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Abstract

The explosive growth of the world-wide-web and the emergence of e-commerce has led to the development of
recommender systems—a personalized information filtering technology used to identify a set ofN items that will
be of interest to a certain user. User-based Collaborative filtering is the most successful technology for building
recommender systems to date, and is extensively used in many commercial recommender systems. Unfortunately, the
computational complexity of these methods grows linearly with the number of customers that in typical commercial
applications can grow to be several millions. To address these scalability concerns item-based recommendation
techniques have been developed that analyze the user-item matrix to identify relations between the different items,
and use these relations to compute the list of recommendations.

In this paper we present one such class of item-based recommendation algorithms that first determine the similari-
ties between the various items and then used them to identify the set of items to be recommended. The key steps in this
class of algorithms are (i) the method used to compute the similarity between the items, and (ii) the method used to
combine these similarities in order to compute the similarity between abasket of items and a candidate recommender
item. Our experimental evaluation on five different datasets show that the proposed item-based algorithms are up
to 28 times faster than the traditional user-neighborhood based recommender systems and provide recommendations
whose quality is up to 27% better.

1 Introduction

The explosive growth of the world-wide-web and the emergence of e-commerce has led to the development ofrecom-
mender systems [11]. Recommender systems is a personalized information filtering technology, used to either predict
whether a particular user will like a particular item (prediction problem), or to identify a set ofN items that will be of
interest to a certain user (top-N recommendation problem). In recent years, recommender systems have been used in
a number of different applications [18, 7, 9, 19, 17, 8, 10, 3], such as recommending products a customer will most
likely buy movies, TV programs, or music a user will find enjoyable, identifying web-pages that will be of interest, or
even suggesting alternate ways of searching for information.
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by the DOE ASCI program, and by Army High Performance Computing Research Center contract number DAAH04-95-C-0008.
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Various approaches for recommender systems have been developed that utilize either demographic, content, or
historical information [7, 1, 2, 18, 19, 9]. Collaborative Filtering (CF), is probably the most successful and widely used
techniques for building recommender systems [12, 9]. For each user, CF-based recommender systems use historical
information to identify a neighborhood of people that in the past have exhibited similar behavior (e.g., accessed the
same type of information, purchased a similar set of products, liked/disliked a similar set of movies) and then analyze
this neighborhood to identify new pieces of information that will be liked by the user. We will refer to this class of
approaches asuser-based recommendation algorithms.

Despite their success, CF-based recommender systems have two major limitations. The first is related to sparsity
and the second is related to scalability [17]. In many recommender systems, the amount of historical information for
each user and for each item is often quite limited. As a result, CF-based recommender systems cannot accurately
compute the neighborhood and identify the items to recommend–leading to poor recommendations. To address this
problem, a variety of techniques that use either dimensionality reduction [16, 15] or content-based software agents to
automatically generate ratings [6] have been developed that increase the density of the datasets.

Unfortunately, nearest neighbor algorithms require computations that grows linearly with the number of users and
items. With millions of users and items, existing CF-based recommender systems suffer serious scalability problems.
One way of reducing the complexity of the nearest-neighbor computations is to cluster the users and then to either limit
the nearest-neighbor search among the users that belong to the nearest cluster or use the cluster centroids to derive
the recommendations [20, 10]. These approaches, even though they can significantly speed up the recommendation
engine, they tend to decrease the quality of the recommendations. An alternate approach is to build recommendation
models that are based on the items. In these approaches, the historical information is analyzed to identify relations
between the items such that the purchase of an item (or a set of items) often leads to the purchase of another item
(or a set of items) [4, 13, 21, 8]. These approaches, since they use the pre-computed model, can quickly recom-
mend a set of items, and have been shown to produce recommendation results that in some cases are comparable to
traditional, neighborhood-based CF recommender systems. We will refer to this class of approaches asitem-based
recommendation algorithms.

