
A short version of this paper appears in the 36th Design Automation Conference

The algorithms described in this paper are implemented by the

‘hMETIS: Hypergraph Partitioning Package’.

hMETIS is available on WWW at URL: http://www.cs.umn.edu/˜metis

Multilevel k-way Hypergraph Partitioning∗

George Karypis and Vipin Kumar

Department of Computer Science & Engineering
Army HPC Research Center

University of Minnesota, Minneapolis, MN 55455
Technical Report #98–036

{karypis, kumar}@cs.umn.edu

Abstract

In this paper, we present a new multilevelk-way hypergraph partitioning algorithm that substantially outperforms

the existing state-of-the-artK-PM/LR algorithm for multi-way partitioning. both for optimizing local as well as global

objectives. Experiments on the ISPD98 benchmark suite show that the partitionings produced by our scheme are on

the average 15% to 23% better than those produced by theK-PM/LR algorithm, both in terms of the hyperedge cut

as well as the(K − 1)metric. Furthermore, our algorithm is significantly faster, requiring 4 to 5 times less time than

that required byK-PM/LR.

1 Introduction

Hypergraph partitioning is an important problem with extensive application to many areas, including VLSI design

[10], efficient storage of large databases on disks [14], and data mining [13]. The problem is to partition the vertices of

a hypergraph intok roughly equal parts, such that a certain objective function defined over the hyperedges is optimized.

A commonly used objective function is to minimize the number of hyperedges that span different partitions; however,

a number of other objective functions are also considered useful [10].

The most commonly used approach for computing ak-way partitioning is based on the recursive bisection paradigm,

that reduces the problem of computing ak-way partitioning to that of performing a sequence of bisections. The prob-

lem of computing an optimal bisection of a hypergraph is at least NP-hard [24]; however, many heuristic algorithms

∗This work was supported by IBM Partnership Award, NSF CCR-9423082, Army Research Office contract DA/DAAG55-98-1-0441, and the
Army High Performance Computing Research Center under the auspices of the Department of the Army, Army Research Laboratory cooperative
agreement number DAAH04-95-2-0003/contract number DAAH04-95-C-0008, the content of which does not necessarily reflect the position or
the policy of the government, and no official endorsement should be inferred. Access to computing facilities was provided by AHPCRC and the
Minnesota Supercomputer Institute. Related papers are available via WWW at URL:http://www.cs.umn.edu/˜karypis

1



have been developed. The survey by Alpert and Kahng [10] provides a detailed description and comparison of various

such schemes. Recently a new class of hypergraph bisection algorithms has been developed [11, 26, 15, 22], that are

based upon the multilevel paradigm. In these algorithms, a sequence of successively smaller (coarser) hypergraphs

is constructed. A bisection of the smallest hypergraph is computed. This bisection is then successively projected to

the next level finer hypergraph, and at each level an iterative refinement algorithm (e.g., KL [1] or FM [3]) is used to

further improve the bisection. Experiments presented in [26, 15, 22] have shown that multilevel hypergraph bisection

algorithms can produce substantially better partitionings than those produced by non-multilevel schemes. In partic-

ular, hMETIS [20], a multilevel hypergraph bisection algorithm based upon the work in [26] has been shown to find

substantially better bisections than current state-of-the-art iterative refinement algorithms for the ISPD98 benchmark

set that contains many large circuits [18].

Despite the success of multilevel recursive bisection algorithms, there are a number of advantages of computing the

k-way partitioning directly (rather than computing it successively via recursive bisection). First, a recursive bisection

algorithm does not allows us to directly optimize objectives that are global in nature and depend on having a direct

view of all k partitions. Some examples of such objectives are the sum of external degrees (SOED), scaled cost, and

absorption [10]. Second, ak-way partitioning algorithm is capable of enforcing tighter balancing constraints while

retaining the ability to sufficiently explore the feasible solution space to optimize the partitioning objective. This is

especially true when the partitioning solution must simultaneously satisfy multiple balancing constraints [21]. Third,

a method that obtains ak-way partitioning directly can potentially produce much better partitionings than a method

that computes ak-way partitioning via recursive bisection [8].

For these reasons, researchers have investigated a number ofk-way partitioning algorithms that try to compute a

k-way partitioning directly, rather than via recursive bisection. The most notable of them are the generalization of

the FM algorithm fork-way partitioning [4, 7], the spectral multi-way ratio-cut [6], the primal-dual algorithm of [5],

the geometric embedding [9], the dual-net method [12], and theK-PM/LR algorithm [19]. A key problem faced by

some of these algorithms is that thek-way FM refinement algorithm easily gets trapped in local minima. The recently

developedK-PM/LR algorithm by Cong and Lim [19] attempts to solve this problem by refining ak-way partitioning

by applying a sequence of 2-way FM refinement to pairs of domains. The pairing of domains is based on the gain of

the last pass, and the pairwise cell movement passes continues until no further gain can be obtained. The experiments

presented in [19] have shown thatK-PM/LR outperforms thek-way FM partitioning algorithm of Sanchis [4, 7] by

up to 86.2% and outperforms the recursive FM partitioning algorithm by up to 17.3%. Nevertheless, all of the above

partitioners tend to produce solutions that are inferior to those produced by the state-of-the-art multilevel recursive

bisection algorithms, especially when they are used to optimize an objective that can directly be optimized by the

recursive bisection framework (e.g., minimize the hyperedge cut) [18].

In this paper we present a newk-way partitioning algorithm that is based on the multilevel paradigm. The multilevel

paradigm can be used to directly construct ak-way partitioning of a hypergraph using the framework illustrated in

Figure 1. The hypergraph is coarsened successively as before. But the coarsest hypergraph is now directly partitioned

into k parts, and thisk-way partitioning is successively refined as the partitioning is projected back into the original

hypergraph. A key contribution of our work is a simple and yet powerful scheme for refining ak-way partitioning in

the multilevel context. Thisk-way partitioning refinement scheme is substantially simpler and faster than either the

k-way FM [4], or theK-PM/LR algorithm [19], but is equally effective in the multilevel context. Furthermore, this new

k-way refinement algorithm is inherently parallel [17] making it possible to develop high-quality parallel hypergraph

partitioning algorithms.

