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Abstract

In recent years, interior point algorithms have been used successfully for solving medium-
to large-size linear programming (LP) problems. In this paper we describe a highly parallel
formulation of the interior point algorithm. A key component of the interior point algorithm is
the solution of a sparse system of linear equations using Cholesky factorization. The performance
of parallel Cholesky factorization is determined by (a) the communication overhead incurred by
the algorithm, and (b) the load imbalance among the processors. In our parallel interior point
algorithm, we use our recently developed parallel multifrontal algorithm that has the smallest
communication overhead over all parallel algorithms for Cholesky factorization developed to
date. The computation imbalance depends on the shape of the elimination tree associated with
the sparse system reordered for factorization. To balance the computation, we 1implemented
and evaluated four different ordering algorithms. Among these algorithms, Kernighan-Lin and
spectral nested dissection yield the most balanced elimination trees and greatly increase the
amount of parallelism that can be exploited. Our preliminary implementation achieves a speedup
as high as 108 on 256-processor nCUBE 2 on moderate-size problems.

Keywords: linear programming, interior point methods, Cholesky factorization, sparse linear systems.

1 Introduction

In this paper we describe a scalable parallel formulation of interior point algorithms. Through our
implementation on a 256-processor nCUBE 2 parallel computer, we show that our parallel formula-
tion utilizes hundreds of processors efficiently and delivers much higher performance and speedups
than reported earlier. These speedups are a result of our highly efficient parallel algorithm for
solving a linear symmetric positive definite system using Cholesky factorization. We also evaluate
a number of ordering algorithms for sparse matrix factorization in terms of their suitability for
parallel Cholesky factorization.

Linear programming (LP) deals with the problem of minimizing or maximizing a linear function
in the presence of linear equality and or inequality constraints. Linear programming is extensively
used to model large and complex problems in many fields [11, 2, 49]. However, as the size and
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complexity of such problems increase, the computational power provided by traditional uniprocessor
computer systems is not enough to solve them within reasonable amounts of time. The emergence
of parallel computers provides the computational power that can be used to solve large linear
programming problems within reasonable time periods.

Traditionally, linear programming problems have been solved using the simplex method [6]. Even
though this method performs well in practice, its run time is not polynomially bound. In 1984,
Karmarkar [26] developed a radically different algorithm for solving linear programming problems,
called projective scaling. Karmarkar’s algorithm is iterative in nature and has polynomial run
time. It starts from a point within the feasible set and approaches the optimal solution by moving
within this set. Since the development of this first algorithm, several variants have been proposed
[45, 5, 46, 44, 42, 41, 64]. Because these algorithms approach the optimal solution while staying
within the feasible set, they are called interior point algorithms. Research over the past decade has
produced evidence that interior point algorithms provide a viable alternative to the simplex method
for most medium- to large-size problems, and can be many times faster than the simplex method
as the problem size increases [41, 64]. Most recent computational research has concentrated on the
primal-dual logarithmic barrier method [42], and in particular, on the predictor-corrector variant
[41, 43, 46] of this method.

The bulk of the computation performed in each iteration of the interior point algorithms is the
solution of a symmetric positive definite system. This system is usually solved by obtaining the
Cholesky factor of the matrix and then solving the triangular system ([30] chapter 5). Note that
the amount of computation performed in each iteration of interior point algorithms is considerably
higher than that for the simplex method; however, interior point algorithms require substantially
fewer iterations.

Earlier efforts at developing parallel formulations of linear programming algorithms concen-
trated on dense or nearly dense problems [9, 61, 48, 21, 28]. Eckstein [10] provides a good survey of
work on parallel algorithms for dense linear programming problems. For dense matrices, there are
efficient parallel formulations for both rank-one updates [9] and Cholesky factorizations [12, 30],
making it easy to develop highly scalable formulations for dense LP problems [28, 9]. In contrast,
attempts to develop general parallel algorithms for sparse linear programming problems have had
limited success. Shu and Wu [60] developed parallel formulations for both the product form of
inverses and the LU variant of the revised simplex method on a shared-memory computer. For the
former they obtained speedup of 4 on 32 processors, and for the latter, got a speedup of 2 on 8
processors. Housos et al. [22] and Saltzman [58] developed parallel formulations of interior point
methods for shared-memory architectures, and report good speedups on up to eight processors.
Bisseling et al. [4] developed a parallel formulation for the dual affine interior point algorithm on
a transputer network. They obtained speedup up to 88 on 400 processors for certain classes of LP
problems (scheduling problems in oil refineries), and speedup up to 60 on 400 processors for general
problems. Speedups are not high particularly for general LP problems, despite the fact that the
transputers offer low latency and high bandwidth communication relative to the CPU speed.

To obtain efficient parallel formulations of interior point algorithms, we need to develop an
efficient parallel sparse Cholesky factorization algorithm. However, attempts to obtain efficient
and highly parallel formulations have had limited success so far. The main reason for that is
that the amount of computation relative to the size of the matrix being factored is very small
and the communication overhead is relatively high. We have recently developed [19] a parallel
sparse Cholesky factorization algorithm based on the multifrontal sequential algorithm [8, 38].
The analysis presented in [19] and our experiments show that good speedup can be achieved by
increasing the degree of parallelism and at the same time minimizing the communication overhead.



Parallel Cholesky factorization exploits the sparsity of the matrix to perform more than one
elimination at the same time. The columns that can be eliminated in parallel are determined by the
elimination tree associated with the ordering. Depending on the ordering, both the amount of fill-in
and the number of columns that can be eliminated in parallel may change significantly. However, to
minimize communication overhead, our parallel multifrontal algorithm assigns the work associated
with subtrees of the elimination tree to group of processors. Due to this assignment, in order
to ensure load balance, the amount of computation needed to eliminate the columns associated
with each subtree must be roughly the same. We have implemented a variety of existing ordering
algorithms and their variants and evaluated their ability to minimize the work load imbalance
and the amount of fill-in. Among the orderings we evaluated are minimum degree [16, 20, 17],
minimum degree with constraints [36, 35], spectral nested dissection [53], and a nested dissection
scheme based on Kernighan-Lin’s edge separators [29].

The rest of this paper is organized as follows. Section 2 describes the sequential dual affine
algorithm. Section 3 reviews the Cholesky factorization process and describes the multifrontal
algorithm. Section 4 describes the various parallel algorithms involved in our parallel dual affine
algorithm, including multifrontal, matrix-matrix, and matrix-vector multiplication. Section 5 an-
alyzes the various parallel algorithms. Section 6 describes the test problems used to evaluate the
parallel dual affine algorithm. Sections 7 and 8 provide experimental evaluation of the ordering al-
gorithms and the parallel dual affine algorithm respectively. Finally, Section 9 contains concluding
remarks.

2 Dual Affine Algorithm

The LP problem to be solved is

Minimize e
subject to Az =1b (1)
x > 0.

Where, A is an m X n matrix containing m constraints and n variables, ¢ is a vector of size n, b is
a vector of size m, and z is the unknown vector of length n.
The corresponding dual problem is

Maximize bly
subject to ATy 4 2 =c¢ (2)
z > 0.

Where A, b, and ¢ are similar to the primal problem, y is the unknown vector of length m and z is
the vector of slack variables of length n.

Let Z be an n X n diagonal matrix, with elements z;; = z;,let D = Z~! and let x be a vector of
primal estimates of length n. Following [44], an iteration of the dual affine interior point algorithm
is shown in Program 2.1.

The algorithm starts with an interior point (y,z) of the dual problem Equation 2. In each
iteration, new search directions d, and d., a maximum step size o, and a new value for the interior
point (y, z) are computed. Also, a solution to the primal problem Equation 1 is computed in step 3.
The algorithm terminates when an optimal solution triple (z,y, z) is found.

