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ABSTRACT: In the past decade we have witnessed a drastic
increase in the productivity of mammalian cell culture-based
processes. High-producing cell lines that synthesize and
secrete these therapeutics have contributed largely to the
advances in process development. To elucidate the produc-
tivity trait in the context of physiological functions, the
transcriptomes of several NS0 cell lines with a wide range
of antibody productivity were compared. Gene set testing
(GST) analysis was used to identify pathways and biological
functions that are altered in high producers. Three com-
plementary tools for GST—gene set enrichment analysis
(GSEA), gene set analysis (GSA), and MAPPFinder, were
used to identify groups of functionally coherent genes that
are up- or downregulated in high producers. Major func-
tional classes identified include those involved in protein
processing and transport, such as protein modification,
vesicle trafficking, and protein turnover. A significant pro-
portion of genes involved in mitochondrial ribosomal func-
tion, cell cycle regulation, cytoskeleton-related elements are
also differentially altered in high producers. The observed
correlation of these functional classes with productivity
suggests that simultaneous modulation of several physiolo-
gical functions is a potential route to high productivity.
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Introduction

Many antibodies, including over a dozen that have been
successfully introduced to clinical applications in the past
decade are important therapeutics for cancer, arthritis and
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other diseases. Many of those antibodies are produced in
quantities exceeding thousands of kilograms annually; the
increased demand has prompted increasing efforts in cell
line and process development. Advances have led to a drastic
increase in productivity in the past few years. By and large,
the pursuit for higher productivity has been conducted by
systematic yet empirical screening. The desire to better
understand the complex trait of hyper productivity has led
to a number of studies comparing the transcriptome (Khoo
et al., 2007; Seth et al., 2007b) or proteome (Alete et al., 2005;
Dinnis et al., 2006; Seth et al., 2007b; Smales et al., 2004) of
cell lines with varying productivities. With their large-scale
surveying power, transcriptome and proteome analyses
certainly hold promise for discerning the genotypic
characteristics of hyper productivity (for review, see Gupta
and Lee, 2007; Seth et al., 2007a).

The transcriptomic investigations on the productivity of
recombinant mammalian cells have largely employed
statistical criteria as the primary means of identifying genes
that are differentially expressed between two cell lines with
different productivities (Khoo et al., 2007), or two classes of
cell lines with different range of productivities (Seth et al.,
2007b). Unlike many other biological traits, such as disease
states of cancer development or the differentiation of stem
cells to various lineages, high productivity is not a well-
characterized trait. The final product titer, which is typically
used to characterize the productivity of a cell line, results
from a composite effect of cell concentration, balance
between growth and death rate, as well as the protein
secretory capability. Many alternative routes probably exist
for achieving the same productivity (Seth et al., 2007b). It is
likely that even among high-producing cell lines multiple
‘‘physiological classes’’ exist and their transcriptomes may
also reflect such diversity.

In a previous study, the transcriptome profiles of seven
high and four low recombinant IgG-producing NS0 cell
� 2008 Wiley Periodicals, Inc.



lines were analyzed to identify genes which are significantly
different between the two groups (Seth et al., 2007b). As
in other studies, the high and low producers were classified
heuristically based on final titer of IgG in culture. It was
not clear whether all the producers share common features
in their transcriptome. Nevertheless, through differential
expression analysis, it was highlighted that several genes
related to protein synthesis and cell cycle were differentially
expressed between high and low producers.

In this study we undertook a different but complementary
approach of transcriptome-based investigation of high
productivity trait. We surveyed pathway analysis tools in
an effort to identify the biological functions, which are
significantly modulated in cell lines with high productivity.
Biological interpretation of genes that are differentially
expressed between two or more phenotypes is often
facilitated by grouping them into few functional classes.
However, the list of differentially expressed genes depends
on the stringency of the statistical threshold used. The
difficulty in identifying genes which are truly differentially
expressed is further compounded by the observation that,
for mammalian cells in culture, changes in productivity
levels are accompanied by only modest alterations in the
expression levels of individual genes (De Leon Gatti et al.,
2007; Seth et al., 2007b; Smales et al., 2004; Yee et al., 2008).
This is in contrast to gene expression changes seen in
microbial populations or in stem cells in early stages of
differentiation.

We have employed gene set testing (GST) tools to assess
gene expression alteration at functional class level rather
than at individual gene level (for a review on GST, see
Goeman and Buhlmann, 2007). In this approach, function-
ally related genes are combined a priori into gene sets and
transcriptome data are evaluated in terms of these gene sets
instead of individual genes. The correlation of a gene set
to a phenotype is evaluated by comparing the observed
number of genes in a gene set, which have altered expression
level with the expected number under a null hypothesis.
Assessment of multiple GST tools revealed that a large per-
centage of genes in functions related to protein processing
and secretion, such as Golgi apparatus, the cytoskeletal
network, and protein degradation were altered between high
and low producers. Differential transcript changes were also
observed in cell cycle-related genes. The relatively modest
changes at individual gene level between the two groups
suggest that the expression changes are not localized but a
broad range of functional modulation is likely to accompany
the process of high producer selection during cell line
development.
Materials and Methods

Cells and Sample Preparation

The 11 GS-NS0 cell lines and their cultural conditions and
have been described previously (Seth et al., 2007b). The
Ch
average productivity of the seven high producers is
approximately five times the average productivity of the
four low producers. In addition, biological replicates of four
high producers (H1–H4) and two low producers (L1–L2)
were performed under the same culture and sample
preparations conditions, as reported previously.
Microarray Hybridization

GeneChip1 Mouse genome 430A 2.0 (MOE430A 2.0)
(Affymetrix, Santa Clara, CA) was used for assaying the
transcriptome of the six biological replicate cultures.
MOE430A 2.0 contains 22,690 probes representing approxi-
mately 14,000 well-characterized mouse genes. Biotinylated
cRNA was prepared as per the protocol described in the
Affymetrix Technical Manual. Fifteen micrograms of bio-
tinylated cRNA was used for hybridization. The arrays were
scanned at University of Minnesota Biomedical Image
Processing Laboratory.
Microarray Data Processing

The raw intensity data from each array was normalized
using Affymetrix Microarray Suite (MAS) version 5.0, which
includes background correction, perfect match (PM) adjust-
ment, and calculation of expression summary from 11 probe
pairs using one-step Tukey’s Biweight method for estima-
tion of robust mean. The probe intensities from each array
were scaled to an average of 500. Further, a quantile
normalization procedure was employed at probe level to
ensure that probe intensities from different arrays have the
same distribution. Using a one-sided Wilcoxon signed rank
test, the MAS 5.0 algorithm also determines a ‘‘detection’’
P-value for every probe. A P-value <0.04 was used as the
criterion to call a transcript ‘‘present.’’ Transcripts with
absolute intensity, averaged across all the samples, less than
60 were discarded before further analysis.
Differential Expression Analysis

Significance analysis of microarrays (SAM) version 3.0 was
used to identify genes that are differentially expressed
between the high producers and low producers (Tusher
et al., 2001). SAM combines a d-statistic with repeated
sample permutations to determine the percentage of genes
that are identified as differentially expressed by chance, that
is, false discovery rate (FDR). A threshold of 10% FDR was
used in this study. SAM outputs a q-value for every probe,
which is an estimate of the FDR incurred when that probe,
and all the probes with a lower q-value are called
significantly differentially expressed. In this study, all the
probes with q-value �10% were considered as differentially
expressed.
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Functional Analysis

GST was performed on 242 gene sets to identify those that
correlate with the phenotype distinction between the high
producer and the low producer groups. A set of genes
involved in the same biological function is defined as a gene
set. Three different GST tools—MAPPFinder (Doniger
et al., 2003), gene set enrichment analysis (GSEA) (Mootha
et al., 2003; Subramanian et al., 2005), and gene set analysis
(GSA) (Efron and Tibshirani, 2007), were used. For
MAPPFinder, which is built into the software package
Gene Map Annotator and Pathway Profiler (GenMAPP)
(Dahlquist et al., 2002), the criteria of q-value �10% and
two different fold change thresholds (1.2 and 1.4) were
used to identify differentially expressed genes as input. For
each method, the null distribution was estimated by 1,000
permutations. The enrichment of every gene set is charac-
terized by a P-value. In this study, gene sets with a P-value
�0.06 in at least two of the three GST methods were
identified as significantly enriched. GSEA was used as a
module in GenePattern (Reich et al., 2006) and GSA was
available in SAM version 3.0 (Tusher et al., 2001).
Results

Transcriptome Analysis of Antibody-Producing
NS0 Cells

In a recent study we compared the transcriptome and
proteome profiles of 11 GS-NS0 cell lines with different
productivities, broadly classified into two groups as 7 high
and 4 low producers (Seth et al., 2007b). Several differen-
tially expressed transcripts were involved in protein syn-
thesis and cell cycle-related pathways suggesting a direct or
indirect correlation between those biological functions and
high productivity. Here, we extend the analysis by functional
investigation measures to systematically explore the physio-
logical traits that impart high productivity.