In this paper we present one such class of model-basedtop-N recommendation algorithms. These algorithms first
determine the similarities between the various items and then used them to identify the set of items to be recommended.
The key steps in this class of algorithms are (i) the method used to compute the similarity between the items, and (ii) the
method used to combine these similarities in order to compute the similarity between abasket of items and a candidate
recommender item. In particular, we present two different methods of computing the item-to-item similarity. The first
method models the items as vectors in the user space, and uses thecosine measure to measure the similarity. The
second method computes the item-to-item similarity using a technique inspired by the conditional probability between
two items, extended so that it can differentiate between users with varying amounts of historical information as well as
differentiate between frequently and infrequently purchased items. Furthermore, we present a method of combining
these item-to-item similarities that accounts for item-neighborhoods of different density, that can incorrectly bias
the overall recommendation. We experimentally evaluate our algorithms on five different datasets arising in various
applications. Our experiments show that the item-to-item based algorithms are up to 28 times faster than the traditional
user-neighborhood based recommender systems. Furthermore, our algorithms achieve substantially higher quality. In
particular, the cosine- and conditional-probability based algorithms are on the average 15.7% and 27% better than the
user-based recommendation algorithm, respectively.

The rest of this paper is organized as follows. Section 2 presents an overview of the traditional user-basedtop-N
recommendation algorithms. Section 3 describes the various phases and algorithms used in our item-basedtop-N
recommendation system. Section 4 provides the experimental evaluation of the various parameters of the proposed
algorithms and compares it against the user-based algorithms. Finally, Section 5 provides some concluding remarks
and an outline of the future research.
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2 Overview of User-Based Top-N Recommendation Algorithms

User-based Collaborative filtering (CF) [12, 9] is the most successful technology for building recommender systems
to date, and is extensively used in many commercial recommender systems. These schemes rely on the fact that each
person belongs to a larger group of similarly-behaving individuals. Consequently, items (i.e., products) frequently
purchased by the various members of the group can be used to form the basis of the recommended items.

Let R be ann ×m user-item matrix containing historical purchasing information ofn customers onm items. In this
matrix,ri, j is one if thei th customer has purchased thej th item, and zero otherwise. LetU be the set of items that
have already been purchased by the customer for which we want to compute thetop-N recommendations. We will
refer to this customer as theactive customer and in order to simplify the presentation we will assume that the active
customer does not belong to then customers stored in matrixR. User-based CF recommender systems compute the
top-N recommended items for that customer as follows.

First they identify thek most similar customers in the database. This is often done by modeling the customers
and items with the vector-space model, widely used for information retrieval [14, 13, 15]. In this model each of the
n customers as well as the active customer is treated as a vector in them-dimensional item space, and the similarity
between the active and the existing customers is measured by computing the cosine between these vectors. Once this
set of thek most similar customers have been discovered, their corresponding rows inR are aggregated to identify
the setC of items purchased by the group as well as their frequency. Using this set, user-based CF techniques then
recommend theN most frequent items inC that are not already inU (i.e., the active user has not already purchased).
Note that the frequency of the items in the setC can be computed by either just counting the actual occurrence
frequency or by first normalizing each row ofR to be of the same length (i.e., ||r i,∗||2 = 1). This latter normalization
gives less emphasis to items purchased by customers that are frequent buyers and leads to somewhat better results.

Despite the popularity of user-based CF recommender systems, they have a number of limitations related to scala-
bility and real-time performance. The computational complexity of these methods grows linearly with the number of
customers that in typical commercial applications can grow to be several millions. Furthermore, even though the user-
item matrix is sparse, the user-to-user similarity matrix is quite dense. This is because, even a few frequently purchased
items can lead to dense user-to-user similarities. Moreover, real-timetop-N recommendations based on the current
basket of items, utilized by many e-commerce sites, cannot take advantage of pre-computed user-to-user similarities.
Finally, even though the throughput of user-based recommendation engines can be increased by increasing the number
of servers running the recommendation engine, they cannot decrease the latency of eachtop-N recommendation that
is critical for near real-time performance.

