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1. INTRODUCTION

The explosive growth of the world-wide-web and the emergence of e-commerce
has led to the development of recommender systems [Resnick and Varian 1997].
Recommender systems are personalized information filtering technology used
to either predict whether a particular user will like a particular item (prediction
problem) or to identify a set of N items that will be of interest to a certain user
(top-N recommendation problem). In recent years, recommender systems have
been used in a number of different applications [Shardanand and Maes 1995;
Hill et al. 1995; Konstan et al. 1997; Terveen et al. 1997; Schafer et al. 1999;
Kitts et al. 2000; Mobasher et al. 2000; Beeferman and Berger 2000] such as
recommending products a customer will most likely buy; movies, TV programs,
or music a user will find enjoyable; identifying web pages that will be of interest;
or even suggesting alternate ways of searching for information. An excellent
survey of different recommender systems for various applications can be found
in Schafer et al. [1999] and Resnick and Varian [1997].

Over the years, various approaches for building recommender systems have
been developed that utilize either demographic, content, or historical infor-
mation [Hill et al. 1995; Balabanovic and Shoham 1997; Basu et al. 1998;
Shardanand and Maes 1995; Terveen et al. 1997; Konstan et al. 1997]. Among
them, collaborative filtering (CF), which relies on historical information, is prob-
ably the most successful and widely used technique for building recommender
systems [Resnick et al. 1994; Konstan et al. 1997]. The term, collaborative fil-
tering was first coined in Goldberg et al. [1992], where it was used to describe
an e-mail filtering system called Tapestry, which was designed to filter e-mails
received from mailing lists and newsgroup postings. In this system, each user
could write a comment (annotation) about each e-mail message and share these
annotations with a group of users. A user could then filter these e-mail messages
by writing queries on these annotations. Though Tapestry allowed an individ-
ual user to benefit from annotations made by other users, the system required
an individual user to write complicated queries. The first system to generate
automated recommendations was the GroupLens system [Resnick et al. 1994;
Konstan et al. 1997], which provided users with personalized recommendations
on Usenet postings. The recommendations for each individual were obtained
by identifying a neighborhood of similar users and recommending the articles
that this group of users found useful.

Two approaches have been developed for building CF-based top-N recom-
mender systems. The first approach, referred to as user-based [Shardanand
and Maes 1995; Konstan et al. 1997; Breese et al. 1998; Resnick et al. 1994;
Herlocker et al. 1999; Sarwar et al. 2000], relies on the fact that each person
belongs in a larger group of similarly behaving individuals. As a result, items
(e.g., products, movies, books, etc.) frequently purchased/liked by the various
members of the group can be used to form a basis for recommended items. The
second approach, known as model-based [Shardanand and Maes 1995; Billsus
and Pazzani 1998; Breese et al. 1998; Aggarwal et al. 1999; Kitts et al. 2000],
analyzes historical information to identify relations between different items
such that the purchase of an item (or a set of items) often leads to the purchase
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of another item (or a set of items), and then use these relations to determine the
recommended items. Model-based schemes, by using precomputed models, pro-
duce recommendations very quickly but tend to require a significant amount of
time to build these models. Furthermore, these recommendations are generally
of lower-quality than those produced by user-based schemes. In contrast, user-
based schemes tend to produce systems that lead to higher-quality recommen-
dations but suffer serious scalability problems as the complexity of computing
each recommendation grows linearly with the number of users and items.

The focus of this article is on a particular class of model-based top-N recom-
mendation algorithms that build the recommendation model by analyzing the
similarities between the various items and then use these similar items to iden-
tify the set of items to be recommended. These algorithms, referred to in this
article as item-based top-N recommendation algorithms, have been used in var-
ious forms since the early days of CF-based recommender systems [Shardanand
and Maes 1995; Kitts et al. 2000] and were shown to be computationally scalable
(both in terms of model construction and model application) but tended to pro-
duce lower-quality recommendations when compared to user-based schemes.

The contributions of this article are two-fold. First, we present a detailed
study of the two key steps that affect the performance of item-based top-N rec-
ommendation algorithms, which are (i) the method used to compute the simi-
larity between the items and (ii) the method used to combine these similarities
in order to compute the similarity between a basket of items and a candidate
recommender item. For the first step, we study two different methods of com-
puting the item-to-item similarity. One models the items as vectors in the user
space, and uses the cosine function to measure the similarity, whereas the other
computes the item-to-item similarities using a technique based on the condi-
tional probability between two items. This conditional probability technique
is extended so that it can differentiate between users with varying amounts
of historical information as well as between frequently and infrequently pur-
chased items. For the second step, we present a method for combining these
similarities that accounts for item-neighborhoods of different density that can
incorrectly bias the overall recommendation.

The second contribution is the extension of these item-based schemes to
higher-order models, which obtain the final recommendations by exploiting re-
lations between sets of items. We present a class of interpolated higher-order
item-based top-N recommendation algorithms that construct a recommenda-
tion model by first determining the various itemset-item similarities and then
combining them to determine the similarity between a user’s basket and a can-
didate recommender item.

We present a detailed experimental evaluation of these algorithms and
study the performance implications of the various parameters on two classes
of datasets. The first class consists of eight real datasets arising in various
applications, whereas the second class consists of 36 datasets that were syn-
thetically generated by the widely-used synthetic transaction dataset genera-
tor provided by the IBM Quest group [Agrawal and Srikant 1994]. Our experi-
ments show that the item-based algorithm when combined with the conditional
probability-based similarity method produce higher-quality recommendations
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than the user-based scheme on both real and synthetic datasets. Moreover, the
higher-order schemes lead to additional improvements when the density of the
datasets increases and when the users have many items in common. Further-
more, our computational complexity evaluation shows that the item-to-item
based algorithms are up to two orders of magnitude faster than the traditional
user-based algorithms. Some of the results in this paper were previously pre-
sented in Karypis [2001].

The paper is organized as follows: Section 2 provides the definitions and
notations that will be used throughout the paper. Section 3 presents a brief
survey of the related research on collaborative filtering-based recommender
algorithms. Sections 4 and 5 describe the various phases and algorithms used in
our first- and higher-order item-based top-N recommendation system. Section 6
provides an experimental evaluation of the various parameters of the proposed
algorithms, and compares the proposed algorithms against user-based ones.
Finally, Section 7 provides some concluding remarks.

2. DEFINITIONS AND NOTATIONS

Throughout the article, we will use the symbols n and m to denote the num-
ber of distinct users and the number of distinct items in a particular dataset,
respectively. We will use the symbol N to denote the number of recommenda-
tions that needs to be computed for a particular user. In presenting the various
algorithms we will assume that the underlying application domain is that of
commercial retailing and we will use the terms customers and products as syn-
onyms to users and items, respectively. We will use the term dataset to denote
the set of transactions about the items that have been purchased by the various
users. We will represent each dataset by an n × m binary matrix R that will be
referred to as the user–item matrix, such that Ri, j is one if the ith customer has
purchased the j th item, and zero otherwise. We will refer to the user for which
we want to compute the top-N recommendations as the active user, and to the
set of items that the user has already purchased as the user’s basket. Finally,
the top-N recommendation problem is formally defined as follows:

Definition 2.1 (top-N Recommendation Problem). Given a user–item ma-
trix R and a set of items U that have been purchased by a user, identify an
ordered set of items X such that |X | ≤ N and X ∩ U = ∅.

3. RELATED RESEARCH

User-based collaborative filtering is the most successful technology for build-
ing recommender systems to date and is extensively used in many com-
mercial recommender systems. In general, user-based systems compute the
top-N recommended items for a particular user by following a three-step ap-
proach [Shardanand and Maes 1995; Konstan et al. 1997; Sarwar et al. 2000].
In the first step, they identify the k users in the database that are the most
similar to the active user. During the second step, they compute the union of
the items purchased by these users and associate a weight with each item based
on its importance in the set. In the third and final step, from this union they
select and recommend the N items that have the highest weight and have not
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already been purchased by the active user. Within this three-step framework,
the method used to determine the k most similar users and the scheme used to
determine the importance of the different items play the most critical role in
the overall performance of the algorithm. Commonly, the similarity between the
users is computed by treating them as vectors in the item-space and measuring
their similarity via the cosine or correlation coefficient functions [Breese et al.
1998; Sarwar et al. 2000], whereas the importance of each item is determined
by how frequently it was purchased by the k most similar users. However, alter-
nate approaches for both of these steps have been explored and shown to lead to
somewhat better results. A detailed survey of different user-based algorithms
and a comparison of their performance can be found in Breese et al. [1998],
Herlocker et al. [1999], and Sarwar et al. [2000].

Despite the popularity of user-based recommender systems, they have a
number of limitations related to scalability and real-time performance. The
computational complexity of these methods grows linearly with the number
of customers, which in typical commercial applications can grow to be several
millions. Furthermore, even though the user–item matrix is sparse, the user-
to-user similarity matrix is quite dense. This is because even a few frequently
purchased items can lead to dense user-to-user similarities. Moreover, real-
time top-N recommendations based on the current basket of items, utilized by
many e-commerce sites, cannot take advantage of pre-computed user-to-user
similarities. Finally, even though the throughput of user-based recommenda-
tion algorithms can be increased by increasing the number of servers running
the recommendation algorithm, they cannot decrease the latency of each top-N
recommendation, which is critical for near real-time performance. One way of
reducing the complexity of the nearest-neighbor computations is to cluster the
users and then to either limit the nearest-neighbor search among the users that
belong to the nearest cluster, or use the cluster centroids to derive the recom-
mendations [Ungar and Foster 1998; Mobasher et al. 2000]. These approaches,
though they can significantly speed up the recommendation algorithm, tend to
decrease the quality of the recommendations.

