A short version of this paper appears in the 36th Design Automation Conference

The algorithms described in this paper are implemented by the
‘hMETS: Hypergraph Partitioning Package’.
hMETS is available on WWW at URL: http://www.cs.umn.edu/"metis

Multilevel k-way Hypergraph Partitioning*

George Karypis and Vipin Kumar

Department of Computer Science & Engineering
Army HPC Research Center
University of Minnesota, Minneapolis, MN 55455
Technical Report #98—-036

{karypis, kumay@cs.umn.edu

Abstract

In this paper, we present a new multilekelvay hypergraph partitioning algorithm that substantially outperforms
the existing state-of-the-aft PM/LR algorithm for multi-way partitioning. both for optimizing local as well as global
objectives. Experiments on the ISPD98 benchmark suite show that the partitionings produced by our scheme are on
the average 15% to 23% better than those produced bi-#BI/LR algorithm, both in terms of the hyperedge cut
as well as théK — 1) metric. Furthermore, our algorithm is significantly faster, requiring 4 to 5 times less time than
that required byK-PM/LR.

1 Introduction

Hypergraph partitioning is an important problem with extensive application to many areas, including VLSI design
[10], efficient storage of large databases on disks [14], and data mining [13]. The problem is to partition the vertices of
a hypergraphint& roughly equal parts, such that a certain objective function defined over the hyperedgesis optimized.
A commonly used objective function is to minimize the number of hyperedges that span different partitions; however,
a number of other objective functions are also considered useful [10].

The most commonly used approach for computikeveay partitioning is based on the recursive bisection paradigm,
that reduces the problem of computing-svay partitioning to that of performing a sequence of bisections. The prob-
lem of computing an optimal bisection of a hypergraph is at least NP-hard [24]; however, many heuristic algorithms

*This work was supported by IBM Partnership Award, NSF CCR-9423082, Army Research Office contract DA/DAAG55-98-1-0441, and the
Army High Performance Computing Research Center under the auspices of the Department of the Army, Army Research Laboratory cooperative
agreement number DAAH04-95-2-0003/contract number DAAH04-95-C-0008, the content of which does not necessarily reflect the position or
the policy of the government, and no official endorsement should be inferred. Access to computing facilities was provided by AHPCRC and the
Minnesota Supercomputer Institute. Related papers are available via WWW athitigt//www.cs.umn.edu/ karypis

have been developed. The survey by Alpert and Kahng [10] provides a detailed description and comparison of various
such schemes. Recently a new class of hypergraph bisection algorithms has been developed [11, 26, 15, 22], that are
based upon the multilevel paradigm. In these algorithms, a sequence of successively smaller (coarser) hypergraphs
is constructed. A bisection of the smallest hypergraph is computed. This bisection is then successively projected to
the next level finer hypergraph, and at each level an iterative refinement algoeitpniK([1] or FM [3]) is used to

further improve the bisection. Experiments presented in [26, 15, 22] have shown that multilevel hypergraph bisection
algorithms can produce substantially better partitionings than those produced by non-multilevel schemes. In partic-
ular, h(METIS [20], a multilevel hypergraph bisection algorithm based upon the work in [26] has been shown to find
substantially better bisections than current state-of-the-art iterative refinement algorithms for the ISPD98 benchmark
set that contains many large circuits [18].

Despite the success of multilevel recursive bisection algorithms, there are a number of advantages of computing the
k-way partitioning directly (rather than computing it successively via recursive bisection). First, a recursive bisection
algorithm does not allows us to directly optimize objectives that are global in nature and depend on having a direct
view of all k partitions. Some examples of such objectives are the sum of external degrees (SOED), scaled cost, and
absorption [10]. Second, lkaway partitioning algorithm is capable of enforcing tighter balancing constraints while
retaining the ability to sufficiently explore the feasible solution space to optimize the partitioning objective. This is
especially true when the partitioning solution must simultaneously satisfy multiple balancing constraints [21]. Third,

a method that obtainskxway partitioning directly can potentially produce much better partitionings than a method
that computes &-way partitioning via recursive bisection [8].