The seven high producers have IgG productivity ranging
between 2 and 11 times the average productivity of the
low producers, suggesting that productivity is a continuous
distribution rather than a discrete binary class. The average
productivity of four high producers (H1–H4) is 5.3 times
the average productivity of the four low producers and is
also 50% higher than the average of the other three high
producers (H5–H7). Additionally, as described earlier, the
composite nature of high productivity is likely to result in
substantial diversity in the expression signatures that may
be associated with high productivity. Upon examining the
expression profiles of the seven high producers, it was
observed that the four high producers (H1–H4) have a
substantially high mutual similarity in their gene expression
levels compared to the other three high producers (H5–H7)
as well as the low producers. The observation was also
strengthened by a supervised classification method (see
Discussion Section) used to group the producers into
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‘‘High’’ or ‘‘Low’’ class based on their transcriptome
profiles. Analysis based on this small set of producers sug-
gested that four high producers (H1–H4) can be distin-
guished from the other three high producers (H5–H7) and
the low producers. These observations reflect the differences
in the transcriptome fingerprint of the various high
producers.

To discern possible physiological functions that confer
the high productivity trait, we set out to identify functionally
related genes that are altered between the two groups with
different productivities. The four high producers (H1–H4),
which are distinguishable from the low producers with
respect to IgG productivity and transcriptome profiles, were
used for subsequent functional analysis. The three producers
H5–H7 were not included in further analysis.

Further, biological replicates of six of the remaining
producers (H1–H4 and L1–L2) were performed. M-A plots
of various binary combinations of samples (arrays) were
examined to ensure consistent normalization from repli-
cates. No intensity-dependent bias in fold change was
observed.
Functional Analysis

Pathway analysis was performed using three different GST
tools—MAPPFinder, GSEA, and GSA. A total of 242 Micro-
Array Pathway Profiles (MAPPs) for the mouse genome
were obtained from GenMAPP (http://www.genmapp.org/
HTML_MAPPs/Mouse/MAPPIndex_Mm_Contributed.htm).
Each MAPP, a collection of genes involved in the same
biological function or pathway, was considered as a gene set.
The functional classes are categorized according to the
organizing principles of Gene Ontology (GO)—cellular
component, biological process, and molecular function.

Each of the three tools uses a different methodology to test
the null hypothesis for every gene set. GSEA and GSA rank
all the transcripts in the dataset using a class-correlation
metric. Signal-to-noise ratio was used for GSEA, whereas
GSA uses t-statistic as the class-correlation metric. Thus, for
example, the genes which are upregulated in high producers
are ranked high, whereas those that are downregulated in the
high producers are ranked at the bottom of the rank-ordered
list. The ranking scheme thus does not explicitly require a
threshold for differential expression. Genes in a particular
gene set or functional class are mapped on this ranked list.
GSEA uses a Kolmogorov-Smirnov-like statistic for every
gene set to test the enrichment of genes at the extremes of
the ranked list (Subramanian et al., 2005), whereas GSA
employs a maxmean statistic (Efron and Tibshirani, 2007).
In contrast, MAPPFinder uses a list of differentially express-
ed genes as input. The overrepresentation of differentially
expressed transcripts in a gene set is tested using the
hypergeometric distribution. A z-score computes the differ-
ence between the fraction of genes differentially up- or
downregulated in a gene set and the overall fraction expected
in the population (Doniger et al., 2003). A gene set with a



higher-than-expected proportion of differentially expressed
genes has a high z-score and hence a higher likelihood of a
correlation to productivity phenotype. The results of
MAPPFinder are, however, dependent on the user-defined
threshold for differential expression. To that end, we
employed SAM (Tusher et al., 2001) to identify differentially
expressed genes. The transcriptome analysis on cultured
mammalian cell in the past few years has generally
demonstrated that the degree of differential expression
observed is not of very large magnitude. Whether the
hyper productivity trait is the manifestation of vast number
of genes, each altering at a relatively minute level, or
large but localized expression changes in a small number of
genes, is still an open question. We thus employed two
different criteria for differential expression of individual
transcripts: (1) q-value �10% (10% FDR) and at least a
1.2-fold change (2) q-value �10% and a fold change of at
least 1.4.

A distinction between GSEA, GSA and MAPPFinder
is thus the reliance of MAPPFinder on a user-defined
differential expression criterion. A potential drawback of
this user-dependence is that the fraction of genes in a gene
set that are called differentially expressed can change
depending on the criterion, which in turn can affect the
results of such a ‘‘discrete’’ method (Ben-Shaul et al., 2005).
Furthermore, change in the activity of a biological pathway
can be effected by a modest change in a large number of
genes involved in the pathway, many of which may not
satisfy a stringent differential expression criterion. Modest
changes can be identified more readily by quantifying
the shift in distribution of a differential expression metric
for a set of functionally related genes, compared to the
overall distribution for all genes (Ben-Shaul et al., 2005;
Mootha et al., 2003). GSEA proposes such a ‘‘continuous’’
methodology whereby all the genes in a dataset are ranked
according to a class-correlation metric, and enrichment of
a gene set is based on the non-random positioning of its
Table I. Functional gene sets identified by different gene set testing methods

Gene set (functional class)

No. genes in

gene set

% present

on MOE430A

Cellular component

Golgi apparatus 336 69

Cytoskeleton 189 68

Chromatin 118 59

Biological process

Cell cycle 166 72

Molecular function

Isomerase activity 126 73

Structural constituent of ribosome 164 77

GTPase regulatory activity 174 66

Ligase activity 160 67

aD.E. criteria 1: q-value �10% and fold change �1.2.
bD.E. criteria 1: q-value �10% and fold change �1.4.

Ch
members in the ranked list (Mootha et al., 2003;
Subramanian et al., 2005). GSA method proposed potential
improvements to GSEA algorithm. GSA uses a different
enrichment statistic and a modified procedure for estimat-
ing the null distribution (Efron and Tibshirani, 2007).

The significance of each functional class or a gene set is
characterized by an enrichment P-value. A low P-value for a
gene set suggests that a significant fraction of transcripts in
that set have altered expression levels between the two
phenotypic groups. Since the three GST tools use different
methodologies, the gene sets identified can also differ. The
gene sets identified as significant ( P-values �0.06) by each
method were cross-compared. Eight sets which were
identified in at least two of the three methods are listed
in Table I. A positively enriched gene set is one in which
many genes in that functional class are upregulated in the
high producers. Similarly, in a negatively enriched gene set,
genes downregulated in high producers are overrepresented.

The biological process of cell cycle (GO:0007049) was the
only functional class identified as significantly enriched by
GSEA and MAPPFinder ( P-value �0.06) and marginally
enriched by GSA ( P-value¼ 0.062) (Table I). Among the
genes involved in cell cycle progression that are represented
on the MOE430A array, 28% were differentially expressed,
which includes 24 upregulated and 9 downregulated. Other
functional classes that constitute different molecular
functions such as isomerase activity (GO:0016853), struc-
tural constituent of ribosome (GO:0003735), GTPase regu-
lator activity (GO:0030695), and ligase activity (GO:0016874)
were also correlated to the phenotypic difference between
the high and low producer groups. Golgi apparatus
(GO:0005794), cytoskeleton (GO:0005856), and chromatin
(GO:0000785) are the ontological classes under cellular
component that were identified as altered between the high
and low producer groups. In the ensuing sections, several of
these functional classes are elaborated with emphasis on
differentially expressed genes in each class.
.