To address the scalability concerns of user-based recommendation algo-
rithms a variety of model-based recommendation techniques were developed.
Billsus and Pazzani [1998] developed a model-based recommender system by
treating the top-N recommendation problem as a classification problem, in
which the goal was to classify the items purchased by an individual user into
two classes: like and dislike. A classification model based on neural networks
was built for each individual user where the items purchased by the user were
thought of as the examples and the users as the attributes. A singular value de-
composition of the user–item matrix reduced the dimensionality of the problem.
The prediction on an item was computed by constructing an example for that
item and feeding it to the classifier. The authors reported considerable improve-
ments over the traditional user-based algorithms. Though this approach is quite
powerful it requires building and maintaining a neural network model for each
individual user in the database, which is not scalable to large databases. Breese
et al. [1998] presented two model-based algorithms for computing both predic-
tions and top-N recommendations. The first algorithm follows a probabilistic
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approach in which the users are clustered and the conditional probability
distribution of different items in the cluster is estimated. The probability that
the active user belongs to a particular cluster given the basket of items is then
estimated from the clustering solution and the probability distribution of items
in the cluster. The clustering solution for this technique is computed using
the expectation maximization (EM) principle. The second algorithm is based
on Bayesian network models where each item in the database is modeled as
a node having states corresponding to the rating of that item. The learning
problem consists of building a network on these nodes such that each node has
a set of parent nodes that are the best predictors for the child’s rating. They
presented a detailed comparison of these two model-based approaches with the
user-based approach and showed that Bayesian networks model outperformed
the clustering model as well as the user-based scheme. Heckerman et al. [2000]
proposed a recommendation algorithm based on dependency networks instead
of Bayesian networks. Though the accuracy of dependency networks is inferior
to Bayesian networks they are more efficient to learn and have smaller memory
requirements. Aggarwal et al. [1999] presented a graph-based recommendation
algorithm where the users are represented as the nodes in a graph and the
edges between the nodes indicate the degree of similarity between the users.
The recommendations for a user are computed by traversing nearby nodes
in this graph. The graph representation of the model allows it to capture
transitive relations which cannot be captured by nearest neighbor algorithms
and the authors reported better performance than the user-based schemes.

A number of different model-based approaches have been developed that
use item-to-item similarities as well as association rules. Shardanand and
Maes [1995] developed an item-based prediction algorithm within the context
of the Ringo music recommendation system, referred to as artist-artist, that
determines whether or not a user will like a particular artist by computing
its similarity to the artists that the user has liked/disliked in the past. This
similarity was computed using the Pearson correlation function. Sarwar et al.
[2001] further studied this paradigm for computing predictions and they eval-
uated various methods for computing the similarity as well as approaches to
limit the set of item-to-item similarities that need to be considered. The au-
thors reported considerable improvements in performance over the user-based
algorithm. Mobasher et al. [2000] presented an algorithm for recommending
additional webpages to be visited by a user based on association rules. In this
approach, the historical information about users and their web-access patterns
were mined using a frequent itemset discovery algorithm and were used to
generate a set of high confidence association rules. The recommendations were
computed as the union of the consequent of the rules that were supported by
the pages visited by the user. Lin et al. [2000] used a similar approach but they
developed an algorithm that is guaranteed to find association rules for all the
items in the database. Finally, within the context of using association rules to
derive top-N recommendations, Demiriz [2001] studied the problem of how to
weight the different rules that are supported by the active user. He presented
a method that computes the similarity between a rule and the active user’s
basket as the product of the confidence of the rule and the Euclidean distance
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between items in the antecedent of the association rule and the items in the
user’s basket. He compared this approach both with the item-based scheme
described in Section 4 (based on our preliminary work presented in Karypis
[2001]) and the dependency network-based algorithm [Heckerman et al. 2000].
His experiments showed that the proposed association rule-based scheme is
superior to dependency networks but inferior to the item-based schemes.

4. ITEM-BASED TOP-N RECOMMENDATION ALGORITHMS

In this section, we study a class of model-based top-N recommendation algo-
rithms that use item-to-item similarities to compute the relations between the
different items. The primary motivation behind these algorithms is the fact
that a customer is more likely to purchase items that are similar to the items
that he/she has already purchased in the past; thus, by analyzing historical
purchasing information (as represented in the user–item matrix) we can auto-
matically identify these sets of similar items and use them to form the top-N
recommendations. These algorithms are similar in spirit to previously devel-
oped item-based schemes [Shardanand and Maes 1995; Kitts et al. 2000] but
differ in a number of key aspects related to how the similarity between the
different items is computed and how these similarities are combined to derive
the final recommendations.

At a high-level, these algorithms consist of two distinct components. The
first component builds a model that captures the relations between the different
items, whereas the second component applies this precomputed model to derive
the top-N recommendations for an active user. The details on these components
are presented in the remainder of this section.

4.1 Building the Model

The model used by the item-based top-N recommendation algorithm is con-
structed using the algorithm shown in Algorithm 4.1. The input to this algo-
rithm is the n × m user–item matrix R and a parameter k that specifies the
number of item-to-item similarities that will be stored for each item. The output
is the model itself, which is represented by an m × m matrix M such that the
j th column stores the k most similar items to item j . In particular, if Mi, j > 0,
then the ith item is among the k most similar items of j and the value of Mi, j
indicates the degree of similarity between items j and i.

Algorithm 4.1: BUILDMODEL (R, k)

for j → 1to m

do




for i → 1to m

do




if i �= j
then Mi, j → sim(R∗, j , R∗,i) (1)
else Mi, j → 0

for i → 1to m

do

{ if Mi, j �= among the k largest values in M∗, j (2)
then Mi, j → 0

return (M)
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The parameterization of M on k was motivated due to performance consid-
erations and its choice represents a performance-quality trade-off. By using a
small value of k, we can ensure that M is very sparse and thus can be stored
in main memory even in collaborative filtering environments and applications
in which m is very large. However, if k is too small, then the resulting model
will contain limited information from which to build the recommendations,
and thus it can potentially lead to lower quality. Fortunately, as our experi-
mental evaluation will illustrate (Section 6.2.1), reasonably small values of k
(10 ≤ k ≤ 30) lead to good results and higher values lead to either a very small
or no improvement.

The actual algorithm for constructing M is quite simple. For each item j , the
algorithm computes the similarity between j and the other items and stores
the results in the j th column of M (line 1). Once these similarities have been
computed, it then proceeds to zero-out all the entries in the j th column of M
that contain smaller values than the k largest similarity values in that column.
The resulting matrix M that contains at most k nonzero entries per column
becomes the final model of the item-based algorithm. Note that by construction
(line 2) the algorithm ensures that a particular item will not contain itself as
one of its k most similar items. This is done to ensure that an item does not
contribute towards recommending itself. Such recommendations are of little
value because we require the recommended items to be different from the items
in the active user’s basket.

4.1.1 Measuring the Similarity between Items. The properties of the model
M and consequently the effectiveness of the overall recommendation algorithm
depend on the method used to compute the similarity between the various
items (line 1 in Algorithm 4.1). In general, the similarity between two items i
and j should be high if there are lot of customers that have purchased both of
them, and it should be low if there are few such customers. There are also two
somewhat less obvious aspects that we need to consider. The first has to do with
whether or not we should be discriminating between customers that purchase
few items and customers that purchase many items. For example, consider two
customers C1 and C2, both of whom have purchased items i and j , but C1 has
purchased 5 additional items whereas C2 has purchased 50 additional items.
Should the fact that both of them purchased i and j contribute equally while
determining the similarity between this pair of items? There may be cases in
which the copurchasing information derived from customers that have bought
fewer items is a more reliable indicator for the similarity of two copurchased
items than the information derived from customers that tend to buy a large
number of items. This is because the first group represents consumers that are
focused in certain product areas. As our experiments in Section 6.2.1 will show,
this is often the case, and being able to take it into account improves the overall
top-N recommendation performance.

The second aspect that we need to consider has to do with whether or not
the similarity between a pair of items should be symmetric (i.e., sim(i, j ) =
sim( j , i)) or not (i.e., sim(i, j ) �= sim( j , i)). This question usually arises when
we need to compute the similarity between pairs of items that are purchased
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at substantially different frequencies. For example, consider two items i and
j such that i has been purchased significantly more frequently than j . Due
to that frequency difference, the number of times that i and j are purchased
together will be much smaller than the number of times that i is purchased
alone. What should the similarity between i and j be? From i’s point of view,
its similarity to j is low, because only a small fraction of its occurrences will
co-occur with j . However, from j ’s point of view, its similarity to i may be high,
because a large fraction of its occurrences may co-occur with i. Thus, if we
use an asymmetric similarity function, we will have that sim(i, j ) < sim( j , i).
However, if we use a symmetric function the similarity between j and i (from
j ’s point of view) will generally end up being smaller than it would be in the
asymmetric case, as it would have to account for i’s higher frequency. Each one
of these two approaches has its advantages. A symmetric similarity function
will tend to eliminate recommendations of very frequent items (that to a large
extent are obvious), as these items will tend to be recommended only if other
frequently purchased items are in the current basket. However, in datasets that
have no items that are frequently purchased by the majority of the customers, a
symmetric similarity function will unnecessarily penalize the recommendation
of items whose frequency is relatively higher than the items that have been
currently purchased by the active user.

In this study, we use two different similarity functions that are derived from
the vector-space model and probabilistic methods, respectively. The key differ-
ence between them is that the first leads to similarities that are symmetric,
whereas the second leads to similarities that are asymmetric. Furthermore, we
have modified both similarity functions so that they can weight the customers
differently based on how many products they have purchased. The details of
these functions and their modifications are provided in the rest of this section.

4.1.1.1 Cosine-Based Similarity. One way of computing the similarity be-
tween two items is to treat each item as a vector in the space of customers and
use the cosine between these vectors as a measure of similarity. Formally, if R
is the n×m user–item matrix, then the similarity between two items i and j is
defined as the cosine of the n dimensional vectors corresponding to the ith and
j th column of matrix R. The cosine between these vectors is given by

sim(i, j ) = cos( �R∗,i, �R∗, j ) =
�R∗, j · �R∗,i

‖ �R∗,i‖2‖ �R∗, j ‖2
, (1)

where ‘·’ denotes the vector dot-product operation. Note that since the cosine
function measures the angle between the two vectors it is a symmetric similarity
function. As a result, frequently purchased items will tend to be similar to other
frequently purchased items and not to infrequently purchased items, and vice
versa.

In its simplest form, the rows of R can correspond to the original binary
purchase information, in which case, the cosine similarity function treats cus-
tomers that purchase a small and a large number of items equally. However,
each one of the rows can be scaled so that the resulting cosine-based similarity
function will differentiate between these sets of customers. This can be done by
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scaling each row to be of unit length (or any other norm). The effect of this scal-
ing is that customers that have purchased fewer items will contribute a higher
weight to the dot-product in Eq. (1) than customers that have purchased more
items.