The computationally demanding step of each iteration of the dual affine algorithm is computing
dy (step 1). This is done by solving the following linear system of equations

Md, = b, (3)



Program 2.1: The computation performed in each iteration of the dual affine interior point algo-
rithm.

where M = AD?A”. Note that M is symmetric positive definite, and thus d, can be obtained
by first factoring M using Cholesky factorization [16, 7] and then solving two triangular systems.
Cholesky factorization is the most expensive part of the entire computation. In our experiments,
around 90 percent of the time is spent in solving Equation 3.

Besides solving Equation 3, in each iteration of the dual affine algorithm, a matrix-matrix
multiplication is performed to obtain M, and in both steps 2 and 6, a matrix-vector multiplication
is performed. The rest of computation in each iteration is fairly small, an element-wise vector
multiplication in step 3, a vector addition in step 5, and finding the minimum of n elements in
step 4.

3 Cholesky Factorization

In most linear programming problems, the matrix A is sparse, resulting in a sparse M. During the
factorization of M, when a column is subtracted from another column, some of the zero elements
in the latter may become nonzero. These nonzero elements are said to be generated as a result of
fill-in. Different orderings of the rows and columns of M result in different amounts of fill-in. A
poor ordering of M can significantly increase the amount of fill-in, which in turn translates to a
significant increase in the factorization time. Hence, it is desirable to find a good ordering (i.e., a
permutation matrix P so that the Cholesky factor L of PM P has small fill-in). The problem of
finding the best ordering for M that minimizes the amount of fill-in is NP-complete [66], therefore
a number of heuristic algorithms for ordering have been developed. In particular, minimum degree
ordering [16, 20, 17] is found to have low fill-in.

Even though the values of matrix D change in each iteration, matrix A remains the same, and
thus, the sparsity structure of M also remains the same. Thus, the algorithm for finding a good
ordering needs to be applied only once, and the same ordering can be used in each iteration of the
dual affine algorithm.

For a given ordering of sparse matrix M, there exists an elimination tree [37], which shows the
precedence relations among columns with respect to Cholesky factorization. The elimination tree
of a matrix M contains a node for each column of M. A “parent” relation between the nodes is
defined as follows:

min{i|li7]‘ 75 0,2 > ]}
Parent]j] =
0, for j=m



Here [; ; is the element in the row 7 and column j of the Cholesky factor L. Note that Parent[j] is
the row index of the first subdiagonal nonzero in column j. Column j can be eliminated only after
the columns that are descendents of j in the elimination tree have been eliminated. Figure 1 shows
a factor matrix I and its elimination tree. In parallel implementations of Cholesky factorization,
elimination trees help to determine the columns that can be eliminated independently. For example,
in the elimination tree shown in Figure 1(c), columns 1, 2, and 3 can be eliminated concurrently,
as they are not dependent upon each other. Different orderings of M result in different elimination
trees as illustrated in Figure 1(c) and 1(d).

Figure 1: The elimination tree associated with a factor matrix L. (a) shows the matrix M (o’
denote nonzero entries), (b) shows the factor matrix L (’o’ denote fill-in), (c) shows the elimination
tree corresponding to L, and (d) shows another elimination tree that corresponds to the matrix
that has been ordered as follows: {3,5,2,6,4,9,8,7,1}.

Having determined an ordering for M, the next step is to numerically factor M. Depending
upon how the nonzero elements of the Cholesky factor are stored and accessed, there are several
algorithms to perform Cholesky factorization [20, 25]. They are row Cholesky, column Cholesky,
and submatriz Cholesky. Each method has its advantages and disadvantages depending on the
memory access pattern, vectorization, and other considerations. The multifrontal method [8, 38]
is a form of submatrix Cholesky, in which single elimination steps are performed on a sequence
of small, dense frontal matrices, which are summed to L. The main advantage of multifrontal
methods is that the frontal matrices are dense, and therefore during elimination they can efficiently
utilize vector processors. Moreover, the localization of memory references in these methods is ad-
vantageous in exploiting cache or machines with virtual memory and paging. Our parallel Cholesky
factorization algorithm is based on the multifrontal method. In the next section we briefly describe
the multifrontal method. For further details the reader should refer to the excellent tutorial by Liu



[38].

3.1 Multifrontal Method

Let M be an m X m symmetric positive definite matrix and L be its Cholesky factor. Let T be its
elimination tree and define T'[i] to represent the set of descendants of the node ¢ in the elimination
tree T'. Consider the jth column of L. Let ig,?,...,2, be the row subscripts of the nonzeros in
L, ; with ig = j (i.e., column j has r off-diagonal nonzeros).

The subtree update matriz at column j, W; for M is defined as

Lk
iy e
Wi =- o ks L - ) (4)
keT[j]-{5}
i e
Note that W; contains outer product contributions from those previously eliminated columns that
are descendants of j in the elimination tree. The jth frontal matriz F; is defined to be

My My 0 My,
My

Fy = : + W (5)
M, j

Thus, the first row/column of F} is formed from M, ; and the subtree update matrix at column j.
Having formed the frontal matrix F}, the algorithm proceeds to perform one step of elimination on
F; that gives the nonzero entries of the factor of L, ;. In particular, this elimination can be written
in matrix notation as

zlm ’ I 0 Lij lyg o i
F=| " : 6
; : ; (6)
Ly j 0 U : !

where [, ; are the nonzero elements of the Cholesky factor of column j. The matrix U; is called
update matriz for column j and is formed as part of the elimination step.
In practice, W; is never computed using Equation 4, but is constructed from the update matrices

as follows. Let ¢q,...,c; be the children of j in the elimination tree, then
My Mygay w00 Mg,
Mgy g
r=|" 0 b U b o UL (7)
Mg, g

where & is called the extend-add operator, and is a generalized matrix addition. The extend-add
operation is illustrated in the following example. Consider the following two update matrices of M:

p q T

R:(ab),S: s t
c d

Yy oz ow



where {2,5} is the index set of R (i.e., the first row/column of R corresponds to the second
row/column of M, and the second row/column of R corresponds to the fifth row/column of M),
and {1,3,5} is the index set of S. Then

0000 p 0 q r p 0 ¢ r
0 a 0 0 0 00 O 0 a 0 b
R%>S_0000+80t$_80t x
0 ¢ 0 d y 0 2z w y ¢ z d+w

Note that the submatrix U, < --- 4 U., may have fewer rows/columns than W;, but if it is
properly extended by the index set of F}, it becomes the subtree update matrix W.

The process of forming F; from the nonzero structure elements of column j of M and the
updates matrices is called frontal matriz assembly operation. Thus, in the multifrontal method,
the elimination of each column of M involves the assembly of a frontal matrix and one step of
elimination.

4 Parallel Dual Affine Algorithm

In developing a scalable parallel formulation for the dual affine algorithm, a number of issues related
to processor’s topology, data distribution, and implementation of efficient algorithms for the various
steps need to be addressed.

4.1 Cholesky Factorization

As discussed in Section 3, the most computationally demanding step of the dual affine algorithm is
the solution of Equation 3 using Cholesky factorization. Therefore, developing an efficient parallel
formulation for the Cholesky factorization is essential to the success of the parallel dual affine
algorithm.

The performance of any parallel sparse Cholesky factorization algorithm is highly dependent
upon the ordering algorithm. Due to sparsity, many columns of the matrix can be factored con-
currently; thus, a good ordering must maximize the concurrency in the factorization processes, in
addition to minimizing the fill-in [32, 31, 24, 51, 20, 30]. The computation associated with distinct
subtrees of a node in the elimination tree can be performed in parallel; thus, the shape of the
elimination tree determines the degree of concurrency available in the factorization. The number
of tasks that can be performed in parallel increases as the elimination tree becomes more balanced.