% of genes

D.E.a

Enrichment P-value for

Direction of

alterationGSEA GSA

MAPPFinder

(D.E. criteria)

1a 2b

19 0.150 0.053 0.035 0.008 Up

20 0.027 0.042 0.231 0.119 Down

26 0.002 0.034 0.162 0.005 Down

28 0.039 0.062 0.037 0.027 Up

19 0.016 0.113 0.016 0.285 Up

19 0.069 0.059 0.024 0.331 Up

20 0.045 0.106 0.014 0.028 Down

27 0.078 0.057 0.021 0.173 Down
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Genes Enriched in High and Low Producer Classes

GSEA identifies a subset of genes (called leading-edge
subset) in each gene set that are key contributors to the
enrichment of the functional class. These genes reside at
the top or bottom region of the rank-ordered list. A
significant proportion of these leading edge genes also meet
the criteria used to identify differentially expressed genes by
SAM. In six of the eight gene sets, at least 60% of the genes in
the leading-edge subset also satisfy the differential expres-
sion criteria (q-value �10% and fold change �1.2). For
every gene set, the percentage of gene probes that are
represented on the microarray is also shown in Table I. At
least 19% of genes present on the array are differentially
expressed in each functional class.

These enriched genes and their extent of differential
expression for different functional classes are listed in
Tables II–VII. For each gene, the average hybridization
intensity from the four high producers is also listed. To
gauge the range of signal intensities from every array,
the 25th, 50th, and 75th percentiles correspond to signal
intensities of 49, 164, and 595, respectively. Following is a
discussion on the possible role of these functional classes in
conferring the hyper productivity trait. The focus is on the
gene class rather than individual genes. A brief annotation
on the functions of key genes is included in these tables.
Golgi Apparatus

Golgi apparatus (GO:0005794) was identified as signifi-
cantly upregulated in two of the three GST tools. Two
hundred thirty-three genes present on MOE430A array are
annotated as belonging to Golgi apparatus gene set accor-
ding to the GenMAPP database. Genes in this functional
class encode proteins that are involved in post-translational
modification and protein trafficking and secretion. Among
the 37 transcripts differentially expressed in this gene set by
at least 1.4-fold (Table II), as many as 27 are upregulated.
All the 27 upregulated genes are in the leading-edge subset
identified by GSEA further suggesting that upregulation of
these transcripts in high producers plays a role in enhancing
productivity. Some of these differentially expressed genes
localized in Golgi can be clustered into categories of similar
functions, notably vesicle transport and glycosylation. These
categories are described below.

Vesicle transport. Ten genes, nine of which are upregu-
lated, are related to vesicle transport. Protein processing in
Golgi involves transport of cargos via membrane vesicles
from one Golgi compartment to another as well as from
Golgi to other cellular destinations. The correct delivery of
membrane vesicles to their receiving targets is mediated by
two complementary sets of transmembrane proteins: vesicle
SNARE (v-SNARE) proteins and target membrane-specific
SNARE (t-SNARE) proteins. v-SNARE on the membrane
vesicle and t-SNARE on the target membrane interact to
form a trans-SNARE complex that facilitates fusion of the
vesicle to the target membrane. At least 30 different SNARE
1658 Biotechnology and Bioengineering, Vol. 102, No. 6, April 15, 2009
proteins are present in mammalian cells. Two of the nine
upregulated transcripts encode the SNARE proteins, Gosr1
and Gosr2. The assembly of COPI-coated vesicles is initiated
by activation of a small G protein, Arf1 on the Golgi
membrane, followed by Arf1-mediated recruitment of the
preassembled heptameric COPI coat complex. GTPase-
activating protein Arfgap1 stimulates GTP hydrolysis of
Arf1 thereby contributing to COPI vesicle budding (Bigay
et al., 2003). The transcript of Arfgap1 is upregulated by
1.5-fold in high producers. Interestingly, although the Arf1
transcript, with q-value of 25%, did not meet our statistical
criterion, its expression level in each of the four high
producers is �1.2-fold higher than the average of low
producers. Notably, the average signal intensity of Arf1 is
5629, which corresponds to the 98th percentile of intensities
on every microarray. This suggests that Arf1 is one of the
most highly abundant transcripts in the cell, and a 20%
upregulation, if true, may alter cellular capacity for vesicle
transport.

Protein glycosylation. Eight differentially expressed tran-
scripts listed in Table II encode glycosyltransferase enzymes.
These membrane-bound enzymes reside mainly in different
Golgi compartments (cis, medial, trans) and catalyze the
transfer of various sugar moieties to the newly formed
protein transported from endoplasmic reticulum (ER).
The signal intensity for Man2a1 transcript is 2340 (93rd
percentile) suggesting that the transcript is abundant and its
upregulation by 70% in high producers is quite significant.
However, not all the glycosyltransferase enzymes probed
were upregulated. Genes encoding four glycosylation
enzymes are downregulated by twofold or greater in high
producers (Table II). There appears to be a change in the
ratio of a-2,6-, a-2,8-, and a-2,3-sialyltransferase, and an
enhanced mannosidase transcript level in high-producing
cells. Alpha-mannosidase I and II are responsible for the
trimming of high mannose glycan on glycoproteins before
glycan extension. These are the first steps of glycan
processing in Golgi, whereas sialations are the final steps
of glycan synthesis for glycoproteins. It is also interesting to
note that in high-producing cells the transcript of a-1,6-
fucosyltransferase is twofold lower. The product of fuco-
syltransferase, fucosylated N-glycan, has been reported to
confer immunoglobulin G with lower antibody-dependent
cellular cytotoxcity (ADCC) compared to the unfucosylated
product (Shields et al., 2002). It will be interesting to
examine whether the glycoform of the high antibody
producing cells indeed has altered glycans.
Cytoskeleton

Twenty percent of the genes in this functional category are
differentially expressed. Members of the cytoskeleton class
encode proteins that associate with one or more filamentous
elements that form the cellular scaffold essential for
maintaining cell shape, exerting and distributing mechanical
force and various other functions such as exocytosis,
endocytosis, mitosis, and cell motility. They also play an



Table II. List of differentially expressed genes in the functional class ‘‘Golgi apparatus.’’

Gene symbol Gene title F.C.a
q-val.

(%)b
Avg.

int.c
Core

subsetd Annotation

Vesicle transport

Cog4 Component of oligomeric

Golgi complex 4

(þ) 2.3 0.48 311.7 Yes A component of octameric COG complex, that

plays a crucial role in tethering transport

vesicles from late Golgi or early endosomes

to cis-Golgi (Ungar et al., 2002)

Ap1g1 Adaptor protein complex AP-1,

gamma 1 subunit

(þ) 1.9 0.34 666.9 Yes g-subunit of adaptor-related protein complex 1,

which is important for formation of

clathrin-coated pit on vesicles of trans-Golgi

network (TGN)

Ap3s2 Adaptor-related protein complex 3,

sigma 2 subunit

(þ) 1.7 1.68 721.9 Yes s2 subunit of clathrin-related adaptor

complex 3 (AP3). AP3 complex likely to be

associated with TGN and peripheral

endosome-like structures involved in protein

sorting (Dell’Angelica et al., 1997)

Gosr1 Golgi SNAP receptor complex

member 1

(þ) 1.6 3.96 280.5 Yes A v-SNARE that is a key component of Golgi 20S

SNARE complex involved in vesicle transport

from ER to cis- and medial-Golgi

(Subramaniam et al., 1996)

Copb2 Coatomer protein complex, subunit

beta 2 (beta prime)

(þ) 1.5 6.62 1149.5 Yes A subunit of the coatomer protein complex that

forms the coat of non-clathrin coated vesicles

Arfgap1 ADP-ribosylation factor GTPase

activating protein 1

(þ) 1.5 1.68 431.8 Yes GTPase activating protein, which is involved in

COPI vesicle-mediated protein transport

between Golgi cisternae and retrograde

transport from cis-Golgi to ER

Cog8 Component of oligomeric Golgi

complex 8

(þ) 1.4 6.62 707.9 Yes Component of COG complex that plays a

crucial role in determining the protein

transport capacity of Golgi

Gosr2 Golgi SNAP receptor complex

member 2

(þ) 1.4 3.10 396.0 Yes A Golgi SNARE (GS27), which participates in

protein transport from medial-Golgi to

trans-Golgi and TGN (Lowe et al., 1997)