4.1.1.2 Conditional Probability-Based Similarity. An alternate way of com-
puting the similarity between each pair of items i and j is to use a measure that
is based on the conditional probability of purchasing one of the items given that
the other has already been purchased. In particular, the conditional probability
of purchasing j given that i has already been purchased P ( j |i) is nothing more
than the number of customers that purchase both items i and j divided by the
total number of customers that purchased i, that is,

P ( j |i) = Freq(i j )
Freq(i)

,

where Freq(X ) is the number of customers that have purchased the items in
the set X . Note that, in general, P ( j |i) �= P (i| j ) and using this as a measure
of similarity leads to asymmetric relations.

As discussed earlier, one of the limitations of using an asymmetric similarity
function is that each item i will tend to have high conditional probabilities with
items that are being purchased frequently. This problem has been recognized by
researchers in information retrieval and recommender systems [Salton 1989;
Breese et al. 1998; Kitts et al. 2000; Chan 1999]. The problem can be corrected
by dividing P ( j |i) with a quantity that depends on the occurrence frequency
of item j . Two different methods have been proposed for achieving this. The
first one, inspired from the inverse-document frequency scaling performed in
information retrieval systems, multiplies P ( j |i) by − log2(P ( j )) [Salton 1989],
whereas the other one divides P ( j |i) by P ( j ) [Kitts et al. 2000]. Note that this
latter method leads to a symmetric similarity function. Our experiments have
shown that this scaling greatly affects the performance of the recommender
system and that the optimal scaling degree is problem dependent. For these
reasons we use the following formula to compute the similarity between two
items:

sim(i, j ) = Freq(ij)
Freq(i) × (Freq( j ))α

, (2)

where α is a parameter that takes a value between 0 and 1. Note that, when
α = 0, Eq. (2) becomes identical to P ( j |i), whereas if α = 1, it becomes similar
(up to a scaling factor) to the formulation in which P ( j |i) is divided by P ( j ).

The similarity function as defined in Eq. (2) does not discriminate between
customers that have purchased different number of items. To achieve this dis-
crimination and give higher weight to the customers that have purchased fewer
items, we have extended the similarity measure of Eq. (2) in the following way:
First we normalize each row of matrix R to be of unit length, and then we define
the similarity between items i and j as:

sim(i, j ) =
∑

∀q:Rq, j >0
Rq, j

Freq(i) × (Freq( j ))α
. (3)
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The only difference between Eq. (3) and Eq. (2) is that instead of using the co-
occurrence frequency we use the sum of the corresponding nonzero entries of
the j th column in the user–item matrix. Since the rows are normalized to be of
unit length, customers that have purchased more items will tend to contribute
less to the overall similarity. This gives emphasis to the purchasing decisions
of the customers that have bought fewer items.

4.2 Applying the Model

The algorithm for applying the item-based model is shown in Algorithm 4.2.
The input to this algorithm is the model M, an m × 1 vector U that stores the
items that have already been purchased by the active user, and the number
of items to be recommended (N ). The active user’s information in vector U
is encoded by setting Ui = 1 if the user has purchased the ith item and zero
otherwise. The output of the algorithm is an m×1 vector x whose nonzero entries
correspond to the top-N items that were recommended. The weight of these
nonzero entries represent a measure of the recommendation strength and the
various recommendations can be ordered in non-increasing recommendation
strength weight. In most cases x will have exactly N nonzero entries; however,
the actual number of recommendations can be less than N as it depends on the
value of k used to build M and the number of items that have already been
purchased by the active user.

Algorithm 4.2: APPLYMODEL (M, U, N )

x ← M U (1)

for j ← 1 to m (2)

do
{

if Ui �= 0
then xi ← 0

for j ← 1 to m (3)

do
{

if xi �= among the N largest values in x
then xi ← 0

return (x)

The vector x is computed in three steps. First, the vector x is computed by
multiplying M with U (line 1). Note that the nonzero entries of x correspond
to the union of the k most similar items for each item that has already been
purchased by the active user, and that the weight of these entries is nothing
more than the sum of these similarities. Second, the entries of x that correspond
to items that have already been purchased by the active user are set to zero (loop
at line 2). Finally, in the third step, the algorithm sets to zero all the entries of
x that have a value smaller than the N largest values of x (loop at line 3).

One potential drawback with Algorithm 4.2 is that the raw similarity be-
tween each item j and its k most similar items may be significantly different.
That is, the item neighborhoods are of different density. This is especially true
for items that are purchased somewhat infrequently, since a moderate overlap
with other infrequently purchased items can lead to relatively high similarity
values. Consequently, these items can exert strong influence in the selection
of the top-N items, sometimes leading to wrong recommendations. For this
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reason, instead of using the actual similarities computed by the various
methods described in Section 4.1.1, for each item j we first normalize the
similarities so that they add-up to one. That is, ‖M∗, j ‖ = 1, for j = 1, . . . , m.
As the experiments presented in Section 6 show, this always improves the
top-N recommendation quality.

4.3 Computational Complexity

The computational complexity of the item-based top-N recommendation algo-
rithm depends on the amount of time required to build the model M (i.e., for
each item identify the other k most similar items), and the amount required to
compute the recommendation using this model.

During the model building phase we need to compute the similarity between
each item j and the other items in R and then select the k most similar items.
The upper bound on the complexity of this step is O(m2n) as we need to com-
pute m(m − 1) similarities, each potentially requiring n operations. However,
the actual complexity is significantly smaller because the resulting item-to-
item similarity matrix is extremely sparse. In our datasets, the item-to-item
similarity matrix was generally more than 99% sparse. The reason for these
sparsity levels is that each customer purchases a relatively small number of
items and the items they purchase tend to be clustered. Consequently, by using
sparse data structures to store R and only computing the similarities between
pairs of items that are purchased by at least one customer we can substantially
reduce the computational complexity.

Finally, the time required to compute the top-N recommendations for an
active user that has purchased q items is given by O(kq) because we need to
access the k most similar items for each one of the items that the user has
already purchased and identify the overall N most similar items.

5. HIGHER-ORDER ITEM-BASED TOP-N RECOMMENDATION ALGORITHMS

Our discussion so far has focused on item-based top-N recommendation algo-
rithms in which the recommendations were computed by taking into account
relations between pairs of items, that is, for each item in the active user’s bas-
ket, similar items were determined and these similar items were aggregated
to obtained the desired top-N recommendations. These schemes effectively ig-
nore the presence of other items in the active user’s basket while computing
the k most similar items for each item. Even though this allows such schemes
to be computationally efficient, they can potentially lead to suboptimal recom-
mendations when the joint distribution of a set of items is different from the
distributions of the individual items in the set.

To solve this problem, we developed item-based top-N recommendation
schemes that use all combinations of items (i.e., itemsets) up to a particular
size l when determining the set of items to be recommended to a user. In this
approach, during the model building phase, instead of only determining the k
most similar items for each individual item, we do so for all possible itemsets
up to a particular size l . During the model application time, we compute the
top-N recommendations by combining these sets of k item-neighborhoods not
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just for individual items, but for all itemsets up to size l that are present in the
active user’s basket.

We will refer to the parameter l as the order of the item-based model, and we
will refer to this class of item-based top-N recommendation algorithms as the
interpolated higher-order models. When l = 1, the above scheme becomes iden-
tical to the one described in Section 4 and for this reason we will sometimes refer
to it as the first-order model. The name, interpolated, was motivated by the in-
terpolated Markov models used in DNA sequence analysis [Delcher et al. 1998]
and is used to indicate that the final predictions are computed by combining
models that use itemsets of different size (i.e., the final solution is an interpola-
tion of predictions computed by models that use one, two, . . ., up to l itemsets).

The remainder of this section describes these higher-order item-based top-N
recommendation algorithms in detail and discusses various issues associated
with their efficient implementation.

5.1 Building the Model

During the model building phase we use the algorithm shown in Algorithm 5.1
to compute l different model matrices M1, M2, . . . , Ml of size m × m, m ×
m2, . . . , m × ml , respectively. For a particular value of r, Mr is constructed by
generating all possible combinations of r items {q1, q2, . . . , qr} (loop at line 1),
computing the similarity between these sets and all the other m items in the
dataset (loop at line 2), and among them retaining only the k largest similarities
in the corresponding columns of Mr (loop at line 3).

Algorithm 5.1: BUILDHIGHERORDERMODEL (R, l , k)
for r ← 1 to l

do




for j ← 1 to mr

do




for i ← 1 to r (1)
do

{
qi ← (( j mod mr−i+1) div mr−i) + 1

for i ← 1 to m (2)

do




if i /∈ {q1, . . . , qr}
then Mr

i, j ← sim({R∗,q1 , . . . , R∗,qr }, R∗,i)
else M j , j ← 0

for i ← 1 to m (3)

do
{

if Mr
i, j �= among the k largest values in Mr

∗, j

then Mr
i, j ← 0

return M1, M2, . . . , Ml

5.1.1 Itemset-Item Similarity. As in the first-order model, the key step in
the proposed higher-order item-based top-N recommendation algorithm is the
method used to determine the similarity between an itemset and the various
items of the dataset. In our scheme these similarities are computed by using
relative straightforward extensions of the cosine- and conditional probability-
based approaches described in Section 4.1.1.

Specifically, the similarity between an itemset {q1, q2, . . . , qr} and an other
item u is computed as follows. In the case of the cosine-based approach, we first
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construct an n-element vector �v such that

�v(i) =




0, if at least one of the Ri,qj = 0 for j = 1, 2, . . . , r,
r∑

j=1

Ri,q j

‖R∗,q j ‖2
, otherwise.

Essentially, �v is the sum of the individual unit-length normalized item-vectors
of the items in the itemset with the added constraint that if a particular row of
the matrix does not contain all r items it will be set to zero. Using this vector,
the cosine similarity between the itemset represented by �v and the item u is
computed using Eq. (1).

In the case of the conditional probability-based approach, the similarity is
computed using an approach similar to Eq. (3) as follows:

sim({q1, q2, . . . , qr}, u) =

∑
∀i:Ri,q j >0,for j=1,2,...,r

Ri,q1

Freq({q1, q2, . . . , qr}) × (Freq(u))α
. (4)

Note that Freq({q1, q2, . . . , qr}) is the number of rows in the matrix that contain
all the items in the set. Also, since the rows of the user–item matrix R have
been normalized to be of unit length Ri,q1 = Ri,q2 = · · · = Ri,qr .