We evaluate the performance of our multilevelk-way partitioning algorithm both in terms of the partitioning quality

as well as computational requirements on the ISPD98 benchmark [18]. Our experiments show that the multilevelk-

way hypergraph partitioning algorithm produces high quality partitioning in a relatively small amount of time. The

quality of the partitionings produced by our scheme are on the average 15% to 23% better than those produced by the

2



G
G

1G

2G

3G

4G

O

3G

O

1G

2G

C
oa

rs
en

in
g 

P
ha

se
U

ncoarsening P
hase

Initial Partitioning Phase

Multilevel k-way partitioning

Figure 1: The various phases of the multilevel k-way partitioning algorithm. During the coarsening phase, the size of the hyper-
graph is successively decreased; during the initial partitioning phase, a k-way partitioning of the smaller hypergraph is computed
(a 6-way partitioning in this example); and during the uncoarsening phase, the partitioning is successively refined as it is projected
to the finer (larger) hypergraphs.

K-PM/LR [19] algorithm, both in terms of the hyperedge cut as well as the(K−1)metric. Furthermore, our algorithm

is significantly faster, requiring 4 to 5 times less time than that required byK-PM/LR and provides partitions that adhere

to tighter balancing constraints. Compared to the state-of-the-art multilevel recursive bisection, our experiments show

that with respect to the hyperedge cut, our algorithm produces partitions of comparable quality, whereas with respect to

the SOED, our algorithm produces partitions that are up to 18% better. Furthermore, our multilevelk-way partitioning

algorithm is in general two times faster than multilevel recursive bisection, and this ratio increases with the size of the

hypergraph.

The rest of this paper is organized as follows. Section 2 describes the different algorithms used in the three phases

of our multilevelk-way hypergraph partitioning algorithm. Section 3 compares the results produced by our algorithm

to those produced by earlier hypergraph partitioning algorithms. Finally, Section 4 provides some concluding remarks.

2 Multilevel k-way Hypergraph Partitioning

Formally, a hypergraphG = (V, E) is defined as a set of verticesV and a set of hyperedgesE , where each hyperedge

is a subset of the vertex setV [23], and the size of a hyperedge is the cardinality of this subset. Thek-wayhypergraph

partitioning problem is defined as follows: Given a hypergraphG = (V, E) (whereV is the set of vertices andE is

the set of hyperedges) and an overall load imbalance tolerancec such thatc ≥ 1.0, the goal is to partition the setV

into k disjoint subsets,V1, V2, . . . , Vk such that the number of vertices in each setVi is bounded by|V |/(ck) ≤ |Vi | ≤
c|V |/k, and a function defined over the hyperedges is optimized.

3



The requirement that the size of each partition is bounded is referred to as thepartitioning constraint, and the

requirement that a certain function is optimized is referred to as thepartitioning objective. Over the years, a number of

partitioning objective functions have been developed. The survey by Alpert and Kahng [10] provides a comprehensive

description of a variety of objective functions that are commonly used for hypergraph partitioning in the context of

VLSI design.

One of the most commonly used objective function is tominimize the hyperedge-cutof the partitioning;i.e., the

total number of hyperedges that span multiple partitions. Another objective that is often used is tominimize the sum of

external degrees(SOED) of all hyperedges that span multiple partitions. Given ak-way partitioning and a hyperedge

e, the external degree ofe is defined to be 0, ife is not cut by the partitioning, otherwise it is equal to the number of

partitions that is spanned bye. Then, the goal of the partitioning algorithm is to compute ak-way partitioning that

minimizes the sum of external degrees of the hyperedges. An objective related to SOED is tominimize the(K − 1)

metric [10, 19]. In the case of the(K − 1)metric, the cost of a hyperedge that spansK partitions is(K − 1), whereas

for the SOED metric, the cost isK .

Next we describe the three phases of the multilevelk-way partitioning algorithm in detail.

2.1 Coarsening Phase

During the coarsening phase, a sequence of successively smaller hypergraphs is constructed. As in the case of the

multilevel hypergraph bisection algorithm [16], the coarsening phase servers the following three purposes. First it

leads to a small hypergraph such that a goodk-way partitioning of the small hypergraph is not significantly worse

than thek-way partitioning directly obtained for the original hypergraph. Second, the different successively coarsened

versions of the hypergraph allow local refinement techniques such as FM to become effective. Third, hypergraph

coarsening also helps in successively reducing the sizes of the hyperedges. That is, at each level of coarsening, large

hyperedges are contracted to smaller hyperedges. This is particularly helpful, since refinement heuristics based on the

KLFM family of algorithms [1, 2, 3] are very effective in refining small hyperedges but are quite ineffective in refining

hyperedges with a large number of vertices belonging to different partitions.

Two primary schemes have been developed for selecting what groups of vertices will be merged together to form

single vertices in the next level coarse hypergraphs. The first scheme callededge-coarsening(EC) [16, 15, 22],

selects the groups by finding a maximal set of pairs of vertices (i.e., matching) that belong in many hyperegdes. In

this scheme, each group consists of at most two vertices (some vertices are not combined at all), and each vertex

belongs to exactly one group. The second scheme that is calledhyperedge-coarsening(HEC) [16] finds a maximal

independent set of hyperedges, and the sets of vertices that belong to each hyperedge becomes a group of vertices to

be merged together. In this scheme, each group can have an arbitrary number of vertices (even though preference is

given to smaller groups), and each vertex also belongs to exactly one group. Experiments in [16] show that for certain

problems, the hyperedge-coarsening scheme and its variations tend to outperform the edge-coarsening scheme, as they

do a better job of reducing the total hyperedge weight of successively coarser hypergraphs.