Arfrp1 ADP-ribosylation factor related protein 1 (þ) 1.4 1.68 243.4 Yes

Napg N-ethylmaleimide sensitive fusion

protein attachment protein gamma

(�) 1.4 6.62 460.7 No g-isoform of N-ethylmaleimide-sensitive factor

(NSF) attachment protein. Involved in

disassembly of T-SNARE/V-SNARE/SNAP25

complex after vesicle fusion to facilitate

their recycling (Sollner et al., 1993)

Protein glycosylation

St3gal2 ST3 beta-galactoside

alpha-2,3-sialyltransferase 2

(þ) 2.0 0.00 313.1 Yes Enzyme that can transfer sialylic acid residue

to glycoproteins that have Galb1,3GalNAc

as the terminal disaccharide (Lee et al., 1993)

Man2a1 Mannosidase 2, alpha 1 (þ) 1.7 5.47 2339.5 Yes a-mannosidase II enzyme found primarily in

medial Golgi. Catalyzes the cleavage of

a(1,3) and a(1,6)-mannose residues

from the high mannose glycan resulting

in the formation of a core glycan

structure—glcNAc2Man3, that is

common to all N-glycans

Man1a2 Mannosidase, alpha, class 1A, member 2 (þ) 1.5 6.62 686.7 Yes a-mannosidase IA, which cleaves

a(1,2)-mannose residues from the high

mannose oligosaccharide

Man1a Mannosidase 1, alpha (þ) 1.5 3.09 696.3 Yes

St6gal1 Beta galactoside alpha 2,6 sialyltransferase 1 (�) 2.4 5.47 204.2 No

St8sia4 ST8 alpha-N-acetyl-neuraminide

alpha-2,8-sialyltransferase 4

(�) 2.3 1.68 324.4 No

Fut8 Fucosyltransferase 8 (�) 2.1 2.15 1198.5 No Enzyme that can transfer fucose from

GDP-fucose to first galactose of

N-glycan through a-1,6-linkage

Galnt11 UDP-N-acetyl-alpha-D-galactosamine:

polypeptide N-acetylgalactosaminyltransferase 11

(�) 2.0 0.00 227.5 No

Others

Sgpp1 Sphingosine-1-phosphate phosphatase 1 (þ) 1.9 5.47 148.5 Yes

Slc35a5 Solute carrier family 35, member A5 (þ) 1.8 3.09 583.4 Yes

Emid1 EMI domain containing 1 (þ) 1.7 0.48 1147.8 Yes

Nsg2 Neuron specific gene family member 2 (þ) 1.7 8.25 1178.8 Yes
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Table II. (Continued )

Gene symbol Gene title F.C.a
q-val.

(%)b
Avg.

int.c
Core

subsetd Annotation

Mbtps1 Membrane-bound transcription factor

peptidase, site 1

(þ) 1.7 0.48 1174.9 Yes Involved in proteolytic activation of

activating transcription factor 6 (Atf6)—a

key transducer or ER stress. Mbtps1 also

important for achieving cholesterol

homeostasis by activation of two sterol

regulatory element binding proteins

(SREPB1 and SREPB2) (DeBose-Boyd

et al., 1999)

Chst12 Carbohydrate sulfotransferase 12 (þ) 1.6 5.47 336.7 Yes

Tmed2 Transmembrane emp24 domain trafficking protein 2 (þ) 1.6 0.71 1694.2 Yes

Adam10 A disintegrin and metallopeptidase domain 10 (þ) 1.5 2.15 1098.7 Yes

Golph3 Golgi phosphoprotein 3 (þ) 1.5 5.47 1935.5 Yes

Gopc Golgi associated PDZ and coiled-coil motif

containing

(þ) 1.5 6.62 238.0 Yes

Bicd2 Bicaudal D homolog 2 (þ) 1.4 1.68 277.1 Yes

Golga4 Golgi autoantigen, golgin subfamily a, 4 (þ) 1.4 6.62 291.0 Yes

Chrnb1 Cholinergic receptor, nicotinic, beta polypeptide 1 (þ) 1.4 6.62 200.0 Yes

Gabarapl2 Gamma-aminobutyric acid (GABA-A)

receptor-associated protein-like 2

(þ) 1.4 2.15 2037.4 Yes

Aph1a Anterior pharynx defective 1a homolog (C. elegans) (�) 1.7 0.90 363.8 No

Lman2 Lectin, mannose-binding 2 (�) 1.6 1.24 798.3 No

Psen2 Presenilin 2 (PS2) (�) 1.6 6.62 467.5 No

Clcn3 Chloride channel 3 (�) 1.5 8.25 1251.2 No

Rnpep Arginyl aminopeptidase (aminopeptidase B) (�) 1.4 3.10 387.3 No

aFold change (F.C.), (þ) upregulated in high producer (H), (�) downregulated in high producer.
bq-value calculated for each probe using SAM.
cAverage intensity of high producers on Affymetrix array (MOE430A).
dCore member of the functional gene set identified as the leading-edge subset in GSEA.
essential role in intracellular protein transport, especially
vesicle transport (reviewed in Ross et al., 2008; Stamnes,
2002). Among the 23 genes that are differentially expressed
in this functional class by at least 1.4-fold, 8 genes that are
downregulated (Table III). The most significant is Hook
homolog 2 (Hook2), which was not detected (detection
P-value >0.04) in any high producer in contrast to an
average intensity of 646 in low producers. Hook proteins
attach to microtubules at their N-terminal domains and
the C-terminal domain associates with different organelles.
Myo9b, which serves as a molecular motor to drive intra-
cellular cargo on actin filaments, is also downregulated by
1.4-fold at transcript level. With the diverse functions that
cytoskeletal elements are involved in, it is difficult to point
the exact cellular functions that may have been altered. But
combined with the altered functional classes identified,
it seems logical to speculate that the change in cytoskeletal
elements may be related to vesicle trafficking and protein
secretion. Interestingly, a recent 2D-gel based proteomic
investigation of four IgG4-producing NS0 cell lines by
linear regression analysis of functionally related proteins
also indicated a correlation between cytoskeleton-related
proteins and antibody productivity (Dinnis et al., 2006).
Chromatin

The third cellular component ontological class—chroma-
tin, comprises of proteins involved in packaging DNA to
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form the condensed chromosome. The transcript levels of a
large percentage (26%) of genes in this gene set were altered
between high and low producer groups.

Seventy genes from this functional class are present on the
MOE430A array as annotated by the GenMAPP database,
of which 16 are differentially expressed by at least 1.4-fold
(Table IV). The most notable gene in this class encodes
tripartite motif 28 (Trim28). Genes encoding proteins
involved in transcriptional silencing, such as DNA methyl-
transferase 3A (Dnmt3a) and methyl-CpG binding protein 1
(Mbd1), were also downregulated in high producers by
more than 1.5-fold. Four other differentially expressed genes
in this class encode histone proteins, which form the build-
ing blocks of chromatin. Modifications of these proteins
alter DNA accessibility thereby regulating cellular processes
such as transcription and replication.
Cell Cycle Progression

Among the 119 genes involved in cell cycle progression
that are present on MOE430A array, 29 were identified as
differentially expressed with a q-value and fold change
threshold of 10% and 1.4, respectively (Table V). Among
these, 21 are upregulated and 8 are downregulated. Thirteen
of the upregulated genes encode products involved in
mitotic (M) phase of cell cycle progression. One of the
highly expressed and upregulated genes encodes a compo-
nent of anaphase-promoting complex/cyclosome (APC/C).



Table III. List of differentially expressed genes involved in cytoskeleton function.

Gene symbol Gene title F.C.a
q-val.