5.2 Applying the Model

The top-N recommendations for an active user are computed using the algo-
rithm shown in Algorithm 5.2, where M1, . . . , Ml are the different model ma-
trices, U is the m×1 vector storing the items that have already been purchased
by the user, and N is the number of items to be recommended. The format of U
and the format of the returned vector are identical to that used by the earlier
item-to-item similarity algorithm (Algorithm 4.2).

Algorithm 5.2: APPLYHIGHERORDERMODEL (M1, M2, . . . , Ml , U, N )

for r ← 1 to l (1)

do




for j ← 1 to mr

do




for i ← 1to r
do

{
qi ← (( j mod mr−i+1) div mr−i) + 1

if Uq1 == 1and Uq2 == 1 and · · ·Uqr == 1
then Ur

j ← 1
else Ur

j ← 0

x ← ∑l
r=1 M

rUr (2)

for j ← 1 to m (3)

do
{

if Ui �= 0
then xi ← 0

for j ← 1 to m (4)

do
{

if xi �= among the N largest values in x
then xi ← 0

return (x)
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Algorithm 5.2 first generates l different vectors U 1, U 2, . . . , Ul of size m ×
1, m2×1, . . . , ml ×1, respectively (loop at line 1). For a particular value of r, Ur is
constructed by generating every possible combination of r items {q1, q2, . . . , qr}
and setting the corresponding entry of Ur to one if the active user has purchased
all of these items and zero otherwise. Note that the row-index j of each itemset
is constructed so that it is identical to the column-index of the same itemset
used to populate the corresponding Mr matrix. The algorithm then computes
the vector x by adding the various matrix-vector products of the corresponding
Mr and Ur pairs (line 2). Finally, the algorithm proceeds to first filter out the
items that the active user has already purchased (loop at line 3) and then retain
only the N most similar items (loop at line 4).

5.3 Practical Considerations

Unfortunately, the higher-order item-based models described in the previous
section are not computationally feasible because the model parameters that we
need to compute and store (i.e., the k most similar items of the various itemsets)
grows exponentially with the order of the model. Moreover, for most datasets,
the occurrence frequency of many of these itemsets will be either zero or very
small making it impossible to accurately estimate the k most similar items for
each itemset. For this reason, our higher-order algorithms do not compute and
store the itemset-to-item similarities for all itemsets but only for those itemsets
that occur a sufficiently large number of times in the user–item matrix R. In
particular, using the notion of frequent itemsets [Agrawal et al. 1993, 1996]
developed by the data mining community, we use a computationally efficient
algorithm [Seno and Karypis 2001] to find all frequent itemsets up to size l that
occur in σ% of the rows (i.e., transactions), and compute the k most similar other
items only for these frequent itemsets. Note that the threshold σ is commonly
referred to as the minimum support constraint.

The frequent-itemset based approach solves the issues associated with com-
putational complexity but introduces two new problems. First, we need to de-
velop a method that can be used to select the value of the minimum support
constraint. A high value will result in a higher-order scheme that uses very few
itemsets and as such it does not utilize its full potential, whereas a low value
may lead to an exponentially large number of itemsets, making it computation-
ally intractable. Unfortunately, there are no good ways to a priori select the
value of support. This is because for a given value of σ the number of frequent
itemsets that exist in a dataset depends on the dataset’s density and the item
co-occurrence patterns in the various rows. The same support value can lead to
very few patterns in one dataset and a huge number of patterns in another. For
this reason, selecting the right value of σ may require extensive experimen-
tation to obtain a good balance between computational efficiency and top-N
recommendation quality.

Second, since our higher-order models now only contain information about a
small subset of the possible itemsets, there may be a number of itemsets that
can be constructed from the items present in the active user’s basket U that
are not present in the model. One solution to this problem may be to just ignore
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those itemsets while computing top-N recommendations. Such an approach is
similar in spirit to some of the association rule-based top-N recommendation
algorithms that are described in the related research section (Section 3) that
have been shown to actually perform worse [Demiriz 2001] than the first-order
item-based schemes described in Section 4. One of the reasons why such an
approach may not be advisable is that if we consider the contributions that
each item in U makes in determining the top-N recommended items, items
that appear in frequent itemsets will tend to contribute more that items that
do not. For example, an item that is present in a size-two and a size-three
frequent itemset will have been used to determine the k most similar items
of three different contributors to the final result (i.e., the k-most similar lists
of the item itself and its size-two and size-three itemsets). However, an item
that is not present in any frequent itemset will only contribute once to the final
result. This creates an asymmetry on how the different items of a user’s basket
are used that can lead to relatively poor top-N recommendation performance.

For this reason, while computing the top-N recommendations for an active
user we do not ignore any infrequent itemsets that it contains but use informa-
tion from the first-order model to derive an approximation of its k most similar
items. This is done as follows. For each infrequent itemset {u, v, w} that is de-
rived from U , our algorithm treats it as a new basket and computes a top-k
recommendation using the information from the first-order model (i.e., the k
most similar items of each item). The weights associated with these top-k rec-
ommended items are scaled to be of unit length (for the same reasons discussed
in Section 4.2) and are used as the k-most similar items for that itemset. Thus,
by using such an approach our algorithm does not discriminate between items
that are present in frequent itemsets and items that are not, while still main-
taining the computational advantages of building higher-order models based
only on frequent itemsets.

6. EXPERIMENTAL RESULTS

In this section, we experimentally evaluate the item-based top-N recommenda-
tion algorithms and compare their performance against the performance of the
user-based top-N recommendation algorithm. All experiments were performed
on a Intel Xeon based workstation running at 1.7GHz, 1GBytes of memory, and
Linux-based operating system.

6.1 Experimental Design and Metrics

To evaluate the quality of the top-N recommendations, we split each of the
datasets into a training and test set by randomly selecting one of the nonzero
entries of each row to be part of the test set, and used the remaining entries for
training.1 For each user we obtained the top-N recommendations by using the
items present in the training set as the basket for that user. In the case of the
item-based algorithms, the top-N recommendations were computed using only
the training set to build the item similarity models. Similarly, in the case of

1Our datasets were such that each row had at least two nonzero entries.
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the user-based algorithms, the nearest neighbors and top-N recommendations
were computed only using the training set.

The quality was measured by looking at the number of hits and their position
within the top-N items that were recommended by a particular scheme. The
number of hits is the number of items in the test set that were also present
in the top-N recommended items returned for each user. We computed two
quality measures that we will refer to them as the hit-rate (HR) and the average
reciprocal hit-rank (ARHR) that are defined as follows. If n is the total number of
customers/users, the hit-rate of the recommendation algorithm was computed
as:

hit-rate (HR) = Number of hits
n

. (5)

An HR value of 1.0 indicates that the algorithm was able to always recom-
mend the hidden item, whereas an HR value of 0.0 indicates that the algorithm
was not able to recommend any of the hidden items. One limitation of the hit-
rate measure is that it treats all hits equally regardless of where they appear
in the list of the top-N recommended items. That is, a hit that occurs in the first
position is treated equally with a hit that occurs in the N th position. This lim-
itation is addressed by the average reciprocal hit-rank measure that rewards
each hit based on where it occurred in the top-N list. If h is the number of hits
that occurred at positions p1, p2, . . . , ph within the top-N lists (i.e., 1 ≤ pi ≤ N ),
then the average reciprocal hit-rank is equal to

average reciprocal hit-rank (ARHR) = 1
n

h∑
i=1

1
pi

. (6)

That is, hits that occur earlier in the top-N lists are weighted higher than hits
that occur later in the list. The highest value of ARHR is equal to the hit-rate
and occurs when all the hits occur in the first position, whereas the lowest value
of the ARHR is equal to hit-rate/N when all the hits occur in the last position
in the list of the top-N recommendations.

In order to ensure that our results are not sensitive to the particular training-
test partitioning of each dataset, for each of the experiments we performed ten
different runs, each time using a different random partitioning into training
and test sets. The results reported in the rest of this section are the averages
over these ten trials. Furthermore, to better compare the various results we
used two different statistical tests to compare the averages obtained from the
ten different random partitionings that are based on the paired t-test for pair-
wise comparisons and on the Bonferroni test for multiple comparisons. Both
tests were performed at a 95% confidence interval.

Finally, in all of experiments we used N = 10 as the number of items top be
recommended by the top-N recommendation algorithms.

6.2 Evaluation on Real Datasets

We evaluated the performance of the different top-N recommendation al-
gorithms using eight different datasets whose characteristics are shown in
Table I. For each dataset, this table shows the number of users, the number
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Table I. The Characteristics of the Various Datasets used in Evaluating the
top-N Recommendation Algorithms

Number of Number of Number of Average
Name Users Items Transactions Density Basket Size
ctlg1 58565 502 209715 0.71% 3.58
ctlg2 23480 55879 1924122 0.15% 81.95
ctlg3 58565 39080 453219 0.02% 7.74
ccard 42629 68793 398619 0.01% 9.35
ecmrc 6667 17491 91222 0.08% 13.68
em 8002 1648 769311 5.83% 96.14
ml 943 1682 100000 6.31% 106.04
skill 4374 2125 82612 0.89% 18.89

of items, and the total number of transactions (i.e., nonzeros in the resulting
user–item matrix). In addition, the column labeled “Density” shows the percent-
age of nonzero entries in the user–item matrix and the column labeled “Avg.
Basket Size” shows that average number of items in each transaction.

These datasets can be broadly classified into two categories. The first cate-
gory (containing the first five datasets) was derived from customer purchasing
transactions and is typical of datasets arising in e-commerce and traditional
marketing applications of top-N recommender systems. Specifically, the ctlg1,
ctlg2, and ctlg3 datasets correspond to the catalog purchasing transactions of
two major mail-order catalog retailers. Note that ctlg1 and ctlg3 correspond to
the same set of transactions but they differ on what constitutes an item. The
items of ctlg3 correspond to individual products, whereas the items of ctlg1
correspond to the top-level product categories, that is, a particular nonzero en-
try in the user–item matrix is a transaction indicating that a particular user
has purchased an item from a particular product category. The ecmrc dataset
corresponds to web-based purchasing transactions of an e-commerce site. The
ccard dataset corresponds to credit card purchasing transactions of a major
department store’s credit card.