The minimum degree (MD) ordering has been a good choice in serial implementations of
Cholesky factorization. This was because the fill-in incurred by minimum degree algorithm is
usually less than that incurred by the other orderings. However, minimum degree produces or-
derings that are highly unbalanced, which limits the speedup that can be obtained from parallel
Cholesky factorization algorithms such as the parallel multifrontal algorithm we developed.

Several ordering algorithms based on graph partitioning have been developed including mini-
mum degree with constraints [36], spectral nested dissection [53], and Kernighan-Lee [29]. These
algorithms operate in the undirected graph G' = (V, F) constructed from M as described in Ap-
pendix A. The basic step in all these algorithms is the partitioning of G by removing a set of
nodes 5. The set of removed nodes are numbered last in the ordering (i.e., after the other nodes
have been numbered). Furthermore, the nodes in each remaining component are then ordered by
recursively applying the same graph partitioning algorithm. In contrast to the minimum degree



algorithm, the graph partitioning algorithms take a global view of the matrix; thus, they tend to
yield more balanced elimination trees. However, the size of the set S (called the separator), affects
the amount of fill-in. Low fill-in is achieved if §' is small. In most graphs, a separator of order /m
is considered to be good. Also, the height of the elimination tree is determined by the relative size
of the subgraphs in which the original graph is partitioned. If the subgraphs have roughly the same
size, then the height of the elimination tree is minimized [24, 34]. We implemented these three
ordering algorithms and evaluated their suitability for our parallel formulation of the multifrontal
algorithm for the sparse matrices arising in LP problems (Section 7).

For the numerical Cholesky factorization step we use a highly parallel and scalable formulation of
the multifrontal algorithm that we developed recently [19]. A brief description of parallel algorithm
is as follows:

Consider a p-processors hypercube-connected computer. Before the beginning of the algorithm,
the elimination tree is converted to a binary tree using an algorithm described in [27]. This is a
preprocessing step applied before the execution of the parallel dual affine algorithm.

In order to factor the sparse matrix in parallel, portions of the elimination tree are assigned to
processors using the standard subtree-to-subcube assignment strategy. With subtree-to-subcube
assignment, all p processors in the system cooperate to factor the frontal matrix associated with
the root node of the elimination tree. The two subtrees of the root are assigned to subcubes of p/2
processors each. Each subtree is further partitioned recursively using the same strategy. Thus, the
p subtrees at a depth of log p levels are each assigned to individual processors. Each processor can
process this part of the tree completely independently without any communication overhead. At
the end of the local computation, each processor stores the columns of L assigned to it, and the
update matrix corresponding to the root of its subtree. Next, pairs of processors (P,; and Ps;4q for
0 < j < p/2) perform a parallel extend-add on their update matrices, say @ and R, respectively.
At the end of this operation, P; and Pzj41 roughly equally share ¢ < R. More precisely, all
even columns of 4 R go to P; and all odd columns of @ 4 R go to Ppj1;. At the next
level, subcubes of two processors each perform a parallel extend-add. Fach subcube initially has
one update matrix. The matrix resulting from the extend-add on these two update matrices is
now split among four processors. To effect this split, all even rows are moved to the subcube with
the lower processor labels and all odd rows are moved to the subcube with the higher processor
labels. During this process, each processor needs to communicate only once with its counterpart
in the other subcube. After this (second) parallel extend-add each of the processors has a block
of the update matrix roughly one-fourth the size of the matrix. Note that both the rows and the
columns of the update matrix are distributed among the processors in a cyclic fashion which helps
in maintaining load balance. Similarly, in subsequent parallel extend-add operations, the update
matrices are alternatively split along the columns and rows.

Between two successive extend-add operations, the parallel multifrontal algorithm may perform
several steps of dense Cholesky elimination. The communication taking place in this phase is the
standard communication in grid-based dense Cholesky factorization.

4.2 Matrix-Matrix and Matrix-Vector Multiplication

In the dual affine algorithm, M is computed as the product of AD?AT during the first step of
the algorithm shown in Program 2.1. The parallel Cholesky factorization algorithm described
in Section 4.1 requires that the matrix M be distributed among the processors according to the
subtree-to-subcube assignment of the elimination tree. In this scheme, groups of columns cor-
responding to the lower part of the tree are assigned to the same processor, and the columns



corresponding to the upper part of the elimination tree are shared among the subcubes of proces-
sors. This mapping is very different than the mapping used by many standard matrix-matrix and
matrix-vector multiplication algorithms. It is well known [30, 3] that parallel matrix-matrix and
matrix-vector multiplication algorithms are more efficient when a two-dimensional distribution of
the matrix is used. Therefore, we have implemented both the matrix-matrix and the matrix-vector
multiplication using a two-dimensional distribution of M (and consequently A). This distribution
is described in Section 4.2.1. Section 4.4 describes the data redistribution phase that is used to
redistribute M in the form required by the Cholesky factorization.

4.2.1 Data Distribution

We consider the processors of the parallel computer as forming a logical two-dimensional array of
size \/p X \/p embedded in a hypercube-connected computer.

Matrix M is partitioned among the processors in a two-dimensional fashion. Each processor
stores a two-dimensional subblock of M. Since M is sparse, the selection of subblocks to be assigned
to each processor must be done so that the work is balanced among the processors. Specifically, M
should be distributed in such a way that the number of nonzero elements is roughly the same at each
processor. This is crucial because the amount of computation performed during the matrix-matrix
multiplication in step 1 depends on the nonzero elements of M assigned to each processor.

A widely used distribution strategy that tends to evenly distribute sparse matrices is the cyclic
mapping (CM) [30]. In this mapping, element m; ; is assigned to processor (¢ mod ,/p, j mod ,/p).
We implemented this mapping. But as p increased, the percentage difference ((max—min)/min)
in the amount of nonzero elements of M assigned to each processor increased significantly. Even
on p = 64, the difference was greater than 90 percent for most problems. The reason for the load
imbalance is that M has some dense subblocks along its main diagonal. The size of these subblocks
varies, but they remain small. The cyclic mapping assigns elements from these subblocks to the
same processors (the ones on the diagonal of the |/p x |/p processor grid) and thus creates load
imbalances. As a result, in cyclic mapping, the processors along the main diagonal get more work
than the processors in the second diagonal. The processors in the second diagonal get more work
than those in the third, and so on.

In order to balance the distribution of nonzero elements of M, we developed the following
mapping. Element my; ; is mapped to processor ( f[i], g[j]) where the 1 X m mapping arrays f and g¢
are constructed as follows. Initially, f[i] = ¢ mod \/p (as in the cyclic mapping). Then we randomly
permute the elements of f. A similar procedure is used for g and a different random permutation is
obtained. This new mapping is called random cyclic mapping (RCM). Since different permutation
arrays are used for rows and columns of M, this mapping does not map the diagonal of M to
the processors on the diagonal of the processor grid. Like cyclic mapping, this mapping assigns
elements to each processor from an equal number of rows and columns of M. This is important
because it increases neither the communication overhead nor the memory requirements during
matrix-matrix and matrix-vector multiplication. Table 1 shows the percentage difference on the
number of nonzero elements of M assigned to each processor for both the cyclic mapping and the
random cyclic mapping. From this table we can see that random cyclic mapping distributes the
nonzero elements of M much better than cyclic mapping. Note that on small matrices (e.g., the
first two matrices in Table 1) and on large number of processors, both mappings lead to significant
load imbalances. But in each case, RCM does considerably better than CM.