However, both the edge- and the hyperedge-coarsening schemes share one characteristic that can potentially lead to

less than ideal coarse representations of the original hypergraph, especially for hypergraphs corresponding to circuits.

This common characteristic is that the grouping schemes employed by both approaches find maximal independent

groups. That is, both the edge- and the hyperedge-coarsening schemes will find as many groups of vertices as they

can, that are pair- or hyperedge-wise independent. The potential problem with this approach is that the independence

(and to a certain degree, the maximality) requirement may destroy some clusters of vertices that naturally exist in the

hypergraph. To see that consider the example shown in Figure 2(a). As we can see from this figure there are two

natural clusters. The first cluster contains the five vertices on the left and the second cluster contains the five vertices

on the right. These two clusters are connected by a single hyperedge; thus thenaturalcut for this hypergraph is one.

Figure 2(b) shows the pairs of vertices that are found by the edge-coarsening scheme. In the edge-coarsening scheme,

4



vertex F will prefer to merge with vertexG, but vertexG had already been grouped with vertexH , consequently,

vertexE is grouped together with vertexE . Once the hypergraph is coarsened as shown in Figure 2(c), we can see that

the natural separation point in this hypergraph has been eliminated, as it has been contracted in the vertex that resulted

from mergingE andF . A similar kind of example can be constructed using the hyperedge-coarsening as well.

A

B

C

D

E F G

H

I

J

A C G IE FDB H J

22

1

22

1

(c) Coarse Hypergraph

A

B

C

D

E F G

H

I

J

(b) Groups Determined by Edge-Coarsning

(a) Initial Hypergraph

Figure 2: An example in which the edge-coarsening scheme can lead to a coarse representation in which the natural clusters
of the hypergraph have been obscured. The weights on the hyperedges of the coarse hypergraph (c) represent the number of
hyperedges in the original hypergraph that span the same set of vertices in the coarse representation.

The above observation, led us to develop a new coarsening scheme that we will refer to as theFirstChoice (FC)

coarsening scheme. The FC coarsening scheme is based up on the edge-coarsening scheme, and understanding how

the EC scheme works is essential in understanding FC. In the rest of this section we briefly describe the EC scheme

(further details can be found in [16, 15]), and describe how FC can be derived by modifying EC.

In the EC coarsening scheme, the vertices are visited in a random order. For each vertexv, all unmatched vertices

that belong to hyperedges incident tov are considered, and the one that is connected via the edge with the largest

weight is matched withv. The weight of an edge connecting two verticesv andu is computed as the sum of the

edge-weightsof all the hyperedges that containv andu. Each hyperedgee of size|e| is assigned an edge-weight of

1/(|e|−1), and as hyperedges collapse on each other during coarsening, their edge-weights are added up accordingly.

This edge coarsening scheme is similar in nature to the schemes that treat the hypergraph as a graph by replacing each

hyperedge with its clique representation [25]. However, this hypergraph to graph conversion is done implicitly during

matching without forming the actual graph.

The FC coarsening scheme is derived from the EC coarsening scheme by relaxing the requirement that a vertex is

matched only with another unmatched vertex. Specifically, in the FC coarsening scheme, the vertices are again visited

5



in a random order. However, for each vertexv, all vertices (both matched and unmatched) that belong to hyperedges

incident tov are considered, and the one that is connected via the edge with the largest weight is matched withv,

breaking ties in favor of unmatched vertices. As a result, each group of vertices to be merged together can contain

an arbitrarily large number of vertices. The one potential problem with this coarsening scheme is that the number of

vertices in successive coarse graphs may decrease by a large factor∗, potentially limiting the effect of refinement [15].

For this reason, at each coarsening level, we stop the FC coarsening scheme as soon as the size of the resulting coarse

graph has been reduced by a factor of 1.7. Our experiments have shown that by controlling the rate of coarsening

in this fashion, we can ensure that there are sufficiently many coarsening levels, and that the refinement algorithm is

effective in improving the partitioning quality during the uncoarsening phase.

The coarsening phase ends when the coarsest hypergraph has a small number of vertices. Since our goal is to

compute ak-way partitioning, the number of vertices in this smaller hypergraph should be a function ofk, to ensure

that a reasonably balanced partitioning can be computed by the initial partitioning algorithm. In our experiments, for

a k-way partition, we stop the coarsening process when the number of vertices becomes less thanck, wherec = 100.

2.2 Initial Partitioning Phase

The second phase of a multilevelk-way partitioning algorithm is to compute ak-way partitioning of the coarsest

hypergraph such that the balancing constraint is satisfied and the partitioning objective is optimized. Since during

coarsening, the weights of the vertices and hyperedges of the coarser hypergraph were set to reflect the weights of the

vertices and hyperedges of the finer hypergraph, the coarsest hypergraph contains sufficient information to intelligently

enforce the balancing constraint and optimize the partitioning objective.

One way to produce the initialk-way partitioning is to keep coarsening the hypergraph until it has onlyk vertices

left. These coarsek vertices can serve as the initialk-way partitioning of the original hypergraph. There are two

problems with this approach. First, for many hypergraphs, the reduction in the size of the hypergraph in each coars-

ening step becomes very small after some coarsening steps, making it very expensive to continue with the coarsening

process. Second, even if we are able to coarsen the hypergraph down to onlyk vertices, the weights of these vertices

are likely to be quite different, making the initial partitioning highly unbalanced.

In our algorithm, thek-way partitioning of the coarsest hypergraph is computed using our multilevel hypergraph

bisection algorithm [16], that is available in thehMETIS package [20].

2.3 Uncoarsening Phase

During the uncoarsening phase, a partitioning of the coarser hypergraph is successively projected to the next level finer

hypergraph, and a partitioning refinement algorithm is used to optimize the objective function without violating the

partitioning balancing constraints. Since the next level finer hypergraph has more degrees of freedom, such refinement

algorithms tend to improve the solution quality.