For these reasons, researchers have investigated a numberagf partitioning algorithms that try to compute a
k-way partitioning directly, rather than via recursive bisection. The most notable of them are the generalization of
the FM algorithm fork-way partitioning [4, 7], the spectral multi-way ratio-cut [6], the primal-dual algorithm of [5],
the geometric embedding [9], the dual-net method [12], and#M/LR algorithm [19]. A key problem faced by
some of these algorithms is that tkevay FM refinement algorithm easily gets trapped in local minima. The recently
developedK-PM/LR algorithm by Cong and Lim [19] attempts to solve this problem by refinikgray partitioning
by applying a sequence of 2-way FM refinement to pairs of domains. The pairing of domains is based on the gain of
the last pass, and the pairwise cell movement passes continues until no further gain can be obtained. The experiments
presented in [19] have shown th&tPM/LR outperforms thé&-way FM partitioning algorithm of Sanchis [4, 7] by
up to 86.2% and outperforms the recursive FM partitioning algorithm by up to 17.3%. Nevertheless, all of the above
partitioners tend to produce solutions that are inferior to those produced by the state-of-the-art multilevel recursive
bisection algorithms, especially when they are used to optimize an objective that can directly be optimized by the
recursive bisection framework.g, minimize the hyperedge cut) [18].

In this paper we present a néwway partitioning algorithm that is based on the multilevel paradigm. The multilevel
paradigm can be used to directly construdt-aay partitioning of a hypergraph using the framework illustrated in
Figure 1. The hypergraph is coarsened successively as before. But the coarsest hypergraph is now directly partitioned
into k parts, and thik-way partitioning is successively refined as the partitioning is projected back into the original
hypergraph. A key contribution of our work is a simple and yet powerful scheme for refikinges partitioning in
the multilevel context. Thig-way patrtitioning refinement scheme is substantially simpler and faster than either the
k-way FM [4], or theK-PM/LR algorithm [19], but is equally effective in the multilevel context. Furthermore, this new
k-way refinement algorithm is inherently parallel [17] making it possible to develop high-quality parallel hypergraph
partitioning algorithms.

We evaluate the performance of our multilekeday partitioning algorithm both in terms of the partitioning quality
as well as computational requirements on the ISPD98 benchmark [18]. Our experiments show that the nkultilevel
way hypergraph partitioning algorithm produces high quality partitioning in a relatively small amount of time. The
quality of the partitionings produced by our scheme are on the average 15% to 23% better than those produced by the

Multilevel k-way partitioning

=y &
o ey
Wiss

e

Initial Partitioning Phase

Coarsening Phase
aseyd buluasieooun

Figure 1: The various phases of the multilevel k-way partitioning algorithm. During the coarsening phase, the size of the hyper-
graph is successively decreased; during the initial partitioning phase, a k-way partitioning of the smaller hypergraph is computed
(a 6-way partitioning in this example); and during the uncoarsening phase, the partitioning is successively refined as it is projected
to the finer (larger) hypergraphs.

K-PM/LR [19] algorithm, both in terms of the hyperedge cut as well agkhe 1) metric. Furthermore, our algorithm
is significantly faster, requiring 4 to 5 times less time than that requirédBiI/LR and provides partitions that adhere
to tighter balancing constraints. Compared to the state-of-the-art multilevel recursive bisection, our experiments show
that with respect to the hyperedge cut, our algorithm produces partitions of comparable quality, whereas with respect to
the SOED, our algorithm produces partitions that are up to 18% better. Furthermore, our midtileyepartitioning
algorithm is in general two times faster than multilevel recursive bisection, and this ratio increases with the size of the
hypergraph.

The rest of this paper is organized as follows. Section 2 describes the different algorithms used in the three phases
of our multilevelk-way hypergraph partitioning algorithm. Section 3 compares the results produced by our algorithm
to those produced by earlier hypergraph partitioning algorithms. Finally, Section 4 provides some concluding remarks.

2 Multilevel k-way Hypergraph Partitioning

Formally, a hypergrap& = (V, E) is defined as a set of vertic¥sand a set of hyperedgé&s where each hyperedge
is a subset of the vertex sét[23], and the size of a hyperedge is the cardinality of this subsetk¥meey hypergraph
partitioning problem is defined as follows: Given a hypergr&@pk (V, E) (whereV is the set of vertices and is
the set of hyperedges) and an overall load imbalance tole@sgeh thatc > 1.0, the goal is to partition the sét
into k disjoint subsetsyi, Vo, ..., Vk such that the number of vertices in each\§eis bounded byV|/(ck) < |Vj| <
c|V|/k, and a function defined over the hyperedges is optimized.

The requirement that the size of each partition is bounded is referred to aafit@ning constraint and the
requirement that a certain function is optimized is referred to agah@ioning objective Over the years, a number of
partitioning objective functions have been developed. The survey by Alpert and Kahng [10] provides a comprehensive
description of a variety of objective functions that are commonly used for hypergraph partitioning in the context of
VLSI design.

