University (GMU) and University
of Minnesota (UMN), for the following four departments: (i)
Computer Science (CS), (ii) Electrical and Computer Engi-
neering (ECE), (iii) Biology (BIOL) and Psychology (PSYC).
We will indicate the departments from GMU with the suffix
“ A” and from UMN with the suffix “ B”. The two universities
from two separate states in the United States have different
characteristics. For GMU, there are around 33,000 students,
the acceptance rate is 69%, the six-year graduation rate is
66.8%, there are about 140 programs that students can select.
For UMN, the total enrollment is about 51,000, acceptance
rate is 45%, the six-year graduation rate is 75%, there are
around 260 programs. Both universities exhibit diversity. In
GMU, 44.7% of students are White, 18.5% Asian, 12%
Hispanic/Latino, 10% African American. In UMN, 69.1% of
the students are White, 11.3% Asian, 5.2% African American,
3.4% Latino.

The data was collected from Fall 2009 to Spring 2016 at
GMU and from Fall 2003 to Spring 2014 at UMN. According
to the University Catalogs [36] [37], we kept the courses that
were required by the degree program and electives within the
same major. The statistics of the four majors are shown in
Table I.

For UMN that has very flexible degree programs, we also
consider courses outside of the department that were taken
by at least 50% of the students. We consider those as unstated
prerequisites. Moreover, we removed any course that was taken
by less than 10% of the students, in order to reduce the size of
the universal of courses, i.e., the possible courses that a student
might take. We consider that these courses are not offered on
a regular basis and their availability is limited.

For both datasets, we removed any courses whose grades
were pass/fail. If a course was taken more than once by a
student, only the last grade was kept. We removed the students
who took less than half of the prior courses (less than one third

of the prior courses for UMN). For course c whose prior-
course grade matrix is Gpr

c , if the number of rows of Gpr
c

is smaller than the number of columns, we remove course c
from training and testing dataset. In addition to that, if the
number of testing instances of a course is smaller than 5, we
also remove it.

To form the test and training dataset, we use the data
extracted from last term (i.e., Spring 2016 at GMU and Spring
2014 at UMN) as test dataset and all the data before then as
training. The training dataset was split into 80/20, of which
80% was training data, 20% was validation data.

As the flexibility of a degree program can influence the
course-specific models’ performance, the flexibility associated
with each department is computed according to [33]. The
major’s flexibility is the average course flexibility over all
courses belonging to that major, weighted by the number of
pairs of students in that offering. We computed the flexibility
of a course c as one minus the average Jaccard coefficient of
the courses that were taken by the students that took c prior
to taking this course. The flexibility of a course will be low
if the students have taken very similar prior courses and high
otherwise.

To compute the flexibility of a major, assume there are N
courses in that major; the prior-course grade matrices for these
courses are denoted as Gpr

i , i = 1 . . . N , each of which has
Si, i = 1 . . . N students. From matrix Gpr

i , we can extract
an indicator matrix Ipri , in which 1 means the corresponding
course is taken, 0 means not. Ri,a means the ath row of matrix
Ipri .

Fi = 1− 1(
Si

2

) Si∑
a=1

Si∑
b=a+1

Jaccard(ri,a, ri,b) (7)

F =

N∑
i=1

Si

S
Fi (8)

where Jaccard is the Jaccard coefficient, S is the total number
of students in that major, Fi is the flexibility of course i and
F is the flexibility of the major.

B. Evaluation Metrics

To assess the performance of the models, we used three
kinds of metrics, namely mean absolute error (MAE), root
mean squared error (RMSE) and tick error. MAE and RMSE
are computed by pooling together all the grades across all the
courses.

MAE and RMSE are averaged errors between the predicted
grades and the actual grades. To gain a better insight into
the quality of the predictions, we also report the tick error
as done in [3], [33]. The grading system used in GMU has
11 letter grades (A+, A, A-, B+, B, B-, C+, C, C-, D, F)
which correspond to (4, 4, 3.67, 3.33, 3, 2.67, 2.33, 2, 1.67,
1, 0). UMN uses the same grading, with the addition of D+,
corresponding to 1.33, and excluding A+. We refer to the
difference between two successive letter grades as a tick. The
performance of a model is assessed based on how many ticks
away the predicted grade is from the actual grade. We first



TABLE I: Data Statistics and Characteristics for GMU and UMN.