3 Item-Based top-N Recommendation Algorithms

To address the scalability concerns of user-based recommendation algorithms, item-based recommendation techniques
(also known as model-based) have been developed [4, 13, 21, 8]. These approaches analyze the user-item matrix to
identify relations between the different items, and then use these relations to compute the list oftop-N recommenda-
tions. The key motivation behind these schemes is that a customer will more likely purchase items that are similar
or related to the items that he/she has already purchased. Since these schemes do not need to identify the neighbor-
hood of similar customers when a recommendation is requested, they lead to much faster recommendation engines. A
number of different schemes have been proposed to compute the relations between the different items based on either
probabilistic approaches or more traditional item-to-item correlations.

In this paper we study a class of item-basedtop-N recommendation algorithms that use item-to-item similarity
to compute the relations between the items. During the model building phase, for each itemj , the k most similar
items{ j1, j2, . . . , jk} are computed, and their corresponding similarities{s j1, s j2, . . . , s jk } are recorded. Now, for each
customer that has purchased a set (i.e., basket)U of items, this information is used to compute thetop-N recommended
items as follows. First, we identify the setC of candidate recommended items by taking the union of thek most similar
items for each itemj ∈ U , and removing from the union any items that are already inU . Then, for each itemc ∈ C
we compute itssimilarity to the setU as the sum of the similarities between all the itemsj ∈ U andc, using only the
k most similar items ofj . Finally, the items inC are sorted in non-increasing order with respect to that similarity, and
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the firstN items are selected as thetop-N recommended set.

3.1 Item Similarity

The critical step in the proposed item-based recommendation algorithm is the method used to determine the similar-
ity between the items. In the rest of this section we describe two different classes of similarity algorithms that we
developed. One is derived from the vector-space model and the other is derived from probabilistic methods.

3.1.1 Cosine-Based Similarity

One way of computing the similarity between two items is to treat each item as a vector in the space of customers and
use thecosine measure between these vectors as a measure of similarity. Formally, ifR is then × m user-item matrix,
then the similarity between two itemsv andu is defined as the cosine of then dimensional vectors corresponding to
thevth anduth column of matrixR. The cosine between these vectors is given by

sim(v, u) = cos(�v, �u) = �v · �u
||�v||2||�u||2 , (1)

where ‘·’ denotes the vector dot-product operation.
From Equation 1 we can see that the similarity between two items will be high if each customer that purchases

one of the items also purchases the other item as well. Furthermore, one of the important feature of the cosine-based
similarity is that it takes into account the purchasing frequency of the different items (achieved by the denominator in
Equation 1). As a result, frequently purchased items will tend to be similar to other frequently purchased items and
not to infrequent purchased items, and vice versa. This is important as it tends to eliminate obvious recommendations,
i.e., recommendations of very frequent items, as these items will tend to be recommended only if other frequently
purchased items are in the current basket of items.

As it was the case with the user-based recommendation algorithms, the rows ofR can either correspond to the
original binary purchase information, or it can be scaled so that each row is of unit length (or any other norm), so that
to differentiate between customers that buy a small or a large number of items. Depending on how the customers are
represented, the cosine-based item similarity will be different. In the first case, for any pair of items, each customer
will be treated equally, whereas in the second case, more importance will be given to customers that have purchased
fewer items. The motivation for the second scheme is that co-purchasing information for customers that have bought
few items tends to be more reliable than co-purchasing information for customers that buy many items, as the first
group tends to represent consumers that are focused in certain product areas.

3.1.2 Conditional Probability-Based Similarity

An alternate way of computing the similarity between each pair of itemsv andu is to use a measure that is based
on the conditional probability of purchasing one of the items given that the other items has already been purchased.
In particular, the conditional probability of purchasingu given thatv has already been purchasedP(u|v), is nothing
more than the number of customers that purchase both itemsv andu divided by the total number of customers that
purchasedu, i.e.,

P(u|v) = Freq(uv)

Freq(v)
,

whereFreq(X) is the number of customers that have purchased the items in the setX . Note that in generalP(u|v) 
=
P(v|u), i.e., using this as a measure of similarity leads to asymmetric relations.