(%)b
Avg.

int.c
Core

subsetd Annotation

Actin-binding

Tpm2 Tropomyosin 2, beta (þ) 2.1 3.09 307.3 No Members of an actin-binding protein family

Tpm1 Tropomyosin 1, alpha (þ) 1.8 0.00 159.3 No that stabilize actin filaments and regulate

access to other actin-binding proteins

Tmsb10 Thymosin, beta 10 (þ) 1.8 3.97 457.0 No

Coro1c Coronin, actin binding protein 1C (þ) 1.7 1.68 207.6 No

Shrm Shroom (þ) 1.6 1.68 95.2 No

Tmod3 Tropomodulin 3 (þ) 1.6 3.96 866.1 No

Rdx Radixin (þ) 1.5 6.62 348.2 No

Sntb2 Syntrophin, basic 2 (þ) 1.4 0.71 238.8 No

Hip1r Huntingtin interacting protein 1 related (þ) 1.4 8.25 414.4 No

Dst Dystonin (�) 1.9 3.09 270.0 Yes

Myo9b Myosin IXb (�) 1.4 5.47 244.3 Yes Encodes an actin-based motor

Others

Elmo1 Engulfment and cell motility 1 (þ) 2.1 0.34 328.8 No

Pxn Paxillin (þ) 1.5 1.68 174.1 No

Nf2 Neurofibromatosis 2 (þ) 1.5 3.09 311.4 No

Bicd2 Bicaudal D homolog 2 (þ) 1.4 1.68 277.1 No

Ctnnb1 Catenin (cadherin associated

protein), beta 1

(þ) 1.4 3.97 1167.3 No An adherens junction protein that mediates

cell-cell communication. Also interacts with

TCF/LEF family of transcription factors to

activate cyclin D1 transcription for

G1/S phase transition (Tetsu and

McCormick, 1999)

Sirt2 Sirtuin 2 (þ) 1.4 3.96 595.8 No A tubulin deacetylase that regulates exit from

the mitotic phase of the cell cycle (Dryden

et al., 2003)

Hook2 Hook homolog 2 (Drosophila) (�) 17.4 0.00 37.2 Yes A Hook protein which attaches to

microtubules at its N-terminal domain

and the C-terminal domain associates

with different organelles

Jak2 Janus kinase 2 (�) 1.9 0.00 245.0 Yes

Arpc5l Actin related protein 2/3 complex,

subunit 5-like

(�) 1.9 0.00 682.3 Yes

Add3 Adducin 3 (gamma) (�) 1.7 0.00 582.8 Yes

Sspn Sarcospan (�) 1.5 8.25 161.4 Yes

Ptpn21 Protein tyrosine phosphatase,

non-receptor type 21

(�) 1.4 3.96 186.4 Yes

aFold change (F.C.), (þ) upregulated in high producer (H), (�) downregulated in high producer.
bq-value calculated for each probe using SAM.
cAverage intensity of high producers on Affymetrix array (MOE430A).
dCore member of the functional gene set identified as the leading-edge subset in GSEA.
APC/C associates with cell division cycle 20 (Cdc20) and
other E1 ubiquitin-activating and E2 ubiquitin-conjugating
enzymes during various stages of mitosis. APC/C regulates
progression through M phase by 26S proteasome-mediated
degradation of cyclin A and cyclin B, that arrest cell cycle.
Ras-association domain family protein 1 (Rassf1), whose
transcript is also upregulated in high producers by 2.2-fold,
binds to Cdc20 during prometaphase to inhibit APC/C
activity (Song et al., 2004).

Cell growth and death is the outcome of a concerted effect
of several exogenous and endogenous factors. Low growth
rate and high cell viability during the production phase is
desirable in a high-producing cell line. Previous attempts to
tap cell cycle regulation have focused on inducing expression
of factors such as cyclin-dependent kinase inhibitors that
can arrest cell growth (for review, see Seth et al., 2006). The
Ch
upregulation of negative effectors of cell proliferation,
Rassf1 and Mad2l1, which arrest G2/M phase progression,
and Gmnn (Geminin), which inhibits transition from G2 to
S phase, may reflect subtle changes in growth regulation in
high-producing cells.

While these results suggest that transcript level alteration
in several cell cycle-related genes is correlated with
productivity, it is likely that several other unaccounted
gene products also modulate cell proliferation at various
levels of regulatory hierarchy. GST methods such as GSEA
and GSA are motivated by the correlation of a pathway
with one phenotype or another, that is, the genes involved
in a common biological function are upregulated in one
phenotype with respect to another, or vice versa. Alteration
of many physiological processes can be invoked by
differential up or downregulation of several genes involved.
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Table IV. List of differentially expressed genes involved in the gene set ‘‘Chromatin’’

Gene symbol Gene title F.C.a
q-val.

(%)b
Avg.

int.c
Core

subsetd Annotation

Histones

Hist3h2a Histone 3, H2a (þ) 1.7 5.47 180.6 No

H2afy3 H2A histone family, member Y3 (�) 2.4 6.62 139.7 Yes

H2afy H2A histone family, member Y (�) 2.0 6.62 1690.8 Yes

H2afz H2A histone family, member Z (�) 1.5 0.28 7553.1 Yes

Transcriptional regulation

Trim28 Tripartite motif protein 28 (�) 3.1 0.00 2322.4 Yes Member of TRIM family of

transcription factors that negatively

regulate transcription from RNA

polymerase II promoters

Dnmt3a DNA methyltransferase 3A (�) 2.6 2.15 114.4 Yes Involved in de novo methylation

of DNA

Mbd1 Methyl-CpG binding domain protein 1 (�) 1.6 0.40 1373.2 Yes Member of methyl-CpG-binding

domain proteins that interact with

histone deacetylases to form

transcriptional repressor complexes.

Mbd1 can repress transcription

from methylated gene promoters

Others

Hmgb1 High mobility group box 1-like (þ) 2.1 3.97 1809.8 No

Cbx2 Chromobox homolog 2 (Drosophila Pc class) (þ) 1.7 6.62 213.2 No

Baz1b Bromodomain adjacent to zinc finger domain, 1B (þ) 1.7 2.15 1040.1 No

Cbx8 Chromobox homolog 8 (Drosophila Pc class) (þ) 1.5 0.71 276.7 No

4930548G07Rik RIKEN cDNA 4930548G07 gene (þ) 1.5 8.25 127.2 No

Smarcc1 SWI/SNF related, matrix associated, actin

dependent regulator of chromatin,

subfamily c, member 1

(þ) 1.4 8.25 869.0 No

Suv39h2 Suppressor of variegation 3–9 homolog 2 (Drosophila) (þ) 1.4 8.25 363.3 No

Asf1b ASF1 anti-silencing function 1 homolog B (S. cerevisiae) (�) 2.0 0.00 591.4 Yes

Cbx1 Chromobox homolog 1 (Drosophila HP1 beta) (�) 1.6 8.25 154.2 Yes

aFold change (F.C.), (þ) upregulated in high producer (H), (�) downregulated in high producer.
bq-value calculated for each probe using SAM.
cAverage intensity of high producers on Affymetrix array (MOE430A).
dCore member of the functional gene set identified as the leading-edge subset in GSEA.
However, regulation of cell cycle is a homeostatic balance of
many positive and negative factors. For regulatory networks
involving intricate interaction of positive and negative
elements, the state of the functional class may not be easily
identified as up- or downregulated.
Ribosomal Constituents

Several genes in this class have modest, albeit significant
changes in expression level. Among the 14 genes differen-
tially expressed by at least 1.4-fold, 10 are upregulated and
4 are downregulated (Table VI). Eight of the 10 upregulated
transcripts encode mitochondrial ribosomal proteins. These
mitochondrial ribosomal proteins are encoded in the
nucleus and are responsible for translation of mitochondrial
genes. Mitochondrial ribosome consists of a small 28S sub-
unit and a larger 39S subunit. Among the eight upregulated
transcripts, six encode 39S subunit proteins and two en-
code 28S subunit proteins. Although mitochondria harbor
between 5% and 15% of eukaryotic proteome, few of
the proteins are synthesized in mitochondria (Jensen et al.,
2004). The mitochondrial genome has 13 protein-coding
genes, which predominantly encode enzymes involved in the
1662 Biotechnology and Bioengineering, Vol. 102, No. 6, April 15, 2009
oxidative phosphorylation pathway for ATP synthesis
(Bibb et al., 1981). These genes are not represented on
the MOE430A array. Hence, the effect of the upregulation of
a large number of mitochondrial ribosomal proteins on
protein synthesis cannot be confirmed.
Ligase Activity

The set of genes encoding enzymes involved in ligation was
also enriched (Table VII). Among the 20 differentially
expressed, 8 are upregulated and 12 are downregulated. All
the 12 downregulated genes were also identified in GSEA as
members of the leading-edge subset. Although the genes in
this functional category are involved in the molecular
function of ligation, they are not all involved in the same
biological function. However, among the 20 differentially
expressed genes, 8 are involved in ubiquitin ligation. The
ubiquitin-proteasome system plays a major role in cellular
protein turnover. The ubiquitin-mediated proteasomal
degradation pathway is comprised of several steps during
which the ubiquitin moiety is activated by attachment
to ubiquiting-activating enzyme (E1) and transferred to



Table V. List of differentially expressed genes involved in cell cycle progression.