One of the most commonly used objective function isninimize the hyperedge-cudf the partitioning;.e., the
total number of hyperedges that span multiple partitions. Another objective that is often usetrisn@e the sum of
external degree$SOED) of all hyperedges that span multiple partitions. Giveanay partitioning and a hyperedge
e, the external degree @fis defined to be 0, i€ is not cut by the partitioning, otherwise it is equal to the number of
partitions that is spanned &y Then, the goal of the partitioning algorithm is to computeway partitioning that
minimizes the sum of external degrees of the hyperedges. An objective related to SOEBInsze the(K — 1)
metric[10, 19]. In the case of theK — 1) metric, the cost of a hyperedge that sp&npatrtitions is(K — 1), whereas
for the SOED metric, the cost is.

Next we describe the three phases of the multilewahy partitioning algorithm in detail.

2.1 Coarsening Phase

During the coarsening phase, a sequence of successively smaller hypergraphs is constructed. As in the case of the
multilevel hypergraph bisection algorithm [16], the coarsening phase servers the following three purposes. First it
leads to a small hypergraph such that a gkeslay partitioning of the small hypergraph is not significantly worse

than thek-way partitioning directly obtained for the original hypergraph. Second, the different successively coarsened
versions of the hypergraph allow local refinement techniques such as FM to become effective. Third, hypergraph
coarsening also helps in successively reducing the sizes of the hyperedges. That is, at each level of coarsening, large
hyperedges are contracted to smaller hyperedges. This is particularly helpful, since refinement heuristics based on the
KLFM family of algorithms [1, 2, 3] are very effective in refining small hyperedges but are quite ineffective in refining
hyperedges with a large number of vertices belonging to different partitions.

Two primary schemes have been developed for selecting what groups of vertices will be merged together to form
single vertices in the next level coarse hypergraphs. The first scheme edtedcoarsenindeEC) [16, 15, 22],
selects the groups by finding a maximal set of pairs of vertices (natching) that belong in many hyperegdes. In
this scheme, each group consists of at most two vertices (some vertices are not combined at all), and each vertex
belongs to exactly one group. The second scheme that is ¢glftedge-coarseninHEC) [16] finds a maximal
independent set of hyperedges, and the sets of vertices that belong to each hyperedge becomes a group of vertices to
be merged together. In this scheme, each group can have an arbitrary number of vertices (even though preference is
given to smaller groups), and each vertex also belongs to exactly one group. Experiments in [16] show that for certain
problems, the hyperedge-coarsening scheme and its variations tend to outperform the edge-coarsening scheme, as they
do a better job of reducing the total hyperedge weight of successively coarser hypergraphs.

However, both the edge- and the hyperedge-coarsening schemes share one characteristic that can potentially lead to
less than ideal coarse representations of the original hypergraph, especially for hypergraphs corresponding to circuits.
This common characteristic is that the grouping schemes employed by both approaches find maximal independent
groups. That is, both the edge- and the hyperedge-coarsening schemes will find as many groups of vertices as they
can, that are pair- or hyperedge-wise independent. The potential problem with this approach is that the independence
(and to a certain degree, the maximality) requirement may destroy some clusters of vertices that naturally exist in the
hypergraph. To see that consider the example shown in Figure 2(a). As we can see from this figure there are two
natural clusters. The first cluster contains the five vertices on the left and the second cluster contains the five vertices
on the right. These two clusters are connected by a single hyperedge; tmadutad cut for this hypergraph is one.

Figure 2(b) shows the pairs of vertices that are found by the edge-coarsening scheme. In the edge-coarsening scheme,

vertex F will prefer to merge with verteXg, but vertexG had already been grouped with vertielx consequently,

vertexE is grouped together with vertdx. Once the hypergraph is coarsened as shown in Figure 2(c), we can see that
the natural separation point in this hypergraph has been eliminated, as it has been contracted in the vertex that resulted
from mergingE andF. A similar kind of example can be constructed using the hyperedge-coarsening as well.

R g
@ &) (& o (o] [
J o
f f
\J \J @) $J
(a) Initial Hypergraph
R g
@ o (o= o (o7 (o
f £
\J \J @) $J
J &

(b) Groups Determined by Edge-Coarsning

[.ABZ ’.?D 2 E:J EBH o

(c) Coarse Hypergraph

Figure 2: An example in which the edge-coarsening scheme can lead to a coarse representation in which the natural clusters
of the hypergraph have been obscured. The weights on the hyperedges of the coarse hypergraph (c) represent the number of
hyperedges in the original hypergraph that span the same set of vertices in the coarse representation.