One of the limitations of using conditional probabilities as a measure of similarity, is that each itemv, will tend to
have high conditional probabilities to items that are being purchased frequently. That is, quite oftenP(u|v) is high,
as a result of the fact thatu occurs very frequently and not becausev andu tend to occur together. This problem has
been recognized earlier by researchers in information retrieval as well as recommendation systems [14, 13, 8, 5]. One
way of correcting this problem is to divideP(u|v) with a quantity that depends on the occurrence frequency of item
u. Two different methods have been proposed for achieving this. The first one inspired from the inverse-document
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frequency scaling performed in information retrieval systems, multipliesP(u|v) by −log 2(P(u)) [14], whereas the
other one dividesP(u|v) by P(u) [8].

Our experiments have shown that this scaling greatly affects the performance of the recommender system; further-
more, theoptimal scaling degree is problem dependent. For these reasons, we use the following formula to compute
the similarity between two items:

sim(v, u) = Freq(uv)

Freq(v) × (Freq(u))α
, (2)

whereα is a parameter that takes a value between 0 and 1. Note that whenα = 0, Equation 2 becomes identical to
P(u|v), whereas ifα = 1, it becomes similar (up to a scaling factor) to the formulation in whichP(u|v) is divided by
P(u).

One of the limitations of using Equation 2 is that it provides no mechanism by which to discriminate between
customers who purchase many items and customers who purchase few items. As discussed in Section 3.1.1, customers
that buy fewer items may be more reliable indicators when determining the similarity between items. For this reason
we have extended the similarity measure of Equation 2 in the following way. First we normalize each row of matrixR
to be of unit length. Then we define the similarity between itemsv andu as:

sim(v, u) =
∑

∀i:ri,v >0 ri,u

Freq(v) × (Freq(u))α
. (3)

The only difference between Equation 3 and Equation 2 is that instead of using the co-occurrence frequency we use the
sum of the corresponding non-zero entries of theuth column in the user-item matrix. Since the rows are normalized to
be of unit length, customers that have purchased more items will tend to contribute less to the overall similarity; thus,
giving emphasis to the purchasing decisions of the customers that have bought fewer items.

3.2 Similarity Normalization

Recall from Section 3 that given a basket of itemsU , the item-basedtop-N recommendation algorithm determines the
items to be recommended by computing the similarity of each item not inU to all the items inU and selecting theN
most similar items as the recommended set. The similarity between the setU and an itemv 
∈ U is determined by
adding the similarities between each itemu ∈ U andv (if v is in thek most similar items ofu).

One of the potential drawbacks of this approach is that the raw similarity between each itemu and itsk most similar
items may be significantly different. That is, the item neighborhoods are of different density. This is especially true for
items that are purchased somewhat infrequently, since a moderate overlap with other infrequently purchased items can
lead to relatively high similarity values. Consequently, these items can exert strong influence in the selection of the
top-N items, sometimes leading to wrong recommendations. For this reason, instead of using the actual similarities
computed by the various methods described in Section 3.1, for each itemu we first normalize the similarities so that
they add-up to one. As the experiments presented in Section 4 show, this often lead to dramatic improvements in
top-N recommendation quality.

3.3 Computational Complexity

The computational complexity of the item-basedtop-N recommendation algorithm depends on the amount of time
required to build the model (i.e., for each item identify the otherk most similar items) and the amount required to
compute the recommendation using this model.

During the model building phase we need to compute the similarity between each itemv to all the other items and
then select thek most similar items. The upper bound on the complexity of this step isO(m 2n), as we need to compute
m(m−1) similarities, each potentially requiringn operations. However, that actual complexity is significantly smaller,
because the resulting item-to-item similarity matrix is extremely sparse. In our datasets, the item-to-item similarity
matrix was in general more than 99% sparse. The reason for these sparsity levels is that each customer purchases a
relatively small number of items, and the items they purchased tend to be clustered. Consequently, by using sparse
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data structures to storeR, and computing the similarities only between pairs of items that are purchased by at least
one customer we can substantially reduce the computational complexity.