The second category (containing the remaining datasets) was obtained from
two different application areas and corresponds to non-traditional uses of top-
N recommender systems. In particular, the em and ml datasets correspond to
movie ratings and were obtained from the EachMovie [McJones and DeTreville
1997] and the MovieLens [MovieLens 2003] research projects, respectively. Note
that these two datasets contain multi-value ratings that indicate how much
each user liked a particular movie or not. For the purpose of our experiments
we ignored the values of these ratings and treated them as an indication that the
user has seen that particular movie. By performing this conversion we focus on
the problem of predicting whether or not a user will see a particular movie and
not whether or not he or she will like it. Finally, the skill dataset corresponds
to the information technology related skills that are present in the resumes
of various individuals and were obtained from a major online job portal. The
top-N recommendation problem in this dataset is that of predicting a set of
other related skills that can potentially act as a suggestion to the user on how
to improve his or her career.
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Table II. The Effect of the Similarity Normalization on the Recommendation Quality Achieved
by the First-Order Cosine- and Conditional Probability-Based Recommendation Algorithms

Top-10 Hit-Rate Top-10 Average Reciprocal Hit-Rank

Cosine Cond. Probability Cosine Cond. Probability

SNorm+ SNorm− SNorm+ SNorm− SNorm+ SNorm− SNorm+ SNorm−
ctlg1 0.406 0.396 0.415 0.404 0.208 0.203 0.213 0.206
ctlg2 0.147 0.143 0.154 0.127 0.070 0.069 0.074 0.064
ctlg3 0.534 0.529 0.540 0.515 0.315 0.310 0.320 0.303
ccard 0.162 0.160 0.176 0.167 0.119 0.118 0.130 0.126
ecmrc 0.170 0.166 0.174 0.174 0.096 0.093 0.098 0.097
em 0.407 0.400 0.405 0.395 0.189 0.186 0.189 0.183
ml 0.271 0.264 0.272 0.249 0.119 0.115 0.119 0.110
skill 0.370 0.358 0.373 0.313 0.178 0.172 0.178 0.151

Bold-faced entries correspond to schemes that perform statistically better at 95% confidence interval using the
paired t-test.

6.2.1 Parameter Evaluation. Since there are a number of alternative op-
tions that control the various aspects of the proposed item-based top-N recom-
mendation algorithm, it is not possible to provide an exhaustive comparison
of all possible combinations without making this article unduly large. Instead,
we provide comparisons of different alternatives for each option after making
a reasonable choice for the other options.

6.2.1.1 Effect of Similarity Normalization. Our first experiment was de-
signed to evaluate the effect of the similarity normalization that is discussed in
Section 4.2. Table II shows the HR and ARHR results achieved by four dif-
ferent item-based recommendation algorithms. Two of them use the cosine
as the similarity function whereas the other two use the conditional prob-
ability. The difference between each pair of algorithms is that one does not
normalize the similarities (those labeled “SNorm–’) whereas the other normal-
izes them (those labeled “SNorm+”). For all four algorithms, the rows of the
matrix were normalized so that they are of unit length, k (the number of near-
est items to use in the model) was set to 20, and a value of α = 0.5 was used
for the schemes that are based on the conditional probability-based approach.
In addition, all of these schemes correspond to first-order item-based models.

Looking at the results in Table II, we can see that the algorithms that use
similarity normalization achieve better results (both in terms of HR and ARHR)
compared to their counterparts that do not use such normalization. As we can
see from these results, in all cases the scheme that normalizes the similarity
values performs better than the scheme that does not. The actual improvement
is dataset and algorithm dependent. In general, the relative improvements
tend to be higher for the conditional probability based scheme than the cosine-
based scheme. On average, the HR of the cosine-based scheme improves by
2.15%, whereas the HR of the conditional probability-based scheme improves
by 7.85%. Similar trends are observed when comparing the performance of the
various algorithms using the ARHR measure. To ensure that these differences
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Table III. The Effect of Row Normalization on the Recommendation Quality Achieved by the
Cosine- and Conditional Probability-Based Recommendation Algorithms

Top-10 Hit-Rate Top-10 Average Reciprocal Hit-Rank

Cosine Cond. Probability Cosine Cond. Probability

RNorm+ RNorm− RNorm+ RNorm− RNorm+ RNorm− RNorm+ RNorm−
ctlg1 0.406 0.406 0.415 0.406 0.208 0.208 0.213 0.208
ctlg2 0.147 0.143 0.154 0.143 0.070 0.069 0.074 0.069
ctlg3 0.534 0.536 0.540 0.536 0.315 0.317 0.320 0.317
ccard 0.162 0.179 0.176 0.179 0.119 0.132 0.130 0.132
ecmrc 0.170 0.173 0.174 0.173 0.096 0.097 0.098 0.097
em 0.407 0.395 0.405 0.395 0.189 0.186 0.189 0.186
ml 0.271 0.261 0.272 0.260 0.119 0.112 0.119 0.112
skill 0.370 0.344 0.373 0.344 0.178 0.165 0.178 0.165

For each experiment, bold-faced entries correspond to schemes that perform statistically better using the paired
t-test.

are statistically significant we tested them using the paired t-test. Table II
highlights with a bold-faced font the HR and ARHR entries of the scheme that
is significantly better than the others. As we can see from these results, for all
datasets, the differences are indeed statistically significant. Due to this perfor-
mance advantage in the rest of our experiments, we will always use similarity
normalization.

6.2.1.2 Effect of Row Normalization. The second experiment was designed
to evaluate the effect of row-normalization so that customers that purchase
many items will weigh less during the item similarity calculations. Table III
shows the HR and ARHR achieved by four different item-based recommenda-
tion algorithms. Two of them use the cosine as the similarity function whereas
the other two use the conditional probability. The difference between each pair
of algorithms is that one does not normalize the rows (those labeled “RNorm−”)
whereas the other normalizes them (those labeled “RNorm+”). Also, the entries
in Table III that correspond to the schemes that perform statistically better
based on the paired t-test are highlighted using a bold-faced font. For all ex-
periments k was set to 20, and for the two conditional probability-based algo-
rithms, a value of α = 0.5 was used. In addition, all of these schemes correspond
to first-order item-based models.

From the results in Table III we can see that on average, the row-normalized
version performs somewhat better for both the cosine- and the conditional
probability-based schemes. Specifically, the average improvement in terms of
HR for all eight datasets is 0.69% for the cosine- and 3.05% for conditional
probability-based scheme. Similar observations can be made by looking at the
ARHR results as well. Comparing the statistical significance of these results, we
can see that for the conditional probability-based scheme the scheme that nor-
malizes the rows performs statistically better on seven out of the eight datasets.
However, in the case of the cosine-based scheme there is a certain amount of
variation in which scheme performs statistically better, and some of these im-
provements are not statistically significant. Because of these improvements in
the rest of our experiments we will always use row normalization.
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Fig. 1. The HR and ARHR as a function of the number of most similar items (k) used in computing
the top-N recommendations for the cosine- and conditional probability-based recommendation
algorithms. The error bars associated with each dataset correspond to the minimum required
difference in either HR or ARHR in order for two schemes to be statistically different.

6.2.1.3 Model Size Sensitivity. Recall from Section 4.1 that the item-based
recommendations are computed using a model that utilizes the k most simi-
lar items for each one of the different items. To evaluate the sensitivity of the
different algorithms on the value of k we performed an experiment in which
we let k take the values of 10, 20, 30, 40, and 50. The recommendation perfor-
mance in terms of HR and ARHR for these experiments is shown in Figure 1
for the cosine- and conditional probability-based algorithms. For each dataset
Figure 1 also shows the minimum required difference in the respective per-
formance measure in order for a particular value of k to perform significantly
better (or worse) than the remaining k values. These differences were computed
using the Bonferroni test and are shown using the error-bars. For both classes
of algorithms we used the first-order models and in the case of the conditional
probability-based schemes the experiments were performed using a value of
α = 0.5.

As we can see from these experiments, the overall recommendation accuracy
of the item-based algorithms does tend to improve as we increase the value
of k. The only exception is the ctlg2 dataset for which both the HR and the
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ARHR tend to consistently decrease as we increase k. Overall, the average
HR for the cosine-based algorithm improves by 1.8% as we vary k from 10 to
50 items; whereas in the case of the conditional probability-based algorithm
the average improvement in HR is 0.65%. Similar minor improvements are
achieved in terms of ARHR as well. However, as the figure illustrates, most of
these improvements are not statistically significant and no particular value
of k dominates the rest. These results indicate that (i) even for small values
of k the item-based recommendation algorithms provide reasonably accurate
recommendations; and (ii) increasing the value of k does not lead to signifi-
cant improvements. This is particularly important since small values of k lead
to fast recommendation rates (i.e., low computational requirements) without
materially affecting the overall quality of the recommendations. Note that the
diminishing incremental improvements achieved by increasing the value of k
are a direct consequence of the fact that we are only looking for 10 recommended
items (i.e., N = 10). As a result, once k is sufficiently large, to ensure that the
various item-to-item lists have sufficient common items, any further increases
in k will not change the order of the top-N items.

6.2.1.4 Item Frequency Scaling Sensitivity. One of the parameters of the
conditional probability-based top-N recommendation algorithm is the value of
α used to control the extent to which the similarity to frequently purchased
items will be de-emphasized. To study the sensitivity of the recommendation
algorithm on this parameter we performed a sequence of experiments in which
we varied α from 0.0 to 1.0 in increments of 0.1. Figure 2 shows the HR and
ARHR achieved on the various datasets for the different values of α. As with
the results of the previous study, the minimum required differences computed
using the Bonferroni test are shown using error bars. Note that these results
were obtained using the first-order item-based model and k = 20.

From these results we can see that for all datasets the value of α has a sig-
nificant impact on the recommendation quality, as different values of α lead
to substantially different values of HR and ARHR. Despite this variability, for
almost all datasets, if 0.3 ≤ α ≤ 0.6, then the conditional probability-based
scheme achieves consistently good performance. Also note that as we increase
the value of α, the changes in the HR and ARHR are fairly smooth, and follow
a ∩-shaped curve. This suggests that the optimal value of α can be easily es-
timated for each particular dataset by hiding a portion of the training set and
using it to find the value of α that leads to the highest HR or ARHR. Moreover,
since the values of α that lead to both the highest HR or ARHR values are con-
sistent for most of the datasets, we can learn the value of α that optimizes one
of the two measures as it will also lead to optimal or near-optimal performance
with respect to the other measure.