The above observation, led us to develop a new coarsening scheme that we will refer t&Fiest@mwice (FC)
coarsening scheme. The FC coarsening scheme is based up on the edge-coarsening scheme, and understanding how
the EC scheme works is essential in understanding FC. In the rest of this section we briefly describe the EC scheme
(further details can be found in [16, 15]), and describe how FC can be derived by modifying EC.

In the EC coarsening scheme, the vertices are visited in a random order. For each valttermatched vertices
that belong to hyperedges incidentitare considered, and the one that is connected via the edge with the largest
weight is matched withi. The weight of an edge connecting two vertiaeandu is computed as the sum of the
edge-weightsf all the hyperedges that contairandu. Each hyperedge of size|€g| is assigned an edge-weight of
1/(le| — 1), and as hyperedges collapse on each other during coarsening, their edge-weights are added up accordingly.
This edge coarsening scheme is similar in nature to the schemes that treat the hypergraph as a graph by replacing each
hyperedge with its clique representation [25]. However, this hypergraph to graph conversion is done implicitly during
matching without forming the actual graph.

The FC coarsening scheme is derived from the EC coarsening scheme by relaxing the requirement that a vertex is
matched only with another unmatched vertex. Specifically, in the FC coarsening scheme, the vertices are again visited

in a random order. However, for each verigxall vertices (both matched and unmatched) that belong to hyperedges
incident tov are considered, and the one that is connected via the edge with the largest weight is matched with
breaking ties in favor of unmatched vertices. As a result, each group of vertices to be merged together can contain
an arbitrarily large number of vertices. The one potential problem with this coarsening scheme is that the number of
vertices in successive coarse graphs may decrease by a largé fatémtially limiting the effect of refinement [15].
For this reason, at each coarsening level, we stop the FC coarsening scheme as soon as the size of the resulting coarse
graph has been reduced by a factor of 1.7. Our experiments have shown that by controlling the rate of coarsening
in this fashion, we can ensure that there are sufficiently many coarsening levels, and that the refinement algorithm is
effective in improving the partitioning quality during the uncoarsening phase.

The coarsening phase ends when the coarsest hypergraph has a small number of vertices. Since our goal is to
compute &-way partitioning, the number of vertices in this smaller hypergraph should be a functigiicoénsure
that a reasonably balanced partitioning can be computed by the initial partitioning algorithm. In our experiments, for
ak-way partition, we stop the coarsening process when the number of vertices becomes leksviti@nec = 100.

2.2 Initial Partitioning Phase

The second phase of a multiledelway partitioning algorithm is to computelkaway partitioning of the coarsest
hypergraph such that the balancing constraint is satisfied and the partitioning objective is optimized. Since during
coarsening, the weights of the vertices and hyperedges of the coarser hypergraph were set to reflect the weights of the
vertices and hyperedges of the finer hypergraph, the coarsest hypergraph contains sufficient information to intelligently
enforce the balancing constraint and optimize the partitioning objective.

One way to produce the initi&l-way partitioning is to keep coarsening the hypergraph until it has lorbrtices
left. These coarsk vertices can serve as the initielway partitioning of the original hypergraph. There are two
problems with this approach. First, for many hypergraphs, the reduction in the size of the hypergraph in each coars-
ening step becomes very small after some coarsening steps, making it very expensive to continue with the coarsening
process. Second, even if we are able to coarsen the hypergraph down koventiges, the weights of these vertices
are likely to be quite different, making the initial partitioning highly unbalanced.

In our algorithm, thek-way partitioning of the coarsest hypergraph is computed using our multilevel hypergraph
bisection algorithm [16], that is available in thMETS package [20].

2.3 Uncoarsening Phase

During the uncoarsening phase, a partitioning of the coarser hypergraph is successively projected to the next level finer
hypergraph, and a partitioning refinement algorithm is used to optimize the objective function without violating the
partitioning balancing constraints. Since the next level finer hypergraph has more degrees of freedom, such refinement
algorithms tend to improve the solution quality.

Inthe case of bisection refinement, the FM algorithm [3] has been shown to produce very good results [16]. For each
vertexv, the FM algorithm computes tlgain which is the reduction in the value of the objective function achieved by
movingv to the other partition. These vertices are inserted into two priority queues, one for each partition, according
to their gains. Initially all vertices aranlocked i.e., they are free to move to the other partition. The algorithm
iteratively selects an unlocked vertexvith the largest gain from one of the two priority queues and moves it to the
other partition. When a vertaxis moved, it idockedand the gain of the vertices adjacenbtare updated. After each
vertex movement, the algorithm also records the value of the objective function achieved at this point. A single pass
of the algorithm ends when there are no more unlocked vertices