In the case of bisection refinement, the FM algorithm [3] has been shown to produce very good results [16]. For each

vertexv, the FM algorithm computes thegain which is the reduction in the value of the objective function achieved by

movingv to the other partition. These vertices are inserted into two priority queues, one for each partition, according

to their gains. Initially all vertices areunlocked, i.e., they are free to move to the other partition. The algorithm

iteratively selects an unlocked vertexv with the largest gain from one of the two priority queues and moves it to the

other partition. When a vertexv is moved, it islockedand the gain of the vertices adjacent tov are updated. After each

vertex movement, the algorithm also records the value of the objective function achieved at this point. A single pass

of the algorithm ends when there are no more unlocked vertices. Then, the recorded values of the objective function

∗In the case of the EC coarsening scheme, the size of successive coarse graphs can be reduced by at most a factor of two.

6



are checked, and the point where the minimum value was achieved is selected, and all vertices that were moved after

that point are moved back to their original partition. Now, this becomes the initial partitioning for the next pass of the

algorithm.

However, refining ak-way partitioning is significantly more complicated because vertices can move from a partition

to many other partitions; thus, increasing the optimization space combinatorially. An extension of the FM refinement

algorithm in the case ofk-way refinement is described in [4]. This algorithm usesk(k − 1) priority queues, one for

each type of move. In each step of the algorithm, the moves with the highest gain are found from each of thesek(k−1)

queues, and the move with the highest gain that preserves or improves the balance, is performed. After the move, all

of thek(k − 1) priority queues are updated. The complexity ofk-way refinement is significantly higher than that of

2-way refinement, and is only practical for small values ofk. Furthermore, as the experiments in [19] suggest, the

k-way FM algorithm is also very susceptible of being trapped into a local minima that is far from being optimal.

Benchmark No. of vertices No. of hyperedges
ibm01 12506 14111
ibm02 19342 19584
ibm03 22853 27401
ibm04 27220 31970
ibm05 28146 28446
ibm06 32332 34826
ibm07 45639 48117
ibm08 51023 50513
ibm09 53110 60902
ibm10 68685 75196
ibm11 70152 81454
ibm12 70439 77240
ibm13 83709 99666
ibm14 147088 152772
ibm15 161187 186608
ibm16 182980 190048
ibm17 184752 189581
ibm18 210341 201920

Table 1: The characteristics of the various hypergraphs used to evaluate the multilevel hypergraph partitioning algorithms.

The hill-climbing capability of the FM algorithm serves a very important purpose. It allows movement of an entire

cluster of vertices across a partition boundary. Note that it is quite possible that as the cluster is moved across the

partition boundary, the value of the objective function increases, but after the entire cluster of vertices moves across

the partition, then the overall value of the objective function comes down. In the context of multilevel schemes, this

hill-climbing capability becomes less important. The reason is that these clusters of vertices are coarsened into a

single vertex at successive coarsening phases. Hence, movement of a vertex at a coarse level really corresponds to the

movement of a group of vertices in the original hypergraph.

If the hill-climbing part of the FM algorithm is eliminated (i.e., if vertices are moved only if they lead to positive

gain), then it becomes less useful to maintain a priority queue. This is because vertices whose move results in a large

positive gain will most likely be moved anyway even if they are not moved earlier (in the priority order). Hence, a

variation of the FM algorithm that simply visits the vertices in a random order and moves them if they result in a

positive gain is likely to work well in the multilevel context. Furthermore, the complexity of this algorithm will be

independent of the number of partitions being refined, leading to a fast algorithm. This observation has lead to us

to develop agreedy refinementalgorithm. It consists of a number of iterations. In each iteration all the vertices are

checked to see if they can be moved so that the partitioning objective function is optimized, subject to the partitioning

balancing constraint (as described in Section 2). As the results in Section 3 show, despite the simplicity of our

refinement algorithms, they produce high quality partitionings in small amount of time.

7



More precisely, our greedyk-way refinement algorithm works as follows. Consider a hypergraphGi = (Vi , Ei ),

and its partitioning vectorPi . The vertices are visited in a random order. Letv be such a vertex, letPi [v] = a be the

partition thatv belongs to. Ifv is a node internal to partitiona thenv is not moved. Ifv is at the boundary of the

partition, thenv can potentially be moved to one of the partitionsN(v) that vertices adjacent tov belong to (the set

N(v) is often refer to as theneighborhoodof v). Let N ′(v) be the subset ofN(v) that contains all partitionsb such

that movement of vertexv to partitionb does not violate the balancing constraint. Now the partitionb ∈ N ′(v) that

leads to the greatest positive reduction (gain) in the objective function is selected andv is moved to that partition.

The above greedy refinement algorithm can be used to compute a partitioning that minimizes a variety of objective

functions, by appropriately computing the gain achieved in moving a vertex. Our current implementation allows a

choice of two different objective functions. The first minimizes the hyperedge cut and the second minimizes the sum

of external degrees (SOED) (Section 2).

Experiments with this greedyk-way refinement algorithm show that it converges after a small number of iterations.

In our experiments, we found that for most hypergraphs, the algorithm converged within four to eight iterations.

3 Experimental Results

We experimentally evaluated the quality of the partitionings produced by our multilevelk-way hypergraph partitioning

algorithm (hMETIS-Kway) on the 18 hypergraphs that are part of the ISPD98 circuit partitioning benchmark suite [18].

The characteristics of these hypergraphs are shown in Table 1. In addition to the circuits, the ISPD98 benchmark also

contains the actual areas for each one of the cell. However, to make it easy to compare our results with those of other

researchers [19], we used only unit cell-areas in our experiments. Furthermore, for some circuits, the actual areas

of some cells is higher than 1/8 of the overall area, making it impossible to produced balanced 8-, 16-, and 32-way

partitionings. We performed all of our experiments on a 300MHz Pentium II–based Linux workstation.