A further study of the values of α that lead to the highest HR and ARHR
values and the properties of the various datasets used in our experiment reveal
another interesting trend. If we compare the highest HR value to the HR value
achieved for α = 0.0 we see that for ctlg1, ccard, ecmrc, and ctlg3, the highest
value is usually less than 3.2% better than that for α = 0.0. On the other
hand, the improvement for skill, em, ctlg2, and ml ranges from 16% to 91%.
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Fig. 2. The HR and ARHR as a function of the item-frequency-based scaling achieved by the α

parameter for conditional probability-based recommendation algorithms. The error bars associated
with each dataset correspond to the minimum required difference in either HR or ARHR in order
for two schemes to be statistically different.

Similar trends can be observed by focusing on the ARHR measure. Thus, there
is a group of datasets for which there is a clear benefit in trying to optimize
the value of α. Moreover, the datasets for which we achieve significant HR (or
ARHR) improvements are those datasets that according to the statistics shown
in Table I have some of the highest densities and the largest number of items
per user.

6.2.1.5 Model Order Sensitivity. Our experiments so far focused on first-
order item-based top-N recommendation algorithms. However, as discussed
in Section 5, both the cosine- and the conditional probability-based schemes
can be extended to higher order-models by using frequent itemsets of different
length and using an interpolating approach to combine the recommendations
performed by the different models. Table IV shows the HR and the ARHR results
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Table IV. The Recommendation Quality as a Function of the Order of the Model that is Used

Top-10 Hit-Rate

Name σ (%) F2 F3 Cos1 Cos2 Cos3 CPrb1 CPrb2 CPrb3 RqDiff
ctlg1 0.1 868 486 0.406 0.405 0.406 0.415 0.414 0.416 0.0039
ctlg2 5.0 764 835 0.147 0.147 0.147 0.154 0.154 0.154 0.0048
ctlg3 0.05 2150 1437 0.534 0.535 0.535 0.540 0.540 0.540 0.0022
ccard 0.01 3326 2056 0.162 0.162 0.162 0.176 0.175 0.175 0.0022
ecmrc 0.01 255 112 0.170 0.170 0.170 0.174 0.174 0.174 0.0094
em 20.0 4077 52434 0.407 0.419 0.416 0.405 0.418 0.415 0.0108
ml 10.0 9921 87090 0.271 0.267 0.270 0.272 0.279 0.275 0.0284
skill 1.0 4485 16820 0.370 0.361 0.367 0.373 0.380 0.379 0.0191

Top-10 Average Reciprocal Hit-Rank

Name σ (%) F2 F3 Cos1 Cos2 Cos3 CPrb1 CPrb2 CPrb3 RqDiff
ctlg1 0.1 868 486 0.208 0.208 0.208 0.213 0.213 0.214 0.0037
ctlg2 5.0 764 835 0.070 0.070 0.070 0.074 0.074 0.074 0.0035
ctlg3 0.05 2150 1437 0.315 0.316 0.315 0.320 0.320 0.321 0.0027
ccard 0.01 3326 2056 0.119 0.118 0.119 0.130 0.128 0.129 0.0013
ecmrc 0.01 255 112 0.096 0.095 0.096 0.098 0.098 0.098 0.0031
em 20.0 4077 52434 0.189 0.201 0.200 0.189 0.199 0.197 0.0052
ml 10.0 9921 87090 0.119 0.114 0.118 0.119 0.120 0.119 0.0143
skill 1.0 4485 16820 0.178 0.172 0.176 0.178 0.184 0.184 0.0130

Underlined entries correspond to the higher-order schemes that perform statistically better than the correspond-
ing first-order scheme.

obtained by using such higher-order interpolated models for both the cosine-
and the conditional probability-based approaches. In particular, Table IV shows
the results obtained by a first-, second-, and third-order interpolated models.
Note that the first-order model results are identical to those presented in the
previous sections.

One of the key parameters of higher-order models is the support threshold (σ )
used by the frequent pattern discovery algorithm to identify the frequent item-
sets to be used in the models. We used different values of the support threshold
for each dataset depending on the density and the degree to which different
items co-occur in the different datasets. These values are shown in the second
column of Table IV. They were selected so that (i) they lead to a reasonable
number of frequent itemsets and (ii) each frequent itemset has a sufficiently
large support to ensure the statistical significance of the similarities that are
computed between an itemset and the remaining items. The actual number of
frequent size-two and size-three frequent itemsets that were discovered and
used to build the interpolated second- and third-order models are shown in the
columns labeled “F2” and “F3”, respectively. The last column in these tables (la-
beled “Reqd. Diff”) shows the minimum difference of the respective performance
measure that is required in order for two schemes to be statistically different
from each other using the Bonferroni test. For all experiments k was set to 20,
and for the conditional probability-based algorithms we used a value of α = 0.5.

As we can see from these results, higher-order item-based models do not lead
to any significant improvements in either HR or ARHR. For most datasets, the
results obtained across the different schemes (i.e., 1st-, 2nd-, and 3rd-order
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Table V. The Quality of the Recommendations Obtained by the Naive,
the Item-Based, and the User-Based Recommendation Algorithm

Top-10 Hit-Rate

User Frequent Cosine CProb-α = 0.5 CProb-α =Opt
ctlg1 0.398 0.215 0.406 0.415 0.421
ctlg2 0.150 0.025 0.147 0.154 0.155
ctlg3 0.494 0.030 0.534 0.540 0.549
ccard 0.158 0.079 0.162 0.176 0.198
ecmrc 0.178 0.029 0.170 0.174 0.191
em 0.453 0.367 0.407 0.405 0.412
ml 0.281 0.131 0.271 0.272 0.276
skill 0.384 0.238 0.370 0.373 0.373

Top-10 Average Reciprocal Hit-Rank

User Frequent Cosine CProb-α = 0.5 CProb-α =Opt
ctlg1 0.206 0.080 0.208 0.213 0.214
ctlg2 0.076 0.009 0.070 0.074 0.074
ctlg3 0.298 0.010 0.315 0.320 0.324
ccard 0.119 0.066 0.119 0.130 0.140
ecmrc 0.095 0.012 0.096 0.098 0.105
em 0.221 0.169 0.189 0.189 0.191
ml 0.128 0.046 0.119 0.119 0.119
skill 0.189 0.091 0.178 0.178 0.178

models) are very similar or within less than 1% of each other, which according
to the Bonferroni test is not statistically significant. The only datasets for which
higher-order models, and the second-order model in particular, did somewhat
better than the first-order model are the em, ml, and skill datasets. In particular,
the second-order model improved the HR in the above datasets by 1.8% to 3.2%,
and the ARHR by 3.3% to 6.3%. Also note that these three datasets are the ones
that contain the most size-two and size-three frequent itemsets, suggesting that
when a particular dataset contains a sufficient number of frequent itemsets, the
higher-order models can improve the quality of the top-N recommendations.
However, among these datasets, only the improvements achieved for the em
dataset (corresponding to the underlined entries) are statistical significant.

6.2.2 Overall Comparisons. To compare the performance of the various
item-based recommendation algorithms against each other and with that
achieved by user-based algorithms we performed an experiment in which we
computed the top-N recommendations using both the item-based and the user-
based recommendation algorithms. The results from these experiments are
shown in Table V. The user-based recommendations were obtained using the
algorithm described in Herlocker et al. [1999] and Sarwar et al. [2000] with
user-neighborhoods of size 50 and unit-length normalized rows. We used a
similarity-weighted approach to determine the frequency of each item, and we
did not include neighbors that had an identical set of items as the active item
(as these neighbors do not contribute at all in the recommendation).

Table V includes three different sets of item-based results obtained with
k = 20. The results labeled “Cosine” correspond to the cosine-based results.
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The results labeled “CProb-α = 0.5” correspond to the conditional probability-
based algorithm in which α was set to 0.5. The results labeled “CProb-α = Opt”
correspond to the conditional probability-based algorithm that uses the value
of α that achieved the highest performance in the experiments discussed in
Section 6.2.1 for each dataset. All the item-based results were obtained using
the first-order models. Table V also includes the top-N recommendation quality
achieved by the naive algorithm, labeled “Frequent”, which recommends the N
most frequent items not already present in the active user’s set of items.

Comparing the performance achieved by the item-based schemes with that
achieved by the user-based scheme we can see that the cosine-based scheme
performs better than the user-based scheme in three out of the eight datasets,
whereas the conditional probability-based schemes that use α = 0.5 and
α = Opt outperform the user-based scheme in four out of eight and five out of
eight datasets, respectively. On average, the cosine-based scheme does 1.15%
and 4.04% worse than the user-based scheme in terms of HR and ARHR, re-
spectively; the conditional probability-based scheme with α = 0.5 does 1.10%
better and 1.30% worse than the user-based scheme in terms of HR and ARHR,
respectively; whereas the conditional probability-based scheme with the best
choice for α does 4.65% and 1.29% better than the user-based scheme in terms
of HR and ARHR, respectively. In general, all three item-based schemes seem to
do worse than the user-based scheme for the denser datasets (e.g., skill, em, and
ml), and do better for the sparser datasets (e.g., ccard, ecmrc, and ctlg3). Also
the performance of the item-based schemes relative to the user-based scheme
is somewhat worse when measured in terms of ARHR instead of HR. This sug-
gests that in the case of user-based schemes the hidden items (i.e., hits) occur
earlier in the list of top-N recommended items, even if in some cases the ag-
gregate number hidden items that were able to recommend is smaller than the
total number recommended by the item-based schemes.

Comparing the results achieved by the various item-based schemes we can
see that the schemes based on conditional probability perform better than
those based on cosine similarity. On average, in terms of HR, the conditional
probability-based scheme with α = 0.5 does 2.5% better than the cosine-based
scheme, whereas the scheme using the optimal value of α performs 5.9% better.
Finally, both the user- and item-based algorithms produce recommendations
whose quality is substantially better than the recommendations produced by
the naive “Frequent” algorithm.