Finally, the amount required to compute thetop-N recommendations for a given basketU is given byO(k|U |),
because we need to access thek most similar items for each of the items inU , and identify the overallN most similar
items.

4 Experimental Results

In this section we experimentally evaluate the performance of our item-basedtop-N recommendation algorithms
and compare it against the performance of the user-basedtop-N recommendation algorithms. All experiments were
performed on a Pentium II based workstation running at 366MHz, 256MBytes of memory, and Linux-based operating
system.

4.1 Data Sets

We evaluated the performance of the differenttop-N recommendation algorithms using five different datasets whose
characteristics are shown in Table 1. For each user-item matrixR, the columns labeled “No. Rows”, “No. Columns”,
and “No. of Non-Zeros” show the number of customers/users, number of items, and total number of transactions,
respectively.

Name No. Rows No. Columns No. of Non-Zeros
ecommerce 6667 17491 91222
catalog 50918 39080 435524
ccard 42629 68793 398619
skills 4374 2125 82612
movielens 943 1682 100000

Table 1: The characteristics of the various datasets used in evaluating the top-N recommendation algorithms.

The ecommerce dataset corresponds to web-based purchasing transactions of an e-commerce site. Thecatalog
dataset corresponds to the catalog purchasing transactions of a major mail-order catalog retailer. Theccard dataset
corresponds to the store-branded credit card purchasing transactions of a major department store. Theskills dataset
corresponds to the IT-related skills that are present in the resumes of various individuals and were obtained from
a major online job portal. Finally, themovielens dataset corresponds to movie ratings and were obtained from the
MovieLens research project. Note that in our experiments, we ignored the actual ratings in themovielens dataset.

4.2 Experimental Design and Metrics

The goal of our experiments was to evaluate the quality and performance of thetop-N recommendations provided
by the various recommender algorithms. In order to evaluate the quality of thetop-N recommendations we split
each of the datasets into atraining and test set, by randomly selecting one of the non-zero entries of each row to
be part of the test set, and used the remaining entries for training1. Then for each customer/user we obtained the
top-N recommendations by using the items present in the training set as thebasket for that customer/user. In the
case of the item-based algorithms, thetop-N recommendation were computed using only the training set to build
the item similarity models. Similarly, in the case of the user-based algorithms, the nearest neighbors andtop-N
recommendations were computed only using the training set.

The quality was measured by looking at the number ofhits; i.e., the number of items in the test set that where also
present in thetop-N recommended items returned for each customer/user. In particular, ifn is the total number of

1Our datasets were such that each row had at least two non-zero entries.
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customers/users, we computed therecall of the recommended system as:

recall = Number of hits

n
.

A recall value of 1.0 indicates that the recommendation algorithm was able to always recommend the hidden item,
whereas a recall value of 0.0 indicates that the recommendation algorithm was not able to recommend any of the
hidden items.

In order to ensure that our results were statistically accurate, for each of the experiments we performed ten different
runs, each time using a different random partitioning into training and test. The results reported in the rest of this
section are the averages over these ten trials. Finally, in all of experiments we usedN = 10, as the number of items
top be recommended by thetop-N recommendation algorithms.

4.3 Effect of Similarity Normalization

Our first experiment was designed to evaluate the effect of the similarity normalization as discussed in Section 3.2.
Figure 1 shows the recommendation accuracies achieved by four different item-based recommendation algorithms.
Two of them use the cosine as the similarity function whereas the other two use the conditional probability. The
difference between each pair of algorithms is that one does not normalize the similarities (those labeled “Cos-Sraw’
and “CProb-Sraw”) whereas the other normalizes them (those labeled “Cos-Snorm” and “CProb-Snorm”). For all four
algorithms the rows of the matrix were normalized so that they are of unit length,k (the number of nearest items to
use in the model) was set to 10, and a value ofα = 0.5 was used for “CProb-Sraw” and “CProb-Snorm”.
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Figure 1: The effect of the similarity normalization on the recommendation quality achieved by the cosine- and conditional-
probability-based recommendation algorithms.