3.1 Comparison with the Multilevel Recursive Bisection

In our first set of experiments, we compare the performance of our multilevelk-way partitioning algorithm to that

of the multilevel recursive bisection algorithm for computing 8-, 16-, and 32-way partitionings. Our multilevelk-

way partitioning algorithm was compared against the multilevel bisection algorithm [26] that is part of thehMETIS
[20] hypergraph partitioning package. For the rest of this paper, we will refer to this recursive bisection algorithm as

hMETIS-RB, and we will refer to our multilevelk-way partitioning algorithm ashMETIS-Kway.

BothhMETIS-RB andhMETIS-Kway used the FC scheme for coarsening (Section 2.1). For refinement,hMETIS-RB
used the FM algorithm whereas thehMETIS-Kway used the greedy refinement algorithm described in Section 2.3.

To compute a bisection usinghMETIS-RB, we performed a total of 20 different runs, and then we further improved

the best bisection using the V-cycle refinement technique [26]. To ensure that the overallk-way partitioning does

not become significantly unbalanced, each bisection was computed using a[48,52] balancing constraint (i.e., the

smaller part must contain at least 48% of the vertices). Consequently, the effective overall balancing constraints for

the 8-, 16-, and 32-way partitionings were[0.483 = 0.111, .523 = 0.141], [0.484 = 0.053, .524 = 0.073], and

[0.485 = 0.025, .525 = 0.038], respectively. In other words, these balancing constraints allow an overall maximum

load imbalance of 12.5%, 17.0%, and 21.7%, for the 8-, 16-, and 32-way partitionings, respectively. We also performed

a total of 20 different runs forhMETIS-Kway, and we also used the V-cycle refinement technique to further improve the

quality of the bestk-way partitioning. In all the experiments,hMETIS-Kway used an overall load imbalance tolerance

of 1.10, meaning that the weight of the heaviest partition will be less than 10% higher than the average weight of the

k partitions.

Table 2 shows the number of hyperedges that are cut by bothhMETIS-RB andhMETIS-Kway for an 8-, 16-, and

32-way partitioning for all the circuits of the ISPD98 benchmark. For this set of experiments, the objective ofhMETIS-

8



hMETIS-RB hMETIS-Kway
Circuit 8-way 16-way 32-way 8-way 16-way 32-way
ibm01 760 1258 1723 795 1283 1702
ibm02 1720 3150 4412 1790 3210 4380
ibm03 2503 3256 4064 2553 3317 4120
ibm04 2857 3989 5094 2902 3896 5050
ibm05 4548 5465 6211 4464 5612 5948
ibm06 2452 3356 4343 2397 3241 4231
ibm07 3454 4804 6300 3422 4764 6212
ibm08 3696 4916 6489 3544 4718 6154
ibm09 2756 3902 5502 2680 3968 5490
ibm10 4301 6190 8659 4263 6209 8612
ibm11 3592 5260 7514 3713 5371 7534
ibm12 5913 8540 11014 6183 8569 11392
ibm13 3042 5522 7541 2744 5329 7610
ibm14 5501 8362 12681 5244 8293 12838
ibm15 6816 8691 13342 6855 9201 13853
ibm16 6871 10230 15589 6737 10250 15335
ibm17 9341 15088 20175 9420 15206 19812
ibm18 5310 8860 13410 5540 9025 13102
ARQ 1.002 0.996 1.006 0.998 1.004 0.994
Run-time 21872.22 25941.12 30325.48 10551.7 14227.52 19572.45

Table 2: The number of hyperedges that are cut by the multilevel recursive bisection algorithm (hMETIS-RB) and the multilevel k-
way partitioning algorithm (hMETIS-Kway) for 8-, 16-, and 32-way partitionings. The row labeled ’ARQ’ shows the Average Relative
Quality of one scheme versus the other. For example, the ARQ value of 1.002 for the 8-way partitioning of hMETIS-RB means that
the cuts produced by hMETIS-RB are on the average 0.2% higher than the corresponding cuts produced by hMETIS-Kway. An ARQ
value that is less than 1.0 indicates that the particular scheme on the average performs better. The last row shows the total amount
of time required by each of the partitioners for all 18 circuits (the times are in seconds).

Kway algorithm was to minimize the hyperedge cut. The same set of data was also used to plot the bar-charts shown

in Figure 3 that show the cut obtained byhMETIS-Kway relative to that obtained byhMETIS-RB. These bars were

obtained by dividing the cut obtained byhMETIS-Kway to the cut obtained byhMETIS-RB. Any bars lower than 1.0

indicate thathMETIS-Kway performs better. As can be seen from Figure 3,hMETIS-Kway produces partitions whose

cut is comparable to those produced byhMETIS-RB. On the average,hMETIS-Kway performs 0.2% and 0.6% better

thanhMETIS-RB for the 8- and 32-way partitionings, respectively, and 0.4% worse for the 16-way partitioning. The

fact thathMETIS-Kway cuts the same number of hyperedges ashMETIS-RB, is especially interesting if we consider

(i) the simplicity of the greedy refinement scheme used byhMETIS-Kway as opposed to the much more sophisticated

FM algorithm used byhMETIS-RB, and (ii) the fact that compared tohMETIS-Kway, hMETIS-RB operates under more

relaxed balancing constraints.

The last row of Table 2 shows the total amount of time required by the two algorithms in order to compute the 8-,

16-, and 32-way partitionings. As we can see,hMETIS-Kway is 2.07, 1.82, and 1.55 times faster thanhMETIS-RB for

computing an 8-, 16-, and a 32-way partitioning, respectively. Note that this relative speed advantage ofhMETIS-Kway
decreases ask increases. This is primarily due to the fact that the recursive bisection algorithm used in the initial

partitioning takes a larger fraction of the overall time (as the size of the coarsest hypergraph is proportional to the

number of partitions).hMETIS-Kway will continue running faster thanhMETIS-RB if the size of the hypergraph is

increased proportionally to the number of partitions.