Gene symbol Gene title F.C.a
q-val.

(%)b
Avg.

int.c
Core

subsetd Annotation

G2/M phase transition

Rassf1 Ras association (RalGDS/AF-6)

domain family 1

(þ) 2.2 0.71 703.8 Yes Binds to Cdc20 to inhibit the activity of

anaphase-promoting complex/cyclosome

(APC/C)—a large multisubunit E3 ubiquitin

ligase, during prometaphase of mitosis

(Song et al., 2004). Also inhibits cellular

progression from G1 to S phase by

post-translational inhibition of cyclin D1

(Shivakumar et al., 2002)

Anapc5 Anaphase-promoting complex subunit 5 (þ) 1.8 0.90 2043.3 Yes Component of the APC/C complex. In active

form, from prometaphase to telophase, APC/C

promotes degradation of proteins, such as

cyclin A and cyclin B, that arrest cell cycle

Mad2l1 MAD2 (mitotic arrest deficient,

homolog)-like 1 (yeast)

(þ) 1.7 2.15 2156.0 Yes A component of the mitotic spindle checkpoint,

that binds to Cdc20 and APC/C during

metaphase to inhibit APC/C ligase activity

(Fang et al., 1998; Li and Benezra, 1996)

Chfr Checkpoint with forkhead and ring

finger domains

(þ) 1.7 2.15 445.4 Yes Functions as a checkpoint for entry into

mitotic phase of cell cycle

Stag1 Stromal antigen 1 (þ) 1.6 3.09 554.6 Yes

Smc4l1 SMC4 structural maintenance of

chromosomes 4-like 1

(þ) 1.6 1.24 1489.7 Yes

Rad21 RAD21 homolog (S. pombe) (þ) 1.6 2.15 1512.8 Yes

Rbl1 Retinoblastoma-like 1 (p107) (þ) 1.5 1.24 216.9 Yes

Chek1 Checkpoint kinase 1 homolog (S. pombe) (þ) 1.5 5.47 871.0 Yes

Nek2 NIMA (never in mitosis gene a)-related

expressed kinase 2

(þ) 1.5 8.25 543.0 Yes

Cdc23 CDC23 (cell division cycle 23, yeast, homolog) (þ) 1.5 8.25 435.8 No

Sirt2 Sirtuin 2 (S. cerevisiae) (þ) 1.4 3.96 595.8 Yes

Sept11 Septin 11 (þ) 1.4 1.67 362.6 Yes

Spag5 Sperm associated antigen 5 (�) 1.5 3.09 621.5 No Involved in regulation of mitotic spindle apparatus

Others

Ccnd2 Cyclin D2 (þ) 1.8 0.00 1054.9 Yes Interacts with cyclin dependent kinases

Cdk4 and Cdk6 for G1/S phase transition

Ccnc Cyclin C (þ) 1.7 8.25 130.3 Yes

Mapk6 Mitogen-activated protein kinase 6 (þ) 1.7 3.09 753.2 Yes

Gmnn Geminin (þ) 1.7 0.48 4444.5 Yes Accumulates during S and G2 phases and

inhibits DNA replication by interacting with

Cdt1, a replication initiation factor

(Wohlschlegel et al., 2000)

Calm2 Calmodulin 2 (þ) 1.6 5.47 3099.9 Yes

Ccng2 Cyclin G2 (þ) 1.6 3.96 698.3 Yes

Calm3 Calmodulin 3 (þ) 1.4 5.47 685.3 Yes

Cdc7 Cell division cycle 7 (S. cerevisiae) (þ) 1.4 0.90 500.1 Yes

Siah1a Seven in absentia 1A (�) 1.8 0.40 152.2 No Encodes a E3 ubiquitin ligase involved in

protein degradation

Lzts2 Leucine zipper, putative tumor suppressor 2 (�) 1.6 6.62 269.5 No

Ahr Aryl-hydrocarbon receptor (�) 1.5 6.62 71.3 No

Pdcd4 Programmed cell death 4 (�) 1.5 3.09 671.5 No

Cspg6 Chondroitin sulfate proteoglycan 6 (�) 1.4 3.96 1343.9 No

Txnl4 Thioredoxin-like 4 (�) 1.4 8.25 160.9 No

Chaf1b Chromatin assembly factor 1, subunit B (p60) (�) 1.4 6.62 272.9 No

aFold change (F.C.), (þ) upregulated in high producer (H), (�) downregulated in high producer.
bq-value calculated for each probe using SAM.
cAverage intensity of high producers on Affymetrix array (MOE430A).
dCore member of the functional gene set identified as the leading-edge subset in GSEA.
ubiquitin-conjugating enzyme (E2). A third component,
ubiquitin-ligase (E3) acts in association with E2 enzyme and
binds to specific protein degrading signals on the target
protein and a polyubiquitin chain is attached to the protein.
This acts as a recognition signal for the 26S proteasome for
Ch
protein degradation. Among the eight differentially
expressed genes in this gene set, five encode E2 enzymes,
and three correspond to E3 enzymes.

Three differentially expressed genes in this functional
category encode tRNA synthetases, which are enzymes that
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Table VI. List of differentially expressed genes in the functional class ‘‘structural constituent of ribosome.’’

Gene symbol Gene title F.C.a q-val. (%)b Avg. int.c Core subsetd Annotation

Mitochondrial ribosomal proteins

Mrpl1 Mitochondrial ribosomal protein L1 (þ) 1.6 3.96 547.9 Yes

Mrpl37 Mitochondrial ribosomal protein L37 (þ) 1.6 6.62 1531.3 Yes

Mrpl52 Mitochondrial ribosomal protein L52 (þ) 1.5 3.09 841.2 Yes

Mrpl19 Mitochondrial ribosomal protein L19 (þ) 1.5 5.47 885.2 Yes These genes encode components of the large

Mrpl38 Mitochondrial ribosomal protein L38 (þ) 1.4 3.09 113.8 Yes 39S subunit of mitochondrial ribosomes

Mrpl27 Mitochondrial ribosomal protein L27 (þ) 1.4 1.24 2263.0 Yes

Mrpl44 Mitochondrial ribosomal protein L44 (�) 1.5 0.40 1497.2 No

Mrpl43 Mitochondrial ribosomal protein L43 (�) 1.4 2.15 1343.7 No

Mrps23 Mitochondrial ribosomal protein S23 (þ) 1.6 5.47 952.2 Yes These genes encode components of the small

Mrps5 Mitochondrial ribosomal protein S5 (þ) 1.5 5.47 522.8 Yes 28S subunit of mitochondrial ribosomes

Others

Nola2 Nucleolar protein family A, member 2 (þ) 1.5 3.09 5299.2 Yes

Rps10 Ribosomal protein S10 (þ) 1.4 8.25 114.4 Yes

Rpl5 Ribosomal protein L5 (�) 1.8 0.00 253.0 No

Mrp63 Mitochondrial ribosomal protein 63 (�) 1.4 6.62 132.2 No

aFold change (F.C.), (þ) upregulated in high producer (H), (�) downregulated in high producer.
bq-value calculated for each probe using SAM.
cAverage intensity of high producers on Affymetrix array (MOE430A).
dCore member of the functional gene set identified as the leading-edge subset in GSEA.
read the trinucleotide sequence on the corresponding tRNAs
and ligate the appropriate amino acid. The three differen-
tially expressed transcripts encode tRNA synthetases
corresponding to phenylalanine, glycine, and alanine. An
Table VII. List of differentially expressed genes involved in the functional cla