Looking at the results in Figure 1, we can see that the algorithms that use similarity normalization achieve higher
recommendation accuracies compared to their counterparts that do not. The actual improvement is dataset and algo-
rithm dependent. In general, the relative improvements tend to be higher for the conditional probability based scheme
than the cosine-based scheme. The performance of the cosine-based scheme improves by 0% to 6.5% with an average
improvement of 3.1%, and the performance of the conditional probability-based scheme improves by 3% to 12% with
an average improvement of 7%. Due to this clear performance advantage, in the rest of our experiments we will always
use similarity normalization.
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4.4 Effect of Row Normalization

The second experiment was designed to evaluate the effect of row-normalization so that customers that purchase many
items will weigh less during the item similarity calculations. Figure 1 shows the recall achieved by four different
item-based recommendation algorithms. Two of them use the cosine as the similarity function whereas the other two
use the conditional probability. The difference between each pair of algorithms is that one does not normalize the
rows (those labeled “Cos-Rraw’ and “CProb-Rraw”) whereas the other normalizes them (those labeled “Cos-Rnorm”
and “CProb-Rnorm”). For all experiments k was set to 10, and for the two conditional probability-based algorithms, a
value of α = 0.5 was used.
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Figure 2: The effect of row normalization on the recommendation quality achieved by the cosine- and conditional-probability-based
recommendation algorithms.

From the results in Figure 2 we can see that the row-normalized version does better in all but the ccard dataset
for both the cosine- and the conditional probability-based algorithms. The average improvement for the four datasets
is 2.6% for the cosine and 4.2% for conditional probability-based similarity. However, the row-normalized version
does somewhat worse for the ccard dataset, especially for the cosine-based algorithm. Nevertheless, because of the
consistent improvements achieved in the majority of the datasets, in the rest of our experiments we will always use
row normalization.

4.5 Model Size Sensitivity

Recall from Section 3 the item-based recommendations are computed using a model that utilizes the k most similar
items for each one of the different items. To evaluate the sensitivity of the different algorithms on the value of k we
performed an experiment in which we let k take the values of 10, 20, 30, 40, and 50. The recommendation accuracies
for these experiments are shown in Figure 3 for the cosine- and conditional probability-based algorithms. For the
conditional probability-based algorithms, the experiments were performed using a value of α = 0.5.

As we can see from these experiments, the overall recommendation accuracy of the item-based algorithms does tend
to improve as we increase the value of k. The only exception is the movielens dataset for which the recommendation
accuracies decrease slightly as we increase k. If we ignore this dataset, the average recommendation accuracies
for the cosine-based algorithm incrementally improve by 1.8%, 0.9%, 0.8%, and 0.4% as we vary k from 10 to 50
items; whereas in the case of the conditional probability-based algorithm the average incremental improvements are
1.5%, 0.5%, 0.4%, and 0.3%. These results indicate that (i) even for small values of k the item-based recommendation
algorithms provide reasonably accurate recommendations; and (ii) increasing the value of k does not lead to significant
improvements. This is particularly important since small values of k lead to fast recommendation rates (i.e., low
computational requirements) without materially affecting the overall quality of the recommendations. Note that the
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(b) Conditional Probability-Based Similarity(a) Cosine-Based Similarity
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Figure 3: The recall as a function of the number of most similar items (k) used in computing the top-N recommendations for the
cosine- and conditional-probability-based recommendation algorithms.

diminishing incremental improvements achieved by increasing the value of k is a direct consequence of the fact that
we are only looking for 10 recommended items (i.e., N = 10). As a result, once k is sufficiently large, to ensure that
the various item-to-item lists have sufficient common items, any further increases in k will not change the order of the
top-N items.