The remaining data are distributed as follows. Vectors y, 2, d., dy, ¢, b, and x are stored
in the processors along the first column of the logical two dimensional processor grid. Elements



Number of Processors
Name m Mapping 4 16 64 256 1024
80bau3db 2262 CM 55% 113% 295% 1088%  8600%
RCM 9% 19% 53% 188%  1200%
bnl12 2324 CM 41% 8%  212% 689%  2967%
RCM 7% 29% 47% 174% 800%
greenbea | 2392 CM 15% 40% 93% 234% 631%
RCM 3% 22% 43% 117% 492%
cre-d 8927 CM 12% 27% 60% 142% 287%
RCM 3% 14% 46% 96% 195%

Table 1: Percentage difference in the number of nonzero elements of M assigned to each processor
for the cyclic mapping (CM) and the random cyclic mapping (RCM). These differences where
computing as the ratio (max—min)/min.

i, b;, and (d,); are stored in processor (g[i],0), while elements z;, ¢;, @;, and (d.); are stored in
processor (¢ mod /p,0). The reason for this data mapping will become apparent when we describe
the implementation of the matrix-vector multiplication algorithm in Section 4.2.3.

4.2.2 Matrix-Matrix Multiplication

In each iteration of the dual affine algorithm, the matrix M = AD2AT needs to be computed.
Recall, that D is a diagonal matrix; thus,

n—1
2 T
mm‘ = Z ai7kdkak7]‘.
k=0

In our formulation, matrix M is partitioned among the processors using the random-cyclic mapping
described in Section 4.2.1. In order for element m; ; to be computed, the processor responsible for
it needs to receive elements of rows 7 of A and column j of AT (which is the same as the row j of A)
and also the entire vector z (recall D = Z~1). Note that A does not change from one iteration to
another. So, the time to perform the matrix multiplication will be reduced if each processor stores
the rows of A it needs. In our implementation, each processor stores the rows of A that it needs
to compute all the m; ; elements of M assigned to it. In random cyclic mapping , each processor
contains m; ; elements for m/,/p rows and m/,/p columns. Hence, each processor has to store at
most 2m/,/p rows of A. Even though this distribution of A requires more memory, the savings in
communication time is significant.

In each iteration z changes, and needs to be distributed from the processors of the first column
(where it resides) to all the other processors. This can be done in two steps as follows. Each
processor in the first column broadcasts its local part of z to all the processors along its row. Now,
all the processors along each column contain different parts of z and they perform an all-to-all
broadcast of their local part of z. At the end of this step, each processors has the entire z vector.

10



4.2.3 Matrix-Vector Multiplication

In steps 2 and 6, (Program 2.1), the dual affine algorithm performs a matrix-vector multiplication
of the form u = ATv, where v is an m element vector (either d, or y). We use a two-dimensional
partitioning of AT to perform this operation. Each processor has a block of AT and it performs a
subset of the dot product computations for a group of elements of u [30].

As discussed in Section 4.2.2, each processor stores the rows of A that are required during the
multiplication. Specifically, for each element m; ; assigned to it, each processor stores row 7 and
row j of A. The rows of A due to j are essentially the columns of AT'; thus, each processor already
stores parts of AT, In particular, processor P; ; stores all columns & of AT such that g[k] = j. So
the columns of AT are already partitioned among the processors. However, the processors along
each column of the processor grid have the same columns of A”. Now, the processors along each
column of the processor grid select elements from their columns of AT in a cyclic fashion. Note,
that the distribution of A7 does not require any additional space. The matrix-vector product is
performed as follows.

From Section 4.2.1, we know that vector v (i.e., either d, or y), is initially distributed among
the processors of the first column, so that element v; goes to processor Pyp;o. Processor P; o sends
its part of vector v of size m/,/p to processor P;;. Next, processor P;; sends the just received part
of vector » to all the processors along its column by performing an one-to-all broadcast along the
columns. Consider processor P; ;. This processor stores all columns & of AT such that g[k] = j.
Also, P; ; will receive parts of vector v from P; ;. Now because of the way v is distributed along the
first column of processors, the part of v received by P;; from P;g consists of all elements v; such
that g[l]] = j. Therefore, each processor has the appropriate parts of vector v to perform n/,/p
partial dot-products. At the end of this step, the partial dot-products are added to processors along
the first column by a single-node accumulation. At this point, processors along the first column
have n/,/p elements of the result vector u distributed in a cyclic fashion.

4.3 The Rest of the Computation

The computation performed in steps 3 through 5 in Program 2.1 is done by the processors at the
first column of the processor grid. Z is a diagonal matrix, and its diagonal consists of vector z.
Since, vectors z and d, are already aligned (Section 4.2.1), step 3 involves no communication. In
step 4, the minimum of —z;/(d,); needs to be computed for (d,); < 0. This is done in two steps.
First each processor finds the minimum among its local —z;/(d.); values, and then the global
minimum value « is found by a global-min reduction operation involving the processors of the first
column. This involves a single-node accumulation and a single-node broadcast to distribute a.
Finally, in step 5 a vector addition is performed. Since both vectors y and d,, are aligned, this step
does not involve any communication.

4.4 Redistribution of M

Before, the parallel multifrontal algorithm for Cholesky factorization of M can be invoked, matrix
M needs to be redistributed according to the column assignment imposed by the elimination tree.
This can be done efficiently, provided that all processors know where each column of M goes. Since
each processor knows which columns of M it stores during the factorization, information about the
remaining columns can be obtained by performing an all-to-all broadcast in the beginning of the
algorithm. Since this information does not change in each iteration, the communication overhead
of this step is incurred only once, and is relatively small.

11



Now the redistribution of M can be done in log p steps as follows. In step ¢ for¢ = 0,...,logp—1,
each processor partitions whatever elements of M it stores into two buckets. One bucket contains
elements for columns that need to go to processors whose 1D differs in the ¢th bit and the other
bucket to processors whose ID has the same ¢th bit. Then each processor keeps the second bucket,
and sends the first bucket to the processor whose ID differs in the 7th bit. At the end of each step,
each processor has two buckets, one local and one newly received. It merges the buckets, and goes
to the next step. At the end of the log p steps, each processor has the columns of M assigned to it.

5 Performance Analysis

Precise analysis of the performance of parallel algorithms for the sparse dual affine algorithm is

difficult because both A and M are unstructured sparse matrices. However, under some relatively

mild assumptions, important information can be derived about the performance of our formulation.
For the rest of this analysis, we use the following definitions.

e pis the number of processors available to solve the problem.

e m is the number of constraints in the LP problem.

e 7 is the number of variables in the LP problem.

o ¢4 is the average number of nonzero elements in each column of A.
e 7 is the average number of nonzero elements in each row of M.

e 1. is the time for a unit of computation.

o 1 is the message startup time. This is the time required to setup a message transfer operation.
The startup time is independent of the size of the transmitted message.

e 1, is the per word transfer time. This is the time required to send 4 bytes between two
adjacent processors. If m words is sent then the transfer time is mt,,.

Furthermore, we will assume that the parallel computer has a hypercube interconnection net-
work and cut-through routing.

Cholesky Factorization

Analyzing, the communication overhead of the algorithm for non-planar graphs is particularly hard.
The performance of our parallel Cholesky factorization algorithm has been analyzed in [19]. It is
shown there that, for matrices whose corresponding graphs are planar, the time spent by each
processor for communication is ©(m/,/p). This overhead is smaller than the overheads of other
schemes for parallel Cholesky factorization [39, 40, 1, 54, 55, 62, 15, 14, 23, 20, 59, 65, 47, 18, 57].
The experimental results in [19] suggest that our scheme is superior to other existing schemes even
for non-planar graphs. But the communication overhead for non-planar graphs should be somewhat
higher than ©(m/,/p). Hence ©(m/,/p) can be taken as a lower bound.

Recall from Section 4.4 that our dual affine algorithm requires a redistribution of the rows
of M prior to factorization. This redistribution is done in logp steps, and in each step half the
number of elements of M are sent to a neighbor processor. Therefore, this redistribution takes
O((mrar/p)logp) time in each iteration. From our experiments, we observed that the redistribution
cost is quite small, usually much less than 5 percent of the time spent in factorization by each
processor.
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Matrix-Matrix Multiplication

In order to compute the parallel run time of our matrix-matrix multiplication algorithm described
in Section 4.2.2, we need to compute the time each processor spends in performing multiplications.