To test the effectiveness ofhMETIS-Kway for optimizing the SOED, we ran another set of experiments in which

the objective ofhMETIS-Kway was to minimize the SOED. Table 3 shows the sum of external degrees (SOED) of

the partitionings produced by bothhMETIS-RB andhMETIS-Kway for an 8-, 16-, and 32-way partitioning for all the

circuits of the ISPD98 benchmark. The same set of data was also used to plot the bar-charts shown in Figure 4 that

show the SOED obtained byhMETIS-Kway relative to that obtained byhMETIS-RB. From this figure we can see that

for all cases,hMETIS-Kway produces partitionings whose SOEDs are better than those produced byhMETIS-RB. On

9



hMETIS-RB hMETIS-Kway
Circuit 8-way 16-way 32-way 8-way 16-way 32-way
ibm01 1768 2938 4566 1750 2883 4149
ibm02 3940 8040 13039 3850 7556 11821
ibm03 5909 8719 11667 5820 8205 11077
ibm04 6461 9595 13008 6214 8992 12495
ibm05 11572 16070 22708 10749 15206 20020
ibm06 6160 9631 13988 5784 8661 12779
ibm07 7885 12116 16806 7586 11040 15559
ibm08 9031 13040 18819 7979 10976 15327
ibm09 6073 9016 13193 5822 8634 12460
ibm10 9458 14543 21060 9144 13130 19941
ibm11 7940 12023 17857 7874 11706 17118
ibm12 12975 19563 27026 12910 17848 25228
ibm13 7010 12792 18484 6079 11819 17350
ibm14 12360 19189 30484 11258 18232 29699
ibm15 15198 21314 32039 14586 20826 31874
ibm16 14853 23237 37234 14616 22924 34879
ibm17 20423 34177 48256 19930 33344 45961
ibm18 12940 21765 34069 12177 19598 30558
ARQ 1.048 1.068 1.076 0.954 0.936 0.929

Table 3: The sum of external degrees (SOED) of the hyperedges that are cut by the partitionings produced by the multilevel
recursive bisection algorithm (hMETIS-RB) and the multilevel k-way partitioning algorithm (hMETIS-Kway) for 8-, 16-, and 32-way
partitionings. The row labeled ’ARQ’ shows the Average Relative Quality of one scheme versus the other. For example, the ARQ
value of 1.048 for the 8-way partitioning of hMETIS-RB means that the SOEDs produced by hMETIS-RB are on the average 4.8%
higher than the corresponding SOEDs produced by hMETIS-Kway. An ARQ value that is less than 1.0 indicates that the particular
scheme on the average performs better.

the average,hMETIS-Kway performs 4.8%, 6.8%, and 7.6% better thanhMETIS-RB for the 8-way, 16-way, and 32-

way partitionings, respectively. These results show thathMETIS-Kway is effective in incorporating global objective

functions which can only be optimized in the context of ak-way refinement algorithm.

3.2 Comparison with K-PM/LR

We compared the performance of our multilevelk-way partitioning algorithm against the multi-way partitioning algo-

rithm K-PM/LR developed by Cong and Lim [19].

Table 4 shows the number of hyperedges that are cut by bothhMETIS-Kway andK-PM/LR for an 8- and a 16-way

partitioningy. In these experiments, for bothhMETIS-Kway andK-PM/LR, the partitioning objective was to minimize

the hyperedge cut. The results forhMETIS-Kway are the same as shown in Table 2, whereas the results fromK-PM/LR
are taken from [19]. Note that the results forK-PM/LR were obtained by using balancing constraints that correspond

to those obtained by recursive bisection if it used a[0.45,0.55] balancing constraint at each level. Consequently,

the balancing constraints for the 8- and 16-way partitioning are[0.453 = 0.091,0.553 = 0.166] and [0.454 =
0.041,0.554 = 0.092], respectively. Note that these balancing constraints are considerably more relaxed than the 10%

overall load imbalanced used byhMETIS-Kway. If we translate the balancing constraints enforced byK-PM/LR to

maximum allowable load imbalances fork-way partitioning, we see thatK-PM/LR allows up to 32.8% and 47.2%

load imbalance, for the 8-, and 16-way partitionings, respectively.

The data in Table 4 was also used to plot the bar-charts shown in Figure 5 that compares the cut obtained byhMETIS-
Kway relative to those obtained byK-PM/LR. From this figure we can see thathMETIS-Kway produces partitionings

that cut significantly fewer hyperedges than those cut byK-PM/LR. In fact, on the average,hMETIS-Kway cuts 20%

and 23% fewer hyperedges thanK-PM/LR for the 8- and 16-way partitionings, respectively. Thus, even though

yWe were not able to compare results for 32-way partitioning, because they are not reported in [19].

10



Performance of hMETIS-Kway relative to hMETIS-RB
(in terms of the hyperedge cut)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

ibm01

ibm02

ibm03

ibm04

ibm05

ibm06

ibm07

ibm08

ibm09

ibm10

ibm11

ibm12

ibm13

ibm14

ibm15

ibm16

ibm17

ibm18

8-way 16-way 32-way

Figure 3: The quality of the partitionings in terms of the cuts produced by hMETIS-Kway relative to those produced by hMETIS-RB for
an 8-, 16-, and 32-way partitioning. Bars bellow the 1.0 line indicate that hMETIS-Kway performs better than hMETIS-RB.

Performance of hMETIS-Kway relative to hMETIS-RB
(in terms of the SOED)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

ibm01

ibm02

ibm03

ibm04

ibm05

ibm06

ibm07

ibm08

ibm09

ibm10

ibm11

ibm12

ibm13

ibm14

ibm15

ibm16

ibm17

ibm18

8-way 16-way 32-way

Figure 4: The quality of the partitionings in terms of the SOEDs produced by hMETIS-Kway relative to those produced by hMETIS-RB
for an 8-, 16-, and 32-way partitioning. Bars bellow the 1.0 line indicate that hMETIS-Kway performs better than hMETIS-RB.