4.6 Item Frequency Scaling Sensitivity

One of the parameters of the conditional probability-based top-N recommendation algorithm is the value of α used to
control the extend to which the similarity to frequently purchased/occurring items will be de-emphasized. To study
the sensitivity of the recommendation algorithm on this parameter we performed a sequence of experiments in which
we varied α from 0.0 to 1.0 in increments of 0.1. Figure 4 shows the recall achieved on the different datasets for the
different values of α, relative to the recall achieved by the cosine-based algorithm. A value greater than one indicates
that the conditional probability-based scheme outperforms the cosine-based scheme, whereas a value less than one,
indicates that the latter performs better. Note that these results were obtained using k = 10.
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Figure 4: The recommendation quality as a function of the item-frequency-based scaling achieved by the α parameter for
conditional-probability-based recommendation algorithms relative to that achieve by the cosine-based algorithm.
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A number of interesting observations can be made by looking at the results shown in Figure 4. First, for all datasets,
the value of α has a significant impact on the recommendation quality, as different values of α lead to substantially
different recalls. Second, as we increase the value of α, the changes in the recall are fairly smooth. Third, the value of
α that leads to the highest recall depends on the dataset. The highest performance for the ecommerce, catalog, ccard,
skills, and movielens was obtained using α values of 0.1, 0.2, 0.2, 0.4, and 0.5, respectively. Fourth, for each one
of the datasets there exist a set of values for α that lead to higher quality recommendations than those computed by
the cosine-based algorithm. Fifth, for all datasets, if 0.3 ≤ α ≤ 0.6, then the conditional probability-based scheme
achieved consistently good performance. These results suggest that the optimal value of α needs to be estimated for
each particular dataset. This can be done by hiding a portion of the training set and using it to estimate the value of α

that leads to the highest recommendation accuracy.
The results in Figure 4 also show how the cosine- and conditional probability-based schemes compare with each

other. From these results we can see that for most datasets and a wide range of α values the conditional probability-
based algorithm leads to somewhat higher recalls than the cosine-based scheme. One the average, the conditional
probability-based scheme does 2.9%, 4.8%, 5.0%, 4.7%, and 3.1% better for α equal to 0.1, 0.2, 0.3, 0.4, and 0.5,
respectively. Furthermore, if we compare the results obtained for the optimal values of α, we can see that the con-
ditional probability-based algorithm does 9.1% better than the cosine-based scheme. We believe these improvements
are a direct results of the higher degree of tunability that is provided by the α parameter.

4.7 Comparison with the User-based Recommendation Algorithm

Finally, to compare the performance of our item-based recommendation algorithms with that achieved by user-based
algorithms we performed an experiment in which we computed the top-N recommendations using both the item-based
and the user-based recommendation algorithms. These results are shown in Figure 5 that shows the recall achieved
by different algorithms relative to that achieved by the user-based algorithm. Any bars that are above the 1.0 line,
indicate that the corresponding schemes performs better than the user-based scheme and vice-versa. The user-based
recommendations were obtained using the algorithm described in Section 2 with user-neighborhoods of size 50, and
unit length normalized rows. Furthermore, we used a similarity-weighted approach to determine the frequency of each
item, and we did not include neighbors that had an identical set of items as the active item (as these neighbors do not
contribute at all in the recommendation).

Figure 5 includes three different sets of item-based results obtained with k = 20. The results labeled “Cosine” cor-
respond to the cosine-based results. The results labeled “CProb-a=0.5” correspond to the conditional probability-based
algorithm in which α was set to 0.5. The results labeled “CProb-a=Opt” correspond to the conditional probability-
based algorithm that uses for each dataset the value of α that achieved the highest performance in the experiments
discussed in Section 4.6. Finally, Figure 5 also includes the top-N recommendation quality achieve by the naive algo-
rithm, labeled “Frequent” , that recommends the N most frequent items not already present in the active user’s set of
items.