The total number of multiplications required to compute AA” can be computed from the outer-
product formulation of AAT [7], where

n—1
AAT = 3" A, AL,
k=0

In the outer-product formulation, the kth column of A is multiplied with the kth row of AT, Since
each column has ¢4 nonzero elements, the kth row of AT is multiplied by a nonzero element cy4
times. Since each row of AT has ¢4 nonzeros, each outer product requires ¢ multiplications.
Therefore, a total of n(c4)? multiplications are involved in computing AAT, and it takes ©(nc?)
time to compute M on a sequential computer. If we assume that the nonzero elements of M are
evenly distributed among the p processors, then each processor spends O(nc? /p) time in computing
M.

The only communication step involved in the matrix-matrix multiplication algorithm is the
broadcast of the vector z. As described in Section 4.2.2 this is done in two steps. The first step
takes ©((n/,/p)logp) time, while the second step takes ©(n) time [30]. Therefore, the total run
time of a matrix-matrix multiplication is

) (%) +0 (%logp) +0(n). (8)

Matrix-Vector Multiplication

In the matrix-vector algorithm described in Section 4.2.3, each processor is responsible for com-
puting partial dot-products for n/,/p elements. Since each processor has nc,/p nonzero elements
of A on the average, the computation performed by each processor is O(nc4/p).

Assuming that m is sufficiently large, the point-to-point communication step required by the
algorithm takes at most ©(m/,/p) time. The single-node broadcast takes ©((m/,/p)logp) time.
Finally, the single-node accumulation takes ©((n/,/p)logp) time. Therefore, the total execution
time of a matrix-vector multiplication is

ne4 m n
6 Test Problems

In all the experiments reported in this paper, we used real linear programming models that are
available through NETLIB [13]. Table 2 shows the characteristics of our experimental models. The
models shown is this table were pre-processed to remove empty constraints [41].

7 Experimental Evaluation of Orderings

We experimentally evaluated the following ordering algorithms: minimum degree (MD), the min-
imum degree ordering with constraints [36, 35], which we call minimum degree based nested dis-
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Name Constraints m  Variables n = Nonzeros in A Nonzeros in AAT
woodw 1098 8418 37487 20421
cycle 1093 3371 21234 27714
ken-11 14695 21349 70354 33880
d2q06¢ 2171 5831 33081 26991
pilot 1441 4860 44375 61538
gosh 3790 13451 101876 10117
pilot87 2030 6465 76616 122550
pds-06 9882 28655 82269 39061
cre-d 8927 69980 312626 181670
maros-r7 3136 9408 152690 330472

Table 2: Statistics for the NETLIB problems used to evaluate the performance of the various
ordering algorithms and the parallel dual affine algorithm.

Name MD MND KLND SND

woodw 47683 53712 53216 58644

cycle 79083 109138 77365 91060

ken-11 133650 152074 222168 212109
d2q06¢ 155351 172086 120886 123229
pilot 192871 228245 242596 236911
gosh 267775 310040 341322 338217
pilot87 455200 541250 558701 572659
pds-06 573263 688704 988000 1493175
cre-d 856898 856330 905755 1131841
maros-r7 1252577 1649706 1370906 1357307

Table 3: The number of nonzeros in the Cholesky factor for four ordering algorithms.

section (MND), the spectral nested dissection [53] (SND), and a nested dissection scheme based on
Kernighan-Lin’s edge separators [29] (KLND).

Table 3 shows the number of nonzero elements in the Cholesky factor L for the test problems of
Table 2. The amount of fill-in produced by MD is in most cases smaller than that produced by the
other orderings. However, for many problems, the amount of fill-in produced by MND, KLND, and
SND is only moderately larger than that of MD. Table 4 shows the number of operations performed
during the Cholesky factorization of M for each of the four orderings. For most of the problems, the
orderings that have the smaller fill-in also require the smaller number of operations. One notable
exception is d2q06¢ for which SND requires the smallest number of operations even though KLND
has the smallest fill-in for this problem. The reason is that the number of operations is the sum
of the squares of the nonzero elements in each column of the Cholesky factor L. KLND has some
columns that are denser than SND; thus, the square of those adds up to a higher operation count.
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In the context of our parallel multifrontal algorithm, the another important way of evaluating
orderings is to consider the elimination trees they generate. The elimination trees generated by MD
are usually very deep and highly unbalanced. On the other hand, the elimination trees generated
by KLND and SND have small height and they are quite balanced. However, the amount of work
associated with each node of the elimination tree can vary significantly. Thus, any subtree-to-
subcube work assignment algorithm can potentially distribute the work quite unevenly, even if
each subtree has the same number of nodes. Thus, for any given ordering, there will be some
inherent load imbalance associated with it, and this will put an upper bound on the achievable
efficiency, i.e., even if there is no communication overhead, efficiency will not be one. Therefore,
a desirable ordering is the one in which the amount of work associated with the subtrees of the
elimination tree at the same level is roughly the same.

To evaluate the load balancing properties of the ordering algorithms, we wrote a sequential
program that simulates our parallel multifrontal algorithm, and reports the maximum achievable
efficiency. This was done because we wanted to study the characteristics of the orderings in the
absence of communication overheads incurred by the actual parallel algorithm. Our simulator takes
as input the same binary elimination tree as the parallel algorithm and logically distributes the
work in the same fashion. The time required to perform the Cholesky factorization 7}, is equal
to the time required to eliminate the root node of the elimination tree plus the maximum of the
times required to eliminate all the nodes in each of its two subtrees. The time to eliminate a
subtree is computed in the same fashion. However, when the whole subtree is locally assigned to
a single processor, then the time to eliminate the subtree is equal to the sum of the time required
to eliminate all the nodes in this subtree. Having computed the time to perform the factorization,
the maximum achievable efficiency is computed as the sum of the time required to eliminate all
the columns divided by pT),. Because each nCUBE 2 processor has a total of 16MB of memory, we
performed the simulation on a Sun Sparc-2 workstation.

Table 5 shows these efficiencies for the test problems of Table 2. For 16 processors, for most
of the problems, MD produced orderings whose efficiency is comparable to the efficiency achieved

Name MD MND KLND SND
woodw 3,461,499 4,301,889 3,657,900 5,170,396
cycle 5,713,494 9,015,082 4,398,097 6,468,351
ken-11 4,074,171 4,651,280 10,620,980 8,962,257
d2q06¢ 29,696,436 34,553,561 14,911,941 12,866,482
pilot 42,380,243 57,822,291 67,974,968 58,684,694
gosh 51,583,850 63,173,750 76,440,590 64,244,883
pilot87 195,776,414 244,039,517 214,215,718 263,492,967
pds-06 208,223,868 302,185,761 495,597,665  1,192,302,692
cre-d 297,383,390 288,993,512 312,874,063 498,409,786
maros-r7 | 557,860,867  1,068,417,963 691,770,450 675,704,811