Major #Students #Courses Universal of courses #Grades Grades Mn Grades StD Flexibility

CS A 988 18 53 21,880 3.05 0.82 0.283
ECE A 396 16 69 16,170 3.09 0.77 0.272
BIOL A 1629 19 42 20,602 3.02 0.84 0.339
PSYC A 1114 20 60 14,851 3.26 0.74 0.429
CS B 708 24 39 78,882 3.15 0.71 0.493
ECE B 551 16 44 86,478 3.12 0.72 0.430
BIOL B 997 11 31 57,966 3.12 0.74 0.603
PSYC B 1380 18 37 77,896 3.07 0.82 0.809

#Students is the number of major students.
#Courses is the number of courses for which we predict the grades.
Universal of courses is the total number of prior courses, i.e., the required and elective courses in the corresponding
major according to university catalog.
#Grades is the total number of grades in prior-course grade matrices and the grades we predict.
Grades Mn and Grades StD are the mean and standard deviation of grades, respectively.
Flexibility is the flexibility of a major.

TABLE II: MAE of different methods (↓ is better).

Method MAE
CS A ECE A BIOL A PSYC A CS B ECE B BIOL B PSYC B

BO 0.7359 0.7285 0.5853 0.5882 0.4697 0.4356 0.4516 0.4648
MF 0.8150 0.8447 0.6169 0.5648 0.4859 0.4309 0.4452 0.4940
CSMF 0.7609 0.7015 0.5579 0.5240 0.4776 0.4433 0.4410 0.4695
CSRPC 0.6805 0.6739 0.5372 0.4933 0.4520 0.4346 0.4394 0.4932
CSRCF 0.7183 0.6775 0.4769 0.4743 0.4670 0.4395 0.4488 0.4588
CSRHY 0.6693 0.6630 0.5057 0.4859 0.4622 0.4219 0.4328 0.4526

TABLE III: RMSE of different methods (↓ is better).

Method RMSE
CS A ECE A BIOL A PSYC A CS B ECE B BIOL B PSYC B

BO 0.9622 0.9748 0.7794 0.7829 0.6534 0.5359 0.5855 0.6180
MF 1.0879 1.1104 0.8173 0.8035 0.6773 0.5408 0.5922 0.6574
CSMF 1.0126 0.9623 0.8045 0.7372 0.6685 0.5472 0.5763 0.6318
CSRPC 0.9288 0.9699 0.7943 0.7348 0.6613 0.5447 0.5679 0.6351
CSRCF 0.9539 0.9680 0.7205 0.6732 0.6543 0.5457 0.5825 0.6064
CSRHY 0.9199 0.9542 0.7679 0.7283 0.6607 0.5298 0.5659 0.5946

converted the predicted grades into their closest letter grades
and then computed the percentages of each of the x ticks [3],
[33].

VI. RESULTS AND DISCUSSION

Tables II and III show the comparative performance of dif-
ferent methods on four different departments by using metrics
MAE and RMSE. Generally, in most cases course-specific
models outperform non-course-specific models, which means
focusing on a course-specific subset of data can result in better
performance. In GMU, for departments with less flexibility
such as Computer Science and Electrical Engineering, we
observe that the hybrid model has the best performance.
Thus incorporating content features into course-specific model
further improves its performance; the model with only grades
of prior courses performs better than model with only content
features. For departments with high flexibility such as Biology
and Psychology, the model with only content features shows

the best performance, which suggests that if a department has
a flexible degree program, content features might be more
informative than the grades of prior courses.

The corresponding departments in UMN are more flexible
than GMU. The performance of CSRPC and CSRCF is very
comparable, or even better (for the Psychology Department).
Their combination, CSRHY, is the best performing method
in terms of MAE and RMSE, even if the content features
included in UMN are less informative. An exception is the
Computer Science Department, which seams to have very
hard-to-predict courses, as it has the highest RMSE. For CS B,
CSRPC is performing the best in terms of MAE, but BiasOnly
achieves better RMSE, closely followed by CSRCF, with just
0.0009 difference.

In the two universities, we can see that for the majority of
the departments, the hybrid model performs the best. GMU
models take more advantage of the rich content features to



TABLE IV: Prediction performance of different methods based on Ticks (↑ is better).