Gene symbol Gene title F.C.a

Ubiquitin ligation

Ube2s Ubiquitin-conjugating enzyme E2S (þ) 1.4

Ube2d2 Ubiquitin-conjugating enzyme E2D 2 (�) 1.7

Ube2j1 Ubiquitin-conjugating enzyme E2, J1 (�) 1.6

Ube2f Ubiquitin-conjugating enzyme E2F (putative) (�) 1.5

Ube2t Ubiquitin-conjugating enzyme E2T (putative) (�) 1.4

Wwp2 WW domain containing E3 ubiquitin

protein ligase 2

(þ) 1.4

Siah1a Seven in absentia 1A (�) 1.8

Wwp1 WW domain containing E3 ubiquitin

protein ligase 1

(�) 1.5

tRNA synthetases

Aars Alanyl-tRNA synthetase (þ) 1.5

Farsla Phenylalanine-tRNA synthetase-like, alpha subunit (�) 1.7

Gars Glycyl-tRNA synthetase (�) 1.4

Acyl-CoA synthetases

Acsl6 Acyl-CoA synthetase long-chain family member 6 (þ) 1.7

Acsl1 Acyl-CoA synthetase long-chain family member 1 (þ) 1.6

Acss1 Acyl-CoA synthetase short-chain family member 1 (�) 1.5

Acsl5 Acyl-CoA synthetase long-chain family member 5 (�) 1.4

Others

Brap BRCA1 associated protein (þ) 1.8

Lig3 Ligase III, DNA, ATP-dependent (þ) 1.8

Chfr Checkpoint with forkhead and ring finger domains (þ) 1.7

Gclm Flutamate-cysteine ligase, modifier subunit (�) 1.6

Rnf14 Ring finger protein 14 (�) 1.4

aFold change (F.C.), (þ) upregulated in high producer (H), (�) downregu
bq-value calculated for each probe using SAM.
cAverage intensity of high producers on Affymetrix array (MOE430A).
dCore member of the functional gene set identified as the leading-edge sub
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additional five transcripts coding for tRNA synthases of
leucine, glutamate, glutamine, and histidine are differen-
tially expressed with fold change between 1.2- and 1.4-fold.
Additionally, four differentially expressed genes with ligase
ss ‘‘Ligase activity.’’

q-val.

(%)b
Avg.

int.c
Core

subsetd Annotation

8.25 6047.6 No These genes encode members of

ubiquitin-conjugating enzyme (E2) family

0.00 546.2 Yes

3.96 362.8 Yes

0.90 578.7 Yes

8.25 1121.6 Yes

1.68 422.6 No These genes encode members of

E3 ubiquitin ligase family

0.40 152.2 Yes

3.09 234.9 Yes

0.34 1915.5 No

1.24 265.8 Yes

6.62 1827.8 Yes

8.25 101.3 No

3.96 189.2 No

3.09 156.0 Yes

3.09 2753.8 Yes

2.15 146.3 No

1.67 386.7 No

2.15 445.4 No

2.15 1454.4 Yes

3.09 667.5 Yes

lated in high producer.

set in GSEA.



activity encode acyl-CoA synthetases, two of which are
upregulated. Members of this family of enzyme convert long
chain fatty acids into fatty acyl-CoA esters. These enzymes
are required for synthesis of cellular lipids and also fatty acid
degradation.
Discussion

Identification of Molecular Signature for
Productivity Trait

There is a profound interest in understanding the
foundation of biological variability in the productivity of
recombinant mammalian cells. It is customary to classify
producing cells into high or low productivity groups.
However, productivity is not an exactly defined trait. At least
three elements may affect the final titer of recombinant
protein profoundly: (i) the specific recombinant protein
secretion rate, (ii) the growth rate and the growth extent,
Table VIII. Differentially expressed genes involved in early secretion pa

Gene symbol Gene title F.C.a q-va

(a) Node 4: COPII vesicle-mediated ER-to-Golgi transport

Sec31 SEC31-like 1 (S. cerevisiae) (þ) 1.5

Trappc5 Trafficking protein particle complex 5 (þ) 1.3

Rab1 RAB1, member RAS oncogene family (þ) 1.3

Sar1a SAR1 gene homolog A (S. cerevisiae) (þ) 1.3 1

Vdp Vesicle docking protein p115 (þ) 1.2 1

Sec22b SEC22 vesicle trafficking protein

homolog B (S. cerevisiae)

(�) 1.6

Rab2 RAB2, member RAS oncogene family (�) 1.2

(b) Node 5: COPI vesicle-mediated intra-Golgi transport and retrograde

Arf3 ADP-ribosylation factor 3 (þ) 2.0

Wasl Wiskott-Aldrich syndrome-like

(human) (N-WASP)

(þ) 1.5

Arf2 ADP-ribosylation factor 2 (þ) 1.4 1

Arhgap21 Rho GTPase activating protein 21 (þ) 1.3

aFold change (F.C.), (þ) upregulated in high producer (H), (�) dow
bq-value calculated for each probe using SAM.
cAverage intensity of high producers on Affymetrix array (MOE430A)
thway

l. (%

3.96

3.09

6.62

0.44

0.44

0.40

6.62

trans

0.48

0.90

0.44

6.62

nregu

.

Ch
and (iii) the duration of sustained viability upon reaching
maximum cell concentration. A super producer may have
acquired some elements of all those positive characteristics,
whereas a moderate producer may have only some of those
positive characteristics. Even within each functional charac-
teristic, there exist multiple routes to achieve the same
superior features. For example, an elevated energy meta-
bolism can potentially be accomplished through enrichment
of mitochondria in each cell, enhanced expression of
selective genes in mitochondrial metabolism, etc. Further-
more, the range of productivity is likely to be a continuum,
rather than an arbitrary cut-off of high and low-producing
classes.

Given the heterogeneous nature of cells in the same
productivity class and the relatively arbitrary nature of
conventional classification of high and low producers,
the transcriptomes of cells in the same class may not all
share common features. In an attempt to corroborate the
differences in productivity with transcriptomic changes,
the high and low producers were compared using support
at nodes 4 and 5.

)b Avg. int.c Annotation

1138.0 Component of the Sec13-Sec31 heterotetramer

which is the outer structural layer of COPII coat

167.8 A subunit of heptameric TRAPPI tethering complex

that activates Rab1 through GTP exchange

(Sacher et al., 1998)

5875.2 A member of the Rab family of monomeric GTPases.

The GTP-bound form of Rab1 regulates tethering

and fusion of COPII vesicles to the target

membrane (Allan et al., 2000)

2604.1 A small GTPase that is recruited to the ER membrane,

which in turn recruits several components of

COPII coat for vesicle formation and cargo selection

1229.8 A coiled-coil tethering protein that is recruited to

COPII coat in a Rab1-dependent manner and

interacts with a subset of v-SNAREs to promote

vesicle tethering and fusion (Allan et al., 2000)

353.0 Sec22b encodes a t-SNARE protein for

ER-Golgi transport

1442.0 Another member of Rab family that is essential

for vesicle-mediated transport from ER to

Golgi or pre-Golgi compartments (Tisdale and

Balch, 1996)

port from Golgi to ER

211.2 A member of the Class I family of Arf proteins

that regulate assembly of several coat proteins

including COPI and clathrin coats

334.1 N-WASP regulates actin assembly on COPI

vesicles by stimulating the Arp2/3 (actin-related

protein 2/3) complex (Fucini et al., 2002)