Table 4: The number of operations performed during the Cholesky factorization for four ordering
algorithms.
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Number of Processors Number of Processors
Name Ordering 16 64 256 Name Ordering 16 64 256
woodw  MD 26.62 20.53 24.41 gosh MD 31.93  23.23 12.26
MND 77.57 57.61 55.53 MND 81.67 51.37 43.11
KLND 76.64 57.35  49.26 KLND 85.05 56.57  50.99
SND 84.14 73.92 67.21 SND 59.20 27.70  29.02
cycle MD 58.86 49.58  44.07 pilot87 MD 91.17 81.49 71.02
MND 55.55  50.79  41.70 MND 82.87 73.72 65.59
KLND 64.89 58.97 48.45 KLND 80.89 79.69 75.80
SND 76.59 T4.77T  65.33 SND 71.51  60.27 58.05
ken-11 _MD 57.92  58.49  45.45 pds-06 MD 65.04 47.93  23.92
MND 45.63 43.13  39.00 MND 49.78  36.32  49.07
KLND 69.21 66.33 55.53 KLND 76.05 66.09 48.42
SND 58.26 73.61 55.95 SND 40.97 70.96  60.08
d2q06c  MD 75.28  56.67  49.60 cre-d MD 58.92  33.37 27.01
MND 90.90 74.16 80.21 MND 73.62 44.73  23.68
KLND 79.50 76.93 47.92 KLND 82.86 65.39  48.51
SND 68.60 62.73 53.76 SND 72.91 55.90 43.51
pilot MD 66.55 55.74 50.42 maros-r7  MD 83.77 74.59 64.94
MND 69.54 62.96 63.27 MND 76.13  75.20 75.24
KLND 94.11 89.64 89.24 KLND 83.74 T77.06 T7.42
SND 88.06 71.92 60.88 SND 77.23  78.50 76.10

Table 5: Maximum achievable efficiency of the parallel multifrontal algorithm due to load imbalance.
The efficiencies were computed by simulation on a Sun Sparc-2 workstation.

by the other ordering algorithms. However, as the number of processors increases, the maximum
achievable efficiency of MD decreases dramatically. For example, for gosh an efficiency of only 12.26
can be obtained when 256 processors are used. However, the efficiency achieved by the other three
orderings is usually higher and does not decrease considerably as p increases.

It should be clear from the results shown in Tables 3 and 5, that MND, KLND, and SND
improve the maximum achievable efficiency at the expense of a slight to moderate increase in the
amount of fill-in. In many cases, the efliciency improvement outweighs the penalty due to increased
fill-in and the additional computation associated with it. As the experimental results presented in
Section & indicate, in most cases the increased load balance reduces the overall execution time as
p increases; thus, increasing the speedup obtained by using a parallel computer.

8 Experimental Results of Parallel Dual Affine Algorithm

We implemented the dual affine algorithm on the nCUBE 2 parallel computer, a hypercube-
connected message-passing system. Each processor of nCUBE 2, is rated at 2MFlop (double pre-
cision). The message startup time ¢, (i.e., the time for sending zero bytes) is roughly 180us . The
channel bandwidth is 2Mbytes/sec; hence, t,, (the time it takes to send a word of four bytes to a
neighbor processor) is 2.0us . Note that the time to send a message of size k words between nearest
neighbors is t; 4+ ki, .
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Table 6 shows the run time of our parallel dual affine algorithm on 1, 16, 64, and 256 processors
for the four orderings discussed in Appendix A. The run times shown are for a single iteration of
the algorithm. Since the computation performed at each iteration is the same, the reported run
times are accurate indicators of the performance of the overall parallel interior point algorithm.

Number of Processors Number of Processors
Name Ordering 1 16 64 256 Name Ordering 1 16 64 256
woodw  MD 20.91 3.34 1.58 0.83 gosh MD 124.52  34.68 13.08 7.80
MND 22.46 2.33 1.16 0.71 MND 139.89 12.86 6.51 3.09
KLND 21.33  2.10 0.98 0.61 KLND 153.16 13.76 6.26 2.70
SND 24.00 2.61 1.32 0.82 SND 137.99 24.33 15.68 5.28
cycle MD 13.71  2.30 1.25 0.82 pilot87 MD 360.81 28.52 11.68 5.76
MND 23.57 3.36 1.69 1.02 MND 442.71 33.50 13.08 5.87
KLND 12.21 1.29 0.68 0.43 KLND 380.28 29.61 10.90 5.24
SND 15.51 2.55 1.25 0.80 SND 444.76 34.87 13.48 6.24
ken-11 MD 22.10 2.20 0.97 0.47 pds-06 MD 324.03 37.13 18.66 12.59
MND 23.52 2.05 0.80 0.45 MND 350.23 48.92 25.24 7.05
KLND 31.35 2.71 0.96 0.59 KLND 722.31 58.92 22.61 10.35
SND 27.32 2,50 0.92 0.48 SND 2017.32 190.29 35.24 14.66
d2q06c  MD 50.82 5.99 3.35 1.64 cre-d MD 546.21 57.95 27.20 11.36
MND 57.37 5.75 2.70 1.38 MND 587.88 50.92 21.22 9.30
KLND 28.84 3.32 1.59 1.04 KLND 560.82 45.88 18.08 7.60
SND 25.94 2.89 1.62 0.97 SND 741.83 68.82 21.41 10.03
pilot MD 91.78 9.90 4.18 2.24 maros-r7  MD 890.26 102.78 52.87 20.04
MND 113.37 12.83 5.23 2.48 MND 1437.82 99.56 28.80 11.76
KLND 129.59 10.15 4.50 2.02 KLND 989.32 T7.67 22.85 8.98
SND 127.59 10.13 4.25 2.17 SND 980.73 67.30 20.00 8.23

Table 6: Execution time in seconds for one iteration of the parallel dual affine interior point
algorithm. The run times were obtained on an nCUBE2 parallel computer.

Table 7 shows the actual speedup achieved by the parallel system. These speedups were com-
puted by dividing the best sequential run time among the four orderings, with the run time of the
particular ordering. That is, the speedup for orderings ¢ is computed as

Minimum of the serial run time of all orderings
S = (10)

Parallel run time for ordering ¢

For instance, the speedup of 9.0 for woodw on 16 processors using MND was obtained by dividing
20.91 (the best sequential run time for this problem) with 2.33 (the run time for MND when 16
processors are used). An alternative method is to compute speedup for an ordering as the ratio of
the serial run time and the parallel run time of the same ordering. The speedups computed via this
method will be higher than those computed using Equation 10. However, only Equation 10 gives
an accurate measure of the performance improvement due to parallelization.

The test problems shown in Table 6 can be classified into two groups according to their size.
The problems in the first group are fairly small. For these problems, the number of nonzeros in
the Cholesky factor ranges from 47000 to 135000. Furthermore, the serial execution time for all
these problems is less than one minute. For problems of these size, even sequential interior point
algorithms may not be the best way to solve them, and the simplex method may be faster [41].
Nevertheless, speedup in the range of 16-27 is obtained for all of them on 64 processors.
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Number of Processors Number of Processors
Name Ordering 16 64 256 Name Ordering 16 64 256
woodw  MD 6.3 13.2 25.2 gosh MD 3.6 9.5 16.0
20.91 MND 9.0 18.0 29.5 124.52 MND 9.7 19.1 40.3
KLND 10.0 21.3 34.3 KLND 9.1 19.9 46.1
SND 8.0 15.8 25.5 SND 5.1 7.9 23.6
cycle MD 5.3 9.8 14.9 pilot87 MD 12.7  30.9 62.6
12.21 MND 3.6 7.2 12.0 360.81 MND 10.8 27.6 61.5
KLND 9.5 18.0 28.4 KLND 12.2  33.1 68.9
SND 4.8 9.8 15.3 SND 10.3 26.8 57.8
ken-11 MD 11.2  27.6 47.0 pds-06 MD 8.7 17.4 25.7
22.10 MND 10.8 27.6 49.1 324.03 MND 6.6 12.8 46.0
KLND 8.2 23.0 37.5 KLND 5.5 14.3 31.3
SND 8.9 24.0 46.1 SND 1.7 9.2 22.1
d2q06c  MD 4.3 7.7 15.8 cre-d MD 9.4 20.1 48.1
25.24 MND 4.5 9.6 18.8 546.21 MND 10.7 257 58.7
KLND 7.8 16.3 24.9 KLND 11.9  30.2 71.8
SND 9.0 16.0 26.7 SND 7.9 25.5 54.4
pilot MD 9.3  22.0 41.0 maros-r7  MD 8.7 17.2 44.4
91.78 MND 7.2 17.5 37.0 890.26 MND 8.9 30.9 75.7
KLND 9.0 204 45.3 KLND 11.5 39.0 99.1
SND 9.1 21.6 42.3 SND 13.2 445 108.2

Table 7: Actual speedup obtained by our parallel interior point algorithm for the four orderings on
the different LP problems. The number under the name of each model is the sequential run time
using the best ordering algorithm.