#Ticks Method CS A ECE A BIOL A PSYC A CS B ECE B BIOL B PSYC B

Percentage of
Grades
predicted
with no error

BO 15.02 18.58 19.41 19.75 25.48 27.58 24.90 34.40
MF 13.04 9.84 19.95 23.89 26.68 28.48 24.90 31.91
CSMF 15.22 18.58 24.53 23.25 24.76 29.09 30.12 34.75
CSRPC 19.57 20.77 28.84 34.08 29.33 26.06 25.70 23.76
CSRCF 13.44 16.39 28.03 27.39 25.96 28.48 25.30 31.91
CSRHY 19.76 22.40 30.73 35.35 25.00 28.18 29.32 30.50

Percentage of
grades
predicted
with an error
of at most
one tick

BO 44.27 44.26 55.26 53.82 65.38 66.36 61.85 65.60
MF 42.29 39.34 51.75 54.46 63.70 66.67 65.06 62.77
CSMF 43.08 40.44 58.76 61.78 63.94 64.85 65.06 68.44
CSRPC 48.22 55.19 62.80 61.15 69.23 64.85 62.65 57.45
CSRCF 44.66 51.37 70.89 64.97 64.42 66.67 63.05 68.44
CSRHY 49.80 55.19 67.38 61.78 68.03 66.97 64.66 66.31

Percentage of
grades
predicted
with an error
of at most
two ticks

BO 69.17 66.67 77.63 75.80 86.54 89.09 87.15 88.65
MF 64.82 63.38 76.82 77.07 82.69 88.79 86.75 83.69
CSMF 67.59 72.68 82.21 78.66 85.34 89.09 86.75 85.11
CSRPC 74.31 73.22 81.40 79.62 87.26 85.76 88.35 83.69
CSRCF 73.52 75.96 87.87 83.44 86.06 88.79 85.54 87.94
CSRHY 75.10 74.32 82.75 78.66 85.82 88.18 86.35 86.88

(a) True vs. Predicted Grades for BO (b) True vs. Predicted Grades for CSRPC

(c) True vs. Predicted Grades for CSRCF (d) True vs. Predicted Grades for CSRHY

Fig. 1: True vs. Predicted Grades for BiasOnly and Course-specific Models for GMU.
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(d) True vs. Predicted Grades for CSRHY

Fig. 2: True vs. Predicted Grades for BiasOnly and Course-specific Models for UMN.

improve the predicted grades, especially for the most flexible
departments.

To gain deeper insights into the types of errors made by
different methods, Table IV reports the percentage of grades
predicted with no error, with an error of at most one tick and
with an error of at most two ticks. Comparing the performance
achieved by the methods we notice that the course-specific
models have relatively better performance than non-specific
approaches. In GMU, in terms of the exact prediction (i.e.,
no error), the hybrid model has the best performance. For
departments with rigid degree program, such as Computer
Science and Electrical Engineering, the hybrid model has
better performance than other methods. If minor errors are
allowed (i.e., one or two ticks), for flexible departments,
model with only content features gives better performance.
In UMN, the picture is not that clear, as there is variation
in the performance depending on the degree of accuracy and
the department. The highest percentage of grades predicted
with no error is achieved by course-specific methods(CSMF and
CSRPC). The fact that other methods are the best performing in

terms of ticks, while CSRHY has the lowest RMSE for most of
the cases, indicates that CSRHY does not predict many grades
with significant error, in contrast with the other methods.

From the two universities’ results, we can see that in-
corporating content features into the course-specific model
can improve the prediction performance. For flexible degree
programs, as the prior-course grade matrix is sparse, the model
with content features has better predicting accuracy. This is
not evident in the results from UMN, as there are not enough
content features.

The distribution of true (ground truth) and predicted grades
for BiasOnly, CSRPC, CSRCF and CSRHY are also plotted for
GMU and UMN in Figures 1 and 2, respectively. Each row
of the figure represents the ratio of the predicted grades. For
example, in Figure 1b the bottom row represents that a high
proportion of A’s are predicted as such. We see that BiasOnly
tends to smooth the predicted grades i.e., it predicts most of
the grades around the average GPA (around B-). However, for
high grades most of the predicted grades are around the true
grades in course-specific models and for lower grades all the



models tend to over predict.
Table V and VI show the detailed statistics of the courses

from the two universities of the departments with the least and
most flexible degree program, and the errors (RMSE) made
by three course-specific regression models. For GMU these
departments are the CS and PSYC, while for UMN are the
EE and PSYC. From the two tables, we can see that if the
grades in test set have high standard deviation or higher than
that of training set, the prediction error is high. The reason
might be that the course-specific models used in this work
and previous works are linear. In the future, we will explore
non-linear course-specific models.

Overall, incorporating content features into the course-
specific models can improve the prediction performance. In
GMU, for departments with less flexible degree programs,
the hybrid model achieves better performance than traditional
course-specific models. However, for departments with more
flexible degree programs, the grades of prior courses are
less informative than content features, therefore, it is more
appropriate to include only content features. In UMN, CSRHY
achieves the best performance. The existance of some content
features can boost the performance of the regression methods
when used alone(CSRCF) or in addition to the grades(CSRHY).