167.5 Another member of class I family of Arf proteins

825.7 Serves as a GTPase-activating protein for the

Rho-family GTPase, Cdc42, which in turn

activates N-WASP for actin polymerization

lated in high producer.
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vector machines (SVM) (Vapnik, 1995, 1998). SVM is a
pattern classification method that can identify the diverse
gene expression attributes associated with high productivity.
Classification models constructed from these attributes
can also be used to interrogate other ‘‘unknown’’ producers
based on their gene expression profiles. A differential
expression-based gene selection approach was combined
with leave-one-out cross-validation to construct and
evaluate SVM models for binary classification of high and
low producers (Baker and Kramer, 2006; Joachims, 1999;
Zhang et al., 2006). The models highlighted the expression
differences between high and low producers as well as the
expression differences amongst the high producers. Four of
the seven high producers had a substantially high congruity
in their gene expression profiles and could be contrasted
from the other three high producers as well as the low
producers. A limitation of models based on a small number
of producers is their restricted predictive ability. None-
theless, a comparison based on few producers can provide
useful insights to the physiology that underlies the
productivity trait. A small sample size is almost an inherent
problem of comparative transcriptome analysis of high-low
producers. All efforts in cell line development aim to
generate high-producing clones; few low-producing lines
are kept, let alone characterized. Even the number of high-
producing cell lines selected for characterization is usually
small. This is a drastic contrast to studies of different disease
phenotypes, which often have a very large patient base with
tens to hundreds of samples for identification of molecular
signatures (Golub et al., 1999; Ramaswamy et al., 2003).
Figure 1. Genes differentially expressed between high and low producing NS0

cell lines grouped according to intracellular function. a: Each node depicts an

intracellular process with large number of differentially expressed genes as identified

by GST. b: Schematic of the steps involved in vesicle-mediated transport (nodes 4, 5,

and 6) (modified from Cai et al., 2007).
Significance Testing for Functional Analysis

In search of genes conferring hyper productivity through
transcriptome analysis, one invariably resorts to statistical
testing by setting criteria of fold differential expression,
FDR, etc. More stringent criteria imply a lower risk of false
positive calls. In seeking pivotal genes responsible for a
complex trait, a question inevitably arises whether the trait is
caused by colossal alterations in a small number of master
genes or by minute variations globally distributed in many
functional classes. Small changes in transcript levels can be
physiologically significant, especially when many genes
involved in the same pathway or functional class change
simultaneously. We thus employed multiple methods for
functional class analysis. Two of the three methods used
do not rely on setting an explicit criterion to preselect
differentially expressed genes. Rather a differential expres-
sion metric is used to rank all the genes in the dataset, and
the distribution of ranks of a set of functionally related genes
is used to characterize alteration of a functional class.

The functional class analysis identified several classes
in cellular component, biological process, and molecular
function ontology as significantly changed, as described
earlier. However, many differentially expressed genes that do
not fall into one of the identified functional classes may also
1666 Biotechnology and Bioengineering, Vol. 102, No. 6, April 15, 2009
play a significant role. Genes which are differentially
expressed but do not fall into one of the significant classes
were further examined. It was noted that many are involved
in protein trafficking (Table VIII). Together with the leading
edge genes in identified functional classes, an overall picture
of changes observed can be broadly depicted in Figure 1a.
Functionally, the leading edge genes in the three cellular
component classes (Golgi apparatus, cytoskeleton and
chromatin) are involved in protein synthesis, processing
and transport. Spatially, the enriched genes in the classes
related to biological processes and molecular functions are
distributed in cytosol, mitochondria, and ER. The three
dimensions of functional class analysis (cellular component,
biological process, and molecular function) are closely
interconnected, as expected. Node 1 comprises members of
transcriptional regulation that are present in chromatin
functional class (Table IV). Genes involved in protein
synthesis, namely the genes encoding ribosomal proteins



and tRNA synthetases in cytoplasm (node 2) and
mitochondrial ribosomal proteins (node 3) are differentially
expressed between high and low producers (Tables VI
and VII). Nodes 4–8 depict functions related to protein
processing and secretion. Nodes 4, 5, and 6 represent various
components of protein transport mediated by COPII, COPI,
and clathrin-coated vesicles, respectively. Node 7 describes
constituents of Golgi apparatus including glycosyltransfer-
ase enzymes (Table II). The cytoskeletal network (node 8)
comprises actin and microtubule filaments and molecular
motors that drive vesicular cargo from one organelle to
another (Table III). Lastly, node 9 depicts the machinery
for protein degradation, which includes several members
of ubiquitin-mediated protein degradation pathway
(Table VII).

Nodes 4, 5, and 6, which describe vesicle-mediated
transport in early secretion pathway, are shown in expanded
form in Figure 1b. The four essential steps in this trafficking
include cargo selection followed by vesicle assembly and
budding, vesicle transport to the target organelle by cyto-
skeletal motors, tethering of vesicles to the target membrane,
and the final step involves fusion of the vesicular and target
membranes. COPII vesicles are required for ER to early-
Golgi transport. Transcripts of several genes involved
in COPII vesicle transport are differentially expressed
(Table VIIIa). Sar1a, a small GTPase, which is activated
by nucleotide exchange on the ER membrane, is crucial for
vesicle assembly. Rab1 and Rab2 are monomeric GTPases
that regulate tethering and fusion of COPII vesicles to early
Golgi or ER-Golgi intermediate compartment (ERGIC).
Vdp and Trappc5 are among several Rab effectors that
interact with Rab1 to ensure specificity of vesicle tethering to
target membrane. Both Vdp and Trappc5 are upregulated in
high producers. According to a recent report, Vdp is also
upregulated in sodium butyrate-treated mouse hybridoma
cells (MAK) and CHO cells by 1.3- and 1.5-fold, respectively
(Yee et al., 2008). Interestingly, Vdp is also among the genes
identified as Xbp1 targets during B cell differentiation
(Shaffer et al., 2004). The final step of vesicle fusion is
facilitated by ER-to-Golgi SNARE proteins, Gosr1 (Table II)
and Sec22b. Upregulation of these protein trafficking
components in high producers is consistent with an earlier
report suggesting that ER to cis-Golgi transport is the rate-
limiting step in mammalian as well as insect cells (Hooker
et al., 1999). Several components of COPI vesicle-mediated
intra-Golgi transport and retrograde transport from Golgi
to ER (node 5) are also differentially expressed at the
transcript level (Table VIIIb). Of particular note are the
genes encoding N-Wasp and Arhgap21 that coordinate actin
assembly on COPI vesicles in an Arf1-dependent manner.
Others members including components of vesicle tethering
complex COG (Cog4 and Cog8), Arf1-activating protein
(Arfgap1), and a SNARE protein (Gosr2) that facilitate
COPI-mediated vesicle transport are also upregulated in
high producers at the transcript level (Table II). The
transcript of Napg, which encodes the g-SNAP protein
involved in disassembly of SNARE complex for vesicle
Ch
membrane recycling, is also differentially expressed
(Table II).
Concluding Remarks

This and the previous studies both examined the hyper
productivity trait by comparing high and low-producing
NS0 cell lines. The previous study used transcriptome and
iTRAQTM-based proteomic profiles (Seth et al., 2007b) and
took an inferential statistics approach. Several genes
involved in protein processing were differentially altered
between the two classes at transcriptome as well as proteome
levels. Furthermore, genes related to cell cycle also appeared
to be modified between the two classes at transcriptome
level. In this study, pathway-level analysis was performed on
a subset of high and low producers to identify physiological
functions that are differentially altered between the two
groups. GST tools were employed to discern statistical
significance at a functional level, rather than at individual
gene level. Analysis based on GST indicates that several
functional classes, including protein processing constituents
in the Golgi apparatus, cytoskeleton-related, and cell cycle-
related functions were altered. At an individual gene level the
results of this and the previous study were not entirely
overlapping. This may not be surprising as the dataset used
was somewhat different and the methods employed are not
the same. However, at functional level the results of the two
studies bear many similarities. With a trait as complex as
high recombinant protein productivity, the dissection of
transcriptome data is inherently a complex task. Gene-level
differential expression analysis and GST are complementary
approaches that are revealing in somewhat different ways.
This study demonstrates the value of using GST as comple-
mentary to gene-level differential expression analysis.

Taken together our data and previous reports on
transcriptome and proteome analysis of high and low
producers seem to suggest that a number of functional
classes are involved in enhanced productivity, including
protein processing, vesicle trafficking and cell growth
regulation. The study of hyper productivity is likely to
benefit from combining high–low producer comparisons
with comparative investigations on culture conditions that
increase productivity. As such results begin to accumulate in
the near future we can expect our understanding of this
complex trait to expand and our ability to direct cells
towards hyper productivity to greatly advance.
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