The problems in the second group have matrices in which the number of nonzeros in the Cholesky
factor ranges from 190000 to 1250000. For these problems, speedups are in the range of 45-108 on
256 processors. In particular for maros-r7, a speedup of 108 was obtained on 256 processors. To
our knowledge, no previous work exists in parallel interior point algorithms, where speedup that
high was obtained for general LP problems. However, the size of even these problems is relatively
small compared to the problems for which sequential interior point algorithms excel. Significantly
larger problems (more than 5-100 million nonzeros in the Cholesky factor) are solved using interior
point methods [41]. For these bigger problems, we expect to obtain significantly better speedup.

From our experiments we have seen that there are two sources of overhead in our parallel
Cholesky factorization. The first overhead is due to load imbalance that can limit the maximum
achievable efficiency. As discussed in Section 7, MND, KLND, and SND produce orderings that
are significantly more balanced than MD, but normally have a higher amount of fill-in. The overall
performance of an ordering is determined by the interplay between load imbalance and fill-in, as
illustrated by the following example. Table 8 combines information from Tables 4, 5, and 6 for
the model gosh. From this table we see that MD requires the smallest amount of computation
to factor M, which is reflected in its smallest serial execution time. For this problem, KLND has
the highest operation count, and thus the highest sequential run time. Now consider the case for
p = 16. KLND has the maximum achievable efficiency due to load imbalance (85%). However, the
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Maximum Achievable Efficiency

Due to Load Imbalance Run Time

Number of Processors Number of Processors
Ordering  Operation Count 16 64 256 1 16 64 256
MD 51,583,850 32%  23% 12% 124.52  34.68 13.08 7.80
MND 63,173,750 82% 51% 43% 139.89 12.86 6.51 3.09
KLND 76,440,590 85% 57% 51% 153.16  13.76 6.26 2.70
SND 64,244,883 59% 28% 29% 137.99 24.33 15.68 5.28

Table 8: Consolidated information about gosh.

run time of MND is the smallest (12.86 seconds). Despite higher fill-in, MND performs better than
MD because its upper bound on efficiency due to load imbalance is 82% compared to only 32%
for MD. KLND performs worse (higher run time) than MND, because KLND performs 20% more
computation whereas it is only slightly more balanced than MND. The moderately higher load
balance for KLND is not sufficient to offset the extra computation. For p = 64, KLND performs
better than MND. In this case, the extra efliciency gained by using 64 processors was significant to
offset the increase in the operation count. This becomes more evident for p = 256, in which case,
KLND performs significantly better than MND. From the above discussion we see that: (a) better
load balance can be achieved at the expense of increase in the computation required to factor M,
and (b) as p increases, this increase in the sequential run time is compensated by the increased
concurrency, and the factorization takes less time.

The second source of overhead is due to communication. In particular, our parallel multifrontal
algorithm incurs two types of communication overhead. The first is due to the extend-add oper-
ation and the second is due to the elimination steps performed on the frontal matrix. From our
experiments we found that due to high message startup time on nCUBE 2, the communication
overhead due to the elimination steps is significantly higher and reduces overall efficiency. The
performance of dense Cholesky for each elimination step of a frontal matrix of size £ X k& depends
on the relative values of t,, t,,, and t.. In each step of parallel elimination, a processor performs
(k?/p)t. computation, and sends data of size k/,/p at the communication cost of t; + (k/\/p)tw.
Because, the size of these dense frontal matrices is small (k is less than 200 in the problems used in
our experiments), on nCUBE 2, ¢; is significant higher than the data transmission time (k/,/p)t,
and the time spent in computation (k%/p)t.. If ¢ is small (as in transputers, Cray T3D), then the
communication overhead will be reduced significantly.

From the results in Table 7 we note that KLND performs significantly better than the other
orderings for most problems. Even for problems when KLND is not the best ordering, it is not
much worse than the best scheme for these problems. However, determination of the best ordering
may be domain dependent, and requires a more extensive study.

9 Conclusion

In this paper we described a parallel formulation for the dual affine interior point algorithm. Since
the type of operations performed by the primal-dual algorithm are similar to the dual affine al-

19



gorithm, we expect the parallel primal-dual algorithm to exhibit performance similar to the dual
affine algorithm. The preliminary experimental results presented here show that our algorithm
achieves substantial speedups on moderate-size problems. Speedup would have been higher if the
message startup time (¢;) was smaller. On architectures with smaller ¢,, such as CM-5 (with active
messages) and Cray T3D we expect the speedup to be significantly better. To evaluate the quality
of our serial implementation we compared the performance obtained by our interior point code to
that of LOQO [63], running on a Sun Sparc-2 workstation. LOQO is a publicly available solver
for linear programming problems based on interior point methods. Our 256-processor nCUBE 2
implementation is 8 times faster for woodw, 21 times faster for pilot87, and 44 times faster for
maros-r7.

Even though, the parallel formulation has been developed on a hypercube-connected computer,
the algorithm can be easily ported to architectures like CM-5 (whose fat-tree network provides the
bisection width equivalent to that of a hypercube) and Cray-T3D (which has substantial bisection
width). We are currently working on developing ports to these architectures. We expect to obtain
much higher overall performance on these architectures as they have higher channel bisection width
and low message startup times (5us on CM-5 with active messages, and 2us on Cray-T3D) and
much faster CPUs (100MFlop peak on CM-5 and 150MFlop peak on T3D).

From the results presented in this paper, it is also clear that ordering plays a significant role
in determining the overall performance of the dual affine algorithm. The choice of best ordering
may be problem dependent and the best ordering for problems arising from finite element /finite
difference computation may be different than those for LP problems. Among the orderings we
evaluated in this paper, it seems that KLND does consistently better than either MD, MND, and
SND for the LP problems we tested. However, we believe that more research is needed to determine
the best ordering. In the current implementation, we computed the ordering as a preprocessing
step, on a serial computer. Since we are able to get good speedup on the Cholesky factorization
(which is done in each iteration), the time spent in ordering (which is done only once) can start
dominating the time to solve the entire LP problem. Hence, there is a need to develop parallel
formulations for the ordering algorithms.
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Appendix A Orderings

The algorithms for ordering sparse matrices work on the undirected graphs that are constructed
from the coefficient matrix M = (m; ;). A given m X m symmetric matrix, can be structurally
represented by a graph Gar = (Vas, £y ), where the nodes (vertices) in Vs correspond to rows of
M and there is an edge (¢,7) € Ep if the element m; ; is nonzero [56, 33]. In view of this graph
model, the process of computing a permutation matrix P can be viewed as selecting the order in
which nodes of G'ar can be eliminated during the factorization process.

A.1 Minimum Degree

The most successful and widely applicable algorithm developed to date for limiting fill-in in sparse
Cholesky factorization is the minimum degree algorithm [16, 20, 17]. Let G be the undirected graph
associated with a symmetric matrix M and let u be a node of (. Let Adjg(u) be the set of nodes
adjacent to u in GG. The degree of the node u in ¢ will be denoted by degreeg(u), which is simply
|Adjc(w)|. The basic minimum degree algorithm can be best described in terms of elimination
graphs [56, 33]. Let G, be the elimination graph obtained after the elimination of the node « from
G. The graph GG, can be obtained by deleting the node u and its incident edges from G and then
adding edges to make the nodes that were adjacent to u into a clique. This last step essentially
adds the fill-in generated by eliminating node u into the graph G,. These edges are called fill edges.