To ensure that the above comparisons are significant we used the paired t-
test to determine the number of datasets in which one scheme outperforms
the other at a confidence interval of 95%. The results of this analysis are
shown in Table VI for both the HR and the ARHR measures. Each entry in
these two 5 × 5 tables contains three numbers that correspond to the num-
ber of datasets in which the scheme corresponding to the row performed sta-
tistically better, the same, or worse than the scheme corresponding to the
column, respectively. As we can see from these results, in almost all cases,
the performance differences between each pair of schemes are statistically
significant.
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Table VI. Statistical Significance Comparisons of the Various top-N
Recommendation Algorithms Using the Paired t-Test

Top-10 Hit-Rate

User Frequent Cosine CProb-α = 0.5 CProb-α =Opt
User — 8, 0, 0 5, 0, 3 4, 0, 4 3, 0, 5
Frequent 0, 0, 8 — 0, 0, 8 0, 0, 8 0, 0, 8
Cosine 3, 0, 5 8, 0, 0 — 1, 1, 6 0, 0, 8
CProb-α=0.5 4, 0, 4 8, 0, 0 6, 1, 1 — 0, 1, 7
CProb-α=Opt 5, 0, 3 8, 0, 0 8, 0, 0 7, 1, 0 —

Top-10 Average Reciprocal Hit-Rank

User Frequent Cosine CProb-α = 0.5 CProb-α =Opt
User — 8, 0, 0 4, 1, 3 4, 0, 4 4, 0, 4
Frequent 0, 0, 8 — 0, 0, 8 0, 0, 8 0, 0, 8
Cosine 3, 1, 4 8, 0, 0 — 1, 2, 5 0, 2, 6
CProb-α=0.5 4, 0, 4 8, 0, 0 5, 2, 1 — 0, 3, 5
CProb-α=Opt 4, 0, 4 8, 0, 0 6, 2, 0 5, 3, 0 —

The three numbers in each cell show the number of datasets in which the scheme corresponding
to the row performed statistically better, the same, or worse than the scheme corresponding to the
column.

Table VII. The Computational Requirements for Computing the top-N
Recommendations for Both the User- and Item-Based Algorithms

User-based Item-based

Name RcmdTime RcmdRate ModelTime RcmdTime RcmdRate
ctlg1 62.68 934 0.10 0.16 366031
ctlg2 83.53 281 19.35 1.82 12901
ctlg3 13.57 4315 0.69 0.78 75083
ccard 17.59 2427 0.98 0.79 53960
ecmrc 0.48 13889 0.10 0.08 83337
em 49.25 162 1.74 0.33 24248
ml 0.46 2049 0.24 0.05 18859
skill 1.64 2667 0.13 0.07 62485

6.2.2.1 Computational Requirements. One of the advantages of the item-
based algorithm is that it has much smaller computational requirements than
the user-based top-N recommendation algorithm. Table VII shows the amount
of time required by the two algorithms to compute the top-N recommendations
for each one of the eight datasets. The column labeled “ModelTime” shows the
amount of time required to build the item-based recommendation model (i.e.,
compute the k most similar items), the columns labeled “RcmdTime” show the
amount of time required to compute the n recommendations for each one of the
datasets, and the columns labeled “RcmdRate” show the rate at which the top-N
recommendations were computed in terms of recommendations/second. Note
that our implementation of the user-based top-N recommendation algorithm
takes advantage of the sparse user–item matrix, and uses inverted indices
in order to identify the nearest users as quickly as possible. All the times in
Table VII are in seconds.
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Looking at the results of Table VII we can see that the recommendation rates
achieved by the item-based algorithm are 6 to 391 times higher than those
achieved by the user-based algorithm. If we add the various “RcmdTime” for all
eight data sets we can see that the overall recommendation rate for the item-
based algorithm is 56715 recommendations/second compared to only 930 rec-
ommendations/second achieved by the user-based algorithm. This translates to
one recommendation every 17 µs for the item-based algorithm, versus 1075 µs
for the user-based algorithm. Also, as discussed in Section 4.3, the amount of
time required to build the models for the item-based algorithm is quite small.
In particular, even accounting for the model building time, the item-based al-
gorithm is still 2 to 240 times faster than the user-based algorithm. Note that
the reason that the user-based scheme is still slower even when we take into
account the time required to build the models is the fact that the resulting
user-user similarity matrix that needs to be computed is much denser than
the corresponding item-item similarity matrix. This is because the density of
the user–user similarity matrix depends on the existence of some frequently
purchased items (i.e., dense columns in the matrix) which happens quite often,
whereas in the case of the item–item similarity matrix, it is rare to have any
dense rows (i.e., users that have purchased most of the items).

6.3 Evaluation on Synthetic Datasets

The performance of recommender systems is highly dependent on various char-
acteristics of the dataset such as the number of items, the number of users, its
sparsity, and the behavioral variability of the various users in terms of the
items they buy/see. Furthermore, as the results in Section 6.2.2 have shown,
the relative performance of various top-N recommendation algorithms do not
vary uniformly across different datasets and it is quite likely that a particular
scheme will outperform the rest for a particular dataset, whereas the same
scheme might underperform when the dataset characteristics are changed.
This dataset-specific behavior of recommendation schemes makes it hard to
decide the best scheme for a particular application. The goal of this section is to
study the influence of two key dataset characteristics, sparsity and user’s behav-
ioral variability, on the performance of the recommendation system and gain
some insights as to which top-N recommendation algorithm is better-suited
to which characteristics of a dataset. We conduct this study on synthetically
generated datasets as they provide us the flexibility to individually isolate a
dataset characteristic and vary its value while keeping the other characteristics
constant.

We make use of the IBM synthetic dataset generator [Agrawal and Srikant
1994], which is widely used to mimic the transactions in the retail environment.
The dataset generator is based on the observation that people tend to make
purchases in sets of items. For example, if a user’s basket contains {pillow
covers, sheets, comforter, milk, bread, eggs}, then it can be thought of as made of
two sets of items, the first set consists of items {pillow covers, sheets, comforter}
and the second set is made of {milk, bread, eggs}. This set of items is referred
as itemset. It is observed that the size of such itemsets is clustered around a

ACM Transactions on Information Systems, Vol. 22, No. 1, January 2004.



Item-Based Top-N Recommendation Algorithms • 171

Table VIII. Parameters Taken by Synthetic Dataset Generator

Description Symbol IBM Symbol Value
Number of users n |D| 5000
Number of items m N 1000
Average size of user’s basket Su |T | 15, 30, & 45
Average size of itemset Sis |I| 4, 6, & 8
Number of itemsets Nis |L| 800, 1200, 1600, & 2000

mean with a few large itemsets. Similarly, the size of the user’s basket is also
clustered around a mean with a few users making lots of purchases.

The IBM dataset generator first creates a list of itemsets and then builds
each user’s basket from these itemsets. Some of the key parameters that are
used by the generator to define the characteristics of the synthetic dataset are
shown in Table VIII. The first two parameters, n and m, determine the size of
the dataset by identifying the number of customers and the number of items
(i.e., the n×m user–item matrix). The generator creates Nis itemsets whose size
is governed by a Poisson distribution having a mean of Sis. The items making up
the itemset are chosen randomly with some care taken to ensure that there is
some overlap in the different itemsets. After creating the itemsets to be used the
dataset is generated by creating a basket of items for each user. The size of the
basket follows a Poisson distribution with mean Su. Once the size is identified,
the basket is filled with itemsets. If an itemset does not fit in the basket then it
is added to the basket anyway in half the cases and moved to the next basket in
the rest of the cases. To ensure that some itemsets occur more frequently than
the rest, each itemset is assigned a weight and the probability of an itemset
being selected is governed by that weight. The weights are assigned according
to an exponential distribution with mean equal to one. In addition, to create
transactions with higher variability, the generator randomly changes some of
the items in each itemset as it is inserted into the transaction.

In order to evaluate the effect of the sparsity and the variability in the user’s
behavior on the overall performance of the various item- and user-based top-
N recommendation algorithms, we generated 36 different datasets in which
we fixed n and m but we varied Su, Sis, and Nis. The range of values used to
generate the different datasets is shown in the last column of Table VIII. We
generated datasets of different sparsity by increasing the average size of the
user’s basket (Su) while keeping the other two parameters fixed. Specifically,
we generated datasets in which each user contained 15, 30, and 45 items on
average. We generated datasets with different user’s behavioral variability by
varying the number of different itemsets (Nis) and their average size (Sis).
Assuming that Su and Sis is kept fixed, by changing the number of different
itemsets that can be packed to create the various transactions, we can influence
how many distinct user-groups exist in the dataset. This is because on average,
the generator will combine Su/Sis itemsets randomly selected from the Nis
itemsets to form a particular transaction. By increasing Nis we increase the pool
of possible combinations of Su/Sis itemsets and thus increase the variability
(in terms of what items are included in the user’s transactions) in the dataset.
A somewhat different way of changing the variability of the dataset can be
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performed by changing the average size of each itemset. In particular, if we fix
Su and Nis, then by increasing Sis we decrease the number of possible itemset-
combinations that can exist, since now, on average, Su/Nis itemsets will be
included. However, because each such itemset is now larger, this affects the
complexity of the purchasing decision represented by that particular itemset.

6.3.1 Results. Table IX shows the HR and ARHR achieved by both the user-
based scheme and the first- and second-order interpolated item-based schemes
that use either the cosine- or the conditional probability-based similarity mea-
sure. The results for the user-based scheme were obtained using exactly the
same algorithm used in Section 6.2.2, whereas the item-based results were ob-
tained by using k = 20, and for each dataset we used the α value that resulted
in the highest HR value for the first-order conditional probability-based model.
The specific values of α that were used are shown in the column labeled “α”.
Also, the second-order models were obtained by using a value of the support
threshold of 0.01% for Su = 15, 0.1% for Su = 30, and 0.5% for Su = 45. The
number of frequent patterns that were discovered and used in these models is
shown in the column labeled “F2”.

The results of Table IX provide a comprehensive comparison of the various
algorithms under a wide-range of dataset characteristics. To facilitate the vari-
ous comparisons we plotted some of the results of Table IX in the graphs shown
in Figure 3. Each plot in this graph shows the performance achieved by the var-
ious schemes when two out of the three parameters (i.e., Su, Nis and Sis) were
kept constant. Note that the performance trends in these plots are representa-
tive of the performance achieved for different values of the fixed parameters. In
the rest of this section, we provide an overview of some of the key trends that
can be inferred by comparing and analyzing these results.