11



hMETIS-Kway operates under tighter balancing constraints, it is able to produce partitionings that cut substantially

fewer hyperedges thanK-PM/LR.

hMETIS-Kway K-PM/LR
Circuit 8-way 16-way 8-way 16-way
ibm01 795 1283 1020 1699
ibm02 1790 3210 1751 3592
ibm03 2553 3317 3882 5736
ibm04 2902 3896 3559 5349
ibm05 4464 5612 4834 6419
ibm06 2397 3241 3198 4815
ibm07 3422 4764 4398 6854
ibm08 3544 4718 4466 6477
ibm09 2680 3968 4115 6046
ibm10 4263 6209 5252 8559
ibm11 3713 5371 6086 8871
ibm12 6183 8569 7736 11000
ibm13 2744 5329 3570 7066
ibm14 5244 8293 6753 9854
ibm15 6855 9201 8965 11345
ibm16 6737 10250 7543 10456
ibm17 9420 15206 10654 17653
ibm18 5540 9025 5765 9653
ARQ 0.802 0.771 1.247 1.297
Run-time 10551.7 14227.52 105840 134640

Table 4: The number of hyperedges that are cut by hMETIS-Kway and the K-PM/LR partitioning algorithms for 8- and 16-way
partitionings. The row labeled ’ARQ’ shows the Average Relative Quality of one scheme versus the other. For example, the ARQ
value of 1.247 for the 8-way partitioning of K-PM/LR means that the cuts produced by K-PM/LR are on the average 24.7% higher
(worse) than the corresponding cuts produced by hMETIS-Kway. An ARQ value that is less than 1.0 indicates that the particular
scheme on the average performs better. The last row shows the total amount of time required by each of the partitioners for all
18 circuits (the times are in seconds). Note that hMETIS-Kway was run on a Pentium II@300Mhz, whereas K-PM/LR was run on a
Ultra Sparc1@143Mhz.

The last row of Table 4 shows the amount of time required byhMETIS-Kway andK-PM/LR. Note that theK-
PM/LR was run on a Sun Ultra Sparc1 running at 143Mhz. Our experiments have shown that the Sun Ultra Sparc1

running at 143Mhz is about twice as slow than the Pentium II running at 300Mhz that we used for ourhMETIS-Kway
experiments). Taking this CPU performance difference into account, we see thathMETIS-Kway is 5 times faster for

the 8-way partitioning, and 4.7 times faster for the 16-way partitioning. Thus, compared toK-PM/LR, hMETIS-Kway
not only cuts substantially fewer hyperedges but it is also significantly faster thanK-PM/LR.

Finally, Cong and Lim [19] also reported results using the minimization of the(K − 1) metric as the objective

function ofK-PM/LR. Table 5 shows the cost of the solutions with respect to the(K − 1) metric obtained by both

hMETIS-Kway andK-PM/LR for an 8- and a 16-way partitioning. Note that forhMETIS-Kway, the value for the(K−1)

metric was obtained by performing the partitioning using the minimization of the SOED as the objective. The data

in Table 5 was also used to plot the bar-charts shown in Figure 6 that compares the cost of the partitions obtained by

hMETIS-Kway relative to those obtained byK-PM/LR. From this figure we can see thathMETIS-Kway also produces

partitionings that are consistently and significantly better than those produced byK-PM/LR. In particular, the(K −1)-

metric cost ofhMETIS-Kway is, on the average, 15% and 14% smaller than the cost ofK-PM/LR for the 8- and 16-way

partitionings, respectively.

12



Performance of hMETIS-Kway relative to K-PM/LR
(in terms of the hyperedge cut)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

ib
m

01

ib
m

02

ib
m

03

ib
m

04

ib
m

05

ib
m

06

ib
m

07

ib
m

08

ib
m

09

ib
m

10

ib
m

11

ib
m

12

ib
m

13

ib
m

14

ib
m

15

ib
m

16

ib
m

17

ib
m

18

8-way 16-way

Figure 5: The quality of the partitionings in terms of the cuts produced by hMETIS-Kway relative to those produced by K-PM/LR for
an 8- and 16-way partitioning. Bars bellow the 1.0 line indicate that hMETIS-Kway performs better than K-PM/LR.

Performance of hMETIS-Kway relative to K-PM/LR
(in terms of ( K - 1 ) metric)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

ib
m

01

ib
m

02

ib
m

03

ib
m

04

ib
m

05

ib
m

06

ib
m

07

ib
m

08

ib
m

09

ib
m

10

ib
m

11

ib
m

12

ib
m

13

ib
m

14

ib
m

15

ib
m

16

ib
m

17

ib
m

18

8-way 16-way

Figure 6: The quality of the partitionings in terms of the (K − 1) metric produced by hMETIS-Kway relative to those produced by
K-PM/LR for an 8- and 16-way partitioning. Bars bellow the 1.0 line indicate that hMETIS-Kway performs better than K-PM/LR.

13



hMETIS-Kway K-PM/LR
Circuit 8-way 16-way 8-way 16-way
ibm01 930 1592 1109 1821
ibm02 1750 4058 1892 4152
ibm03 3083 4745 4119 5662
ibm04 3320 4956 3671 5766
ibm05 5958 8982 6543 9344
ibm06 3300 5248 3988 5900
ibm07 4115 5948 4707 6854
ibm08 4312 6102 5426 7364
ibm09 3043 4564 4187 5978
ibm10 4763 6944 5518 8525
ibm11 4174 6303 5321 8420
ibm12 6598 9358 7530 10495
ibm13 3319 6394 3667 7382
ibm14 5962 9734 7427 12476
ibm15 8104 11182 11008 14448
ibm16 7529 12052 9322 14901
ibm17 10510 17740 11818 20830
ibm18 6410 10498 6982 11692
ARQ 0.840 0.849 1.191 1.178

Table 5: The (K − 1) metric of the partitionings obtained by hMETIS-Kway and the K-PM/LR partitioning algorithms for 8- and
16-way partitionings. The row labeled ’ARQ’ shows the Average Relative Quality of one scheme versus the other. For example,
the ARQ value of 1.191 for the 8-way partitioning of K-PM/LR means that the (K − 1) metric solutions produced by K-PM/LR are
on the average 19.1% higher (worse) than the corresponding solution produced by hMETIS-Kway. An ARQ value that is less than
1.0 indicates that the particular scheme on the average performs better.