At each step of the elimination process, the minimum degree algorithm selects as the next
node to be eliminated a node of minimum degree in the current elimination graph. After that, a
new elimination graph is constructed to reflect the elimination of the node with minimum degree.
For more details about the minimum degree algorithm the reader should refer to [17, 30]. Over
the years, a variety of modifications have been developed for the minimum degree algorithm that
greatly improved its performance [17].

Even though, the minimum degree algorithm does well in minimizing the fill-in, the shape of the
generated elimination tree is highly unstructured. This is because, being a bottom-up approach in
nature, it lacks information to balance the elimination tree. Algorithms based on elimination tree
reorderings have been proposed to balance the shape of the elimination tree generated by minimum
degree [24, 34]. These algorithms reduce the height of the elimination tree without increasing the
fill-in the the Cholesky factor L.

A.2 Minimum Degree-Based Nested Dissection

Liu [35] proposed a mnested dissection ordering algorithm that selects the separators using the
minimum degree algorithm. We refer to this algorithm as minimum degree-based nested dissection
or MND. The algorithm selects a separator as follows: A minimum degree ordering is obtained for
G and let ¢q,29,...,2, be the ordering obtained from the minimum degree algorithm. Consider
a node x; in this sequence. Let C; be the connected component in the subgraph {zy,zs,...,2;}
that contains the node ;. From [33] we have that the adjacent set of z; at elimination is given by
Adje(C;). If the component C; satisfies |C;]| + |Adjg(C;)| < n, then Adjg(C;) forms a separator.
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Unless the graph is dense, many separators of this form can be found from a minimum degree
ordering. Furthermore, the node separator Adjs(C;) partitions the graph in such a way so one of
the subgraphs is C;.

The question is which node z; from the minimum degree sequence to select in order to construct
the node separator. A number of criteria were proposed in [35]. In the experiments reported in
Section 8 we used the following two criteria.

1. A node z; is selected if
|Cj| = max{|C;] : |C;] <= n/2 — deg(z;)}.

Since C; forms one of the connected components, the above criterion guarantees that one
component contains less than half of the nodes remaining after removing the Adjz(C;). Be-
cause, |C;| is maximized over all nodes z;, this methods selects a separator whose removal
creates a component as close to half the number of nodes as possible.

2. A node z; is selected if the absolute value of the difference between |C;| and n — |C;| —
|Adj(C;)| is minimized. This has the desirable effect of maintaining some balance in size
between the two partitions.

Since a minimum degree ordering is used to select the separators, MND leads selects small
separators which leads to low fill-in. OQur experiments have shown that the fill-in of MND is
comparable to that of MD. However, as the results in Section 8 show MND suffers from elimination
tree imbalances.

A.3 Spectral Nested Dissection

Pothen et al. [53] have developed an ordering algorithm based on a graph partitioning strategy that
uses a specific eigenvector of the Laplacian matrix of . This algorithm is called spectral nested
dissection SND.

The SND algorithm computes a separator by finding the eigenvector associated with the 2nd
largest eigenvalue Ay of the Laplacian matrix ¢) = D — V| where V is the adjacency matrix of G
with b;; = 0 and D is a diagonal matrix with d;; being the degree of node v; in G.

Let y be the eigenvector corresponding to Ay. This vector can be used to partition the graph
G as follows. Let r be a real number such that min;{y;} < r < max;{y;}. Define Vi = {v;]y; < r}
and Vo = {v;|ly; > r}. The nodes v; of G with y; = r are placed in either V; or V5 so that the
absolute value of |V} —|V3| is minimized. Having constructed the sets V; and V3, then the separator
is computed from the edge separator between Vi and V5.

The (node) separator is computed from the edge separator £y as follows. Let V{ be the set of
vertices of V; adjacent to some vertex in V3, and let V] be the set of vertices in V3 adjacent to some
vertex in Vj. Let H = (V{, V], Ey) be the bipartite graph induced by the vertex sets V{ and Vj. A
minimum vertex cover S of H is found by a maximal matching algorithm [52]. Let V}* C V{ and
V3 C Vj be the vertices in the minimum set cover. Then the node separator S'is 5 = VU V5 that
separates (7 into the subgraphs V3 \ V¥ and V3 \ V3.

The key question is how the value of r is determined in order to create the sets V; and V5.
Pothen et al. [53] suggests that r can be the median value of the components of the eigenvector y.
In that case, the sizes of the sets V5 and V3 are equal (off by one element at most). Thus, leading
to an ordering whose elimination tree is quite balanced in terms of nodes and has small height.
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However, even if the sizes of the connected components generated after a single dissection have the
same number of nodes, they may represent significantly different amounts of computation.

In the experiments reported in Section 8 we have also implemented a different heuristic for
selecting r. This value is selected so that the rows of A belonging to V7 and V5 have the same
number of non-zero elements. The motivation behind this heuristic is that by balancing the number
of non-zeros in the two sets might lead to an overall balancing in the computation.

The eigenvector y is computed using the Lanczos algorithm [50]. This algorithm is iterative and
the number of iterations required depends on the desired accuracy. In our experiment we observed
that a two-to-three digit accuracy was sufficient in obtaining good separators, and increasing the
accuracy increased the number of iterations without significant reduction in the size of the separator.

A.4 Kernighan-Lin Nested Dissection

The Kernighan-Lin algorithm [29] is a graph partitioning algorithm that partitions the graph by
finding small edge separators. The Kernighan-Lin algorithm works as follows: Suppose the vertices
of G are initially partitioned into two equal-sized sets, A and B, in some manner. The edges
between vertices in A and in B are called external edges, and all the other edges are called internal
edges. Let T be the number of external edges. Kernighan-Lin’s algorithm reduces T by repeatedly
swapping equal-sized subsets of A and B. It selects these subsets to guarantee that T decreases
at each iteration of the algorithm. The subsets to be swapped are selected as follows. Let v be
a vertex, and define the external cost F, of v to be the number of its incident external edges.
Similarly, define the internal cost I, of a vertex v to be the number of its incident internal edges.
Let D, = E, — I,.
If we swap v € A and u € B, then we can update T by subtracting from it the quantity

g= Dv+Du_2au,v

where a,, = 1 if there is an edge between v and u, and zero otherwise. The quantity ¢ is called
the gain in swapping v and . Swapping u and v may alter the D values of other vertices incident
on v and u. These D values can be recalculated as follows.

Dy = Dy+2a;,—2a5,, z€A-{v}
D, = Dy+2ay,—2ay,, y€B—{u}

Using these definitions we can state the Kernighan-Lin algorithm as follows. First unmark all
the vertices of G and compute their initial D values with respect to the current partition, A4 and
B. Then locate two unmarked vertices v € A and u € B, that would produce the largest gain
if swapped. Do not swap these vertices, but simply mark them and update the D values of the
unmarked vertices. Repeat this process until no unmarked vertices remain. The result is a sequence
of pairs (v;,u;) of vertices and their associated gains ¢;. Note that the gains ¢; can be positive or
negative. Finally, determine which vertices of A and B to swap by finding the smallest & that
maximizes G = Zle gi. If G > 0, swap vertices vy,...,vr of A with by,..., bz of B and repeat
this entire process. If G = 0, no further improvements are possible using this approach, and the
algorithm terminates.

A key step in the Kernighan-Lin algorithm is the selection of the initial sets A and B. We
implemented to different heuristics. The first just assigns the first n/2 nodes to A and the rest
to B, while the second heuristic assigns nodes in A and B such that the total number of nonzeros
corresponding to row in A is the same as that in 5. The motivation behind this heuristic is to try
to minimize the work load balance.
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