VII. CONCLUSIONS

In this paper, we proposed a hybrid model to further improve
the performance of the course-specific models. We evaluated
the proposed model on datasets from two Universities with
different characteristics. The experiments show similar results
in the two universities, which suggests the proposed model
is generalizable. In conclusion, it is beneficial to incorporate
content features into course-specific model, which motivates
us to explore other kinds of side information. In the future, we
will utilize side information mined from learning management
systems.
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TABLE V: Per course statistics and errors for GMU.

Course #training #testing density Mn Tr StD Tr Mn Te StD Te CSRPC CSRCF CSRHY
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TABLE VI: Per course statistics and errors for UMN.

Course #training #testing density Mn Tr StD Tr Mn Te StD Te CSRPC CSRCF CSRHY

EExxx 514 22 0.441 2.82 0.73 2.95 0.70 0.603 0.547 0.544
EExxx 511 32 0.450 3.59 0.51 3.44 0.37 0.520 0.664 0.577
EExxx 540 5 0.352 2.88 0.67 2.73 0.25 0.454 0.393 0.419
EExxx 516 28 0.443 2.94 0.68 2.98 0.60 0.562 0.543 0.532
EExxx 520 21 0.405 3.05 0.67 2.84 0.79 0.574 0.589 0.573
EExxx 142 7 0.582 2.83 0.94 2.81 0.24 0.712 0.409 0.599
EExxx 88 31 0.837 3.27 0.63 3.10 0.69 0.559 0.585 0.568
EExxx 146 32 0.631 3.08 0.78 3.04 0.64 0.525 0.449 0.529
EExxx 51 13 0.587 3.86 0.28 3.95 0.18 0.378 0.494 0.383
EExxx 189 20 0.610 2.74 0.81 2.88 0.78 0.548 0.545 0.573
EExxx 225 11 0.576 3.11 0.75 3.12 0.94 0.825 0.835 0.833
EExxx 101 22 0.684 3.06 0.70 2.55 0.56 0.572 0.582 0.579
EExxx 331 29 0.558 3.24 0.63 3.47 0.54 0.445 0.416 0.419
EExxx 239 23 0.556 3.84 0.27 3.91 0.15 0.581 0.414 0.394
EExxx 407 26 0.655 3.65 0.43 3.88 0.45 0.486 0.585 0.485
EExxx 65 8 0.670 3.89 0.37 3.92 0.14 0.149 0.344 0.090
PSYCxxx 1031 18 0.207 3.30 0.59 3.26 0.57 0.452 0.429 0.433
PSYCxxx 464 7 0.259 3.21 0.83 3.14 0.59 1.027 0.998 1.023
PSYCxxx 444 10 0.263 2.90 0.80 3.17 0.43 0.733 0.693 0.784
PSYCxxx 606 17 0.261 3.21 0.77 3.24 0.72 0.490 0.509 0.510
PSYCxxx 557 18 0.254 2.97 0.87 3.48 0.92 0.795 0.794 0.802
PSYCxxx 488 13 0.220 3.03 0.89 3.56 0.48 0.430 0.495 0.438
PSYCxxx 34 12 0.482 2.80 0.90 3.42 0.71 0.873 0.870 0.867
PSYCxxx 399 12 0.259 3.13 0.79 3.39 0.45 0.512 0.389 0.375
PSYCxxx 288 13 0.261 2.97 0.79 2.95 0.76 0.468 0.468 0.485
PSYCxxx 554 7 0.271 3.35 0.67 3.48 0.43 0.471 0.629 0.538
PSYCxxx 743 13 0.162 3.17 0.78 2.87 0.78 0.626 0.812 0.650
PSYCxxx 346 9 0.268 3.30 0.78 2.74 0.91 0.676 0.699 0.705
PSYCxxx 301 10 0.229 3.46 0.59 3.67 0.42 0.907 0.679 0.684
PSYCxxx 366 5 0.276 3.22 0.82 3.07 0.44 0.593 0.660 0.618
PSYCxxx 1045 80 0.354 3.56 0.57 3.70 0.46 0.648 0.601 0.590
PSYCxxx 258 7 0.288 3.90 0.47 4.00 0.00 0.466 0.392 0.343
PSYCxxx 121 5 0.274 3.96 0.16 4.00 0.00 0.194 0.271 0.166
PSYCxxx 290 26 0.320 3.93 0.33 4.00 0.00 0.562 0.341 0.351

The second and third column stand for the number of training and testing instances, respectively.
density means the density of the prior course matrix.
Tr train, Te test, Mn mean, StD standard deviation.