First, as illustrated in Figure 3(a,b), the performance (either in terms of HR
or ARHR) of the various algorithms decreases as we increase the number of
itemsets (Nis) from 800 to 2000. This performance degradation was expected
because as discussed in Section 6.3, by increasing the number of itemsets used
to generate the user–item matrix we essentially increase the different types of
user-groups that exist in the dataset. Since the overall size of the dataset (in
terms of the number of users) remains fixed, the problem of learning accurate
top-N recommendations for each user becomes harder.

Second, as the sparsity decreases, (Su increases from 15 to 45), and Sis and
Nis remain fixed, the overall performance of the different schemes decreases
(Figure 3(c,d)). We believe that this is also due to the fact that the inherent
variability in the dataset also increases, since each user now contains a larger
number of itemsets.

Third, the performance of the user-based and second-order item-based al-
gorithms increases as we increase the average size of the itemsets (Sis) from
four to eight, whereas the performance of the first-order item-based schemes
tends to decrease (Figure 3(e,f) and Table IX). When Sis is small, the first-
order item-based schemes consistently (and in some cases substantially) out-
perform the user-based scheme. However, as Sis increases, the relative per-
formance gap between these two algorithms shrinks to a point at which the
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Table IX. The HR and ARHR for Different Values of Su, Nis and Sis

Avg. Size of User’s Basket (Su) = 15, Sparsity = 1.4 %

Top-10 HR (Sis = 4) Top-10 ARHR (Sis = 4)

Nis α User Cos1 Cos2 CPrb1 CPrb2 User Cos1 Cos2 CPrb1 CPrb2 F2
800 0.3 0.645 0.871 0.908 0.877 0.913 0.511 0.681 0.724 0.692 0.737 44100

1200 0.3 0.567 0.804 0.870 0.816 0.877 0.449 0.609 0.676 0.629 0.693 38718
1600 0.3 0.527 0.750 0.841 0.764 0.849 0.424 0.560 0.653 0.580 0.669 33546
2000 0.3 0.497 0.700 0.816 0.715 0.824 0.405 0.513 0.629 0.533 0.645 31274

Top-10 HR (Sis = 6) Top-10 ARHR (Sis = 6)

Nis α User Cos1 Cos2 CPrb1 CPrb2 User Cos1 Cos2 CPrb1 CPrb2 F2
800 0.2 0.735 0.858 0.946 0.871 0.952 0.619 0.689 0.786 0.710 0.804 34158

1200 0.2 0.686 0.768 0.923 0.784 0.928 0.589 0.603 0.758 0.625 0.775 29660
1600 0.2 0.672 0.700 0.897 0.720 0.903 0.583 0.546 0.740 0.570 0.756 29318
2000 0.2 0.668 0.638 0.876 0.663 0.884 0.582 0.494 0.722 0.515 0.740 29942

Top-10 HR (Sis = 8) Top-10 ARHR (Sis = 8)

Nis α User Cos1 Cos2 CPrb1 CPrb2 User Cos1 Cos2 CPrb1 CPrb2 F2
800 0.2 0.811 0.810 0.968 0.826 0.970 0.709 0.654 0.826 0.683 0.841 29675

1200 0.2 0.792 0.703 0.949 0.727 0.953 0.703 0.555 0.810 0.585 0.825 30456
1600 0.2 0.798 0.629 0.932 0.654 0.937 0.711 0.498 0.795 0.525 0.811 32873
2000 0.2 0.804 0.570 0.913 0.593 0.919 0.716 0.447 0.780 0.471 0.794 35347

Avg. Size of User’s Basket (Su) = 30, Sparsity = 2.8 %

Top-10 HR (Sis = 4) Top-10 ARHR (Sis = 4)

Nis α User Cos1 Cos2 CPrb1 CPrb2 User Cos1 Cos2 CPrb1 CPrb2 F2
800 0.6 0.555 0.791 0.850 0.802 0.840 0.398 0.427 0.589 0.491 0.577 112965

1200 0.6 0.505 0.732 0.783 0.737 0.770 0.357 0.421 0.529 0.473 0.514 108244
1600 0.5 0.469 0.686 0.732 0.685 0.730 0.332 0.406 0.495 0.398 0.494 102016
2000 0.6 0.427 0.633 0.691 0.632 0.675 0.300 0.393 0.462 0.414 0.447 98129

Top-10 HR (Sis = 6) Top-10 ARHR (Sis = 6)

Nis α User Cos1 Cos2 CPrb1 CPrb2 User Cos1 Cos2 CPrb1 CPrb2 F2
800 0.5 0.690 0.831 0.881 0.831 0.880 0.521 0.607 0.642 0.607 0.642 107981

1200 0.4 0.609 0.734 0.824 0.736 0.829 0.459 0.533 0.596 0.529 0.606 92674
1600 0.4 0.544 0.663 0.783 0.670 0.790 0.411 0.482 0.571 0.485 0.583 87771
2000 0.4 0.497 0.596 0.751 0.606 0.760 0.381 0.430 0.544 0.435 0.556 85295

Top-10 HR (Sis = 8) Top-10 ARHR (Sis = 8)

Nis α User Cos1 Cos2 CPrb1 CPrb2 User Cos1 Cos2 CPrb1 CPrb2 F2
800 0.3 0.730 0.780 0.907 0.794 0.915 0.570 0.582 0.679 0.605 0.704 95648

1200 0.3 0.635 0.669 0.866 0.687 0.879 0.501 0.500 0.651 0.517 0.675 88176
1600 0.4 0.582 0.596 0.838 0.611 0.849 0.465 0.446 0.633 0.462 0.650 82415
2000 0.4 0.545 0.533 0.816 0.549 0.828 0.442 0.398 0.617 0.412 0.633 85814

Avg. Size of User’s Basket (Su) = 45, Sparsity = 4.2 %

Top-10 HR (Sis = 4) Top-10 ARHR (Sis = 4)

Nis α User Cos1 Cos2 CPrb1 CPrb2 User Cos1 Cos2 CPrb1 CPrb2 F2
800 0.8 0.464 0.502 0.794 0.711 0.709 0.298 0.108 0.492 0.364 0.431 12337

1200 0.8 0.406 0.567 0.714 0.655 0.618 0.262 0.122 0.442 0.381 0.370 9334
1600 0.7 0.377 0.566 0.653 0.612 0.614 0.243 0.150 0.403 0.294 0.375 7002
2000 0.7 0.350 0.519 0.595 0.562 0.553 0.225 0.141 0.365 0.306 0.338 6217

(Continued )
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Table IX. Continued

Top-10 HR (Sis = 6) Top-10 ARHR (Sis = 6)

Nis α User Cos1 Cos2 CPrb1 CPrb2 User Cos1 Cos2 CPrb1 CPrb2 F2
800 0.6 0.580 0.775 0.812 0.778 0.789 0.410 0.469 0.549 0.512 0.525 9661

1200 0.5 0.538 0.688 0.721 0.688 0.720 0.381 0.421 0.484 0.417 0.484 7628
1600 0.5 0.504 0.625 0.671 0.624 0.670 0.356 0.404 0.455 0.401 0.454 6519
2000 0.5 0.468 0.562 0.627 0.561 0.626 0.331 0.369 0.421 0.367 0.420 5367

Top-10 HR (Sis = 8) Top-10 ARHR (Sis = 8)

Nis α User Cos1 Cos2 CPrb1 CPrb2 User Cos1 Cos2 CPrb1 CPrb2 F2
800 0.4 0.672 0.757 0.817 0.759 0.829 0.495 0.533 0.565 0.534 0.586 9568

1200 0.4 0.619 0.645 0.747 0.648 0.764 0.452 0.459 0.515 0.454 0.536 7658
1600 0.5 0.561 0.571 0.707 0.572 0.705 0.408 0.406 0.485 0.407 0.485 6006
2000 0.5 0.507 0.509 0.676 0.509 0.675 0.369 0.362 0.465 0.362 0.464 4652

Fig. 3. The HR and ARHR for different values of Su, Nis and Sis.
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user-based scheme outperforms the first-order item-based schemes when Sis
is eight and Nis is large (e.g., Su = 15, Nis = 2000, and Sis = 8). Note that
the relative performance advantage of user- versus item-based schemes dis-
appears when we consider the second-order item-based schemes that always
and substantially outperform the user-based scheme. The performance gains
achieved by the user-based scheme can be explained by the fact that longer item-
sets lead to datasets that have lower variability (i.e., each user is described by
a small number of itemsets) and they are easier to identify the correct user-
neighborhood as they will now overlap in a large number of items. However,
the reason that the first-order item-based schemes perform worse while the
corresponding second-order schemes perform better is somewhat more compli-
cated. By using longer itemsets, the degree of overlap between the different
itemsets that are put together to form a transaction increases as well. As a
result, for each item j its similarity distribution to the other k most similar
items becomes less uniform (it tends to have much higher similarities to items
that co-occur with j in the itemset overlaps). Consequently, when these individ-
ual item-to-item similarities are combined to form the recommendations, they
tend to be biased toward the overlapping items. This problem can be corrected
by increasing the model size (i.e., the number of neighbors k that we store for
each item). In fact, we performed a set of experiments in which k was increased
from 20 (used to obtain the results in Table IX) to 50, and this eliminated the
degradation in performance of the first-order schemes.

Fourth, comparing the various item-based schemes we can see that, as it
was the case with the real datasets, the conditional probability-based approach
consistently outperforms the cosine-based approach. Moreover, comparing the
values of α that lead to the best performance of the conditional probability-based
approach we notice a similar trend as that described in Section 6.2.1.4, as larger
α-values tend to work better for denser datasets. Finally, the results of Table IX
illustrate that for many datasets the second-order item-based models provide a
substantial performance improvement. In many cases, the second-order models
lead to improvements in the range of 50% to 80%.

7. CONCLUSIONS

In this article, we presented and experimentally evaluated a class of model-
based top-N recommendation algorithms that use item-to-item or itemset-to-
item similarities to compute the recommendations. Our results showed that
both the conditional probability-based item similarity scheme and higher-order
item-based models lead to recommender systems that provide reasonably ac-
curate recommendations that are comparable or better than those provided by
traditional user-based CF techniques. Furthermore, the proposed algorithms
are substantially faster; allowing real-time recommendations independent of
the size of the user–item matrix.
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