From the results in Figure 5 we can see that both the “Cosine” and the “CProb-a=0.5” algorithms outperform the
user-based algorithm in three out of the five datasets, whereas “CProb-a=Opt” outperforms or matches the user-based
scheme in all five datasets. It is interesting to note that the first two item-based algorithms perform substantially better
for the first three datasets and only marginally worse for the remaining two. In fact, the average improvement achieved
over all five datasets is a significant 15.7% and 18.8% for “Cosine” and “CProb-a=0.5” , respectively. The item-based
algorithm that uses the optimal values of α performs even better, achieving an average improvement of 27%. Also
note that both the user- and item-based algorithms produce recommendations whose quality is substantially better than
the recommendations produced by the naive “Frequent” algorithm.

One of the advantages of the item-based algorithm is that it has much smaller computational requirements than the
user-based top-N recommendation algorithm. Table 2 shows the amount of time required by the two algorithms to
compute the top-N recommendations for each one of the five datasets. The column labeled “ModelTime” shows the
amount of time required to build the item-based recommendation model (i.e., compute the k most similar items), the
columns labeled “RcmdTime” shows the amount of time required to compute all the recommendations for each one
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Figure 5: The quality of the recommendations obtained by the naive and the item-based algorithms relative to that obtained by the
user-based recommendation algorithm.

of the dataset, and the columns labeled “RcmdRate” shows the rate at which the top-N recommendations were com-
puted in terms of recommendations/second. Note that our implementation of the user-based top-N recommendation
algorithm takes advantage of the sparse user-item matrix in order to identify the nearest users as quickly as possible.
All the times in Table 2 are in seconds.

User-based Item-based
Name RcmdTime RcmdRate ModelTime RcmdTime RcmdRate
ecommerce 4.05 1646 0.92 0.33 20203
catalog 27.20 1848 4.14 2.20 22817
ccard 50.04 851 7.85 2.43 17542
skills 6.50 672 1.30 0.23 19017
movielens 3.38 278 1.54 0.20 4715

Table 2: The computational requirements for computing the top-N recommendations for both the user- and item-based algorithms.

A number of interesting observations can be made by looking at Table 2. First, the recommendation rates achieved
by the item-based algorithm are 12 to 28 times higher than those achieved by the user-based algorithm. If we add
the various “RcmdTime” for all five data sets we can see that the overall recommendation rate for the item-based
algorithm is 19579 recommendations/second compared to only 1157 recommendations/second achieved by the user-
based algorithm. This translates to one recommendation every 50us for the item-based algorithm, versus 864us for
the user-based algorithm. Second, as discussed in Section 3.3, the amount of time required to build the models for the
item-based algorithm is quite small. Third, even accounting for the model building time, the item-based algorithm is
still two to seven times faster than the user-based algorithm.

In summary, the item-based top-N recommendation algorithms improve the recommendations produced by the
user-based algorithms by up to 27% in terms of recommendation accuracy, and it is up to 28 times faster.

5 Conclusions and Directions for Future Research

In this paper we presented and experimentally evaluated a class of model-based top-N recommendation algorithm
that uses item-to-item similarities to compute the recommendations. Our results showed that both the cosine- and
conditional probability-based item similarity schemes lead to recommender systems that on the average provide more
accurate recommendations than those provided by traditional user-based CF techniques. Furthermore, the proposed
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algorithms are substantially faster; allowing real-time recommendations independent of the size of the user-item ma-
trix.

We believe that the top-N recommender algorithms presented in this paper can be improved by combining elements
from both the user- and item-based approaches. User-based approaches by dynamically computing a neighborhood of
similar users are better suited to provide truly personalized information. On the other hand, item-based approaches by
directly computing the similarity between items appear to compute more accurate recommendations. However, one
potential limitation of item-based approaches on very large user collections, is that the globally computed item-to-item
similarities may not be able to provide sufficiently degree of personalization (even when combined in the context of
basket-to-item similarity). In this case, an approach that first identifies a reasonably large neighborhood of similar
users and then using this subset to derive the item-based recommendation model may be able to combine the best of
both worlds and perform even better recommendations.
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