4 Conclusions

The multilevelk-way partitioning scheme presented in this paper substantially outperforms the state-of-the-artK-
PM/LR algorithm for multi-way partitioning [19] both for minimizing the hyperedge cut as well as minimizing the

(K − 1) metric. The power ofhMETIS-Kway is primarily derived from the robustness of the multilevel paradigm that

allows the use of a simplek-way partitioning refinement heuristic instead of theO(k2) complexityk-way FM refine-

ment [4] or a sequence of pair-wise FM refinements [19]. The simplek-way refinement heuristic is able to perform

an excellent job in optimizing the objective function, as it is applied to successively finer hypergraphs. Furthermore,

as our experiments indicate, the multilevelk-way paradigm offers the additional benefit of producing high quality

partitionings while enforcing tight balancing constraints.

A version ofhMETIS is available on the WWW at the following URL:http://www.cs.umn.edu/˜metis.

References
[1] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs.The Bell System Technical Journal,

49(2):291–307, 1970.

[2] D. G. Schweikert and B. W. Kernighan. A proper model for the partitioning of electrical circuits. InProc. ACM/IEEE Design
Automation Conference, pages 57–62, 1972.

[3] C. M. Fiduccia and R. M. Mattheyses. A linear time heuristic for improving network partitions. InIn Proc. 19th IEEE Design
Automation Conference, pages 175–181, 1982.

[4] L. A. Sanchis. Multiple-way network partitioning.IEEE Transactions on Computers, pages 62–81, 1989.

[5] C. W. Yeh, C. K. Cheng, and T. T. Lin. A general purpose multiple-way partitioning algorithm. InProc. of the Design
Automation Conference, pages 421–426, 1991.

[6] P. Chan, M. Schlag, and J. Zien. Spectralk-way ratio-cut partitioning and clustering. InProc. of the Design Automation
Conference, pages 749–754, 1993.

[7] L. A. Sanchis. Multiple-way network partitioning with different cost functions.IEEE Transactions on Computers, pages
1500–1504, 1993.

14



[8] Horst D. Simon and Shang-Hua Teng. How good is recursive bisection? Technical Report RNR-93-012, NAS Systems
Division, NASA, Moffet Field, CA, 1993.

[9] C. J. Alpert and A. B. Kahng. Multi-way partitioning via space-filling curves and dynamic programming. InProc. of the
Design Automation Conference, pages 652–657, 1994.

[10] Charles J. Alpert and Andrew B. Kahng. Recent directions in netlist partitioning.Integration, the VLSI Journal, 19(1-2):1–81,
1995.

[11] S. Hauck and G. Borriello. An evaluation of bipartitioning technique. InProc. Chapel Hill Conference on Advanced Research
in VLSI, 1995.

[12] J. Cong, W. Labio, and N. Shivakumar. Multi-way VLSI circuit partitioning based on dual net representation.IEEE Trans.
on Computer-Aided Design of Integrated Circuits and Systems, pages 396–409, 1996.

[13] B. Mobasher, N. Jain, E.H. Han, and J. Srivastava. Web mining: Pattern discovery from world wide web transactions.
Technical Report TR-96-050, Department of Computer Science, University of Minnesota, Minneapolis, 1996.

[14] S. Shekhar and D. R. Liu. Partitioning similarity graphs: A framework for declustering problmes.Information Systems
Journal, 21(4), 1996.

[15] C. J. Alpert, J. H. Huang, and A. B. Kahng. Multilevel circuit partitioning. InProc. of the 34th ACM/IEEE Design Automation
Conference, 1997.

[16] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multilevel hypergraph partitioning: Application in vlsi
domain. InProceedings of the Design and Automation Conference, 1997.

[17] George Karypis and Vipin Kumar. A coarse-grain parallel multilevelk-way partitioning algorithm. InProceedings of the
eighth SIAM conference on Parallel Processing for Scientific Computing, 1997.

[18] C. J. Alpert. The ISPD98 circuit benchmark suite. InProc. of the Intl. Symposium of Physical Design, pages 80–85, 1998.

[19] Jason Cong and Sung Kyu Lim. Multiway Partitioning with Pairwise Movement. InIntl. Conference on Computer Aided
Design, 1998.

[20] G. Karypis and V. Kumar.hMETIS 1.5: A hypergraph partitioning package. Technical report, Department of Computer
Science, University of Minnesota, 1998. Available on the WWW at URLhttp://www.cs.umn.edu/˜metis.

[21] G. Karypis and V. Kumar. Multilevel algorithms for multi-constraint graph partitioning. InProceedings of Supercomputing,
1998. Also available on WWW at URL http://www.cs.umn.edu/˜karypis.

[22] Sverre Wichlund and Einar J. Aas. On Multilevel Circuit Partitioning. InIntl. Conference on Computer Aided Design, 1998.

[23] C. Berge.Graphs and Hypergraphs. American Elsevier, New york, 1976.

[24] Michael R. Garey and David S. Johnson.Computers and Instractability: A Guide to the Theory of NP–Completeness. W.H
Freeman, San Francisco, CA, 1979.

[25] T. Lengauer.Combinatorial Optimization: Networks and Matroids. Holt, Rinehart, and Winston, Boston, MA, 1976.

[26] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multilevel hypergraph partitioning: Application in vlsi
domain.IEEE Transactions on VLSI Systems, 1998 (to appear). A short version appears in the proceedings of DAC 1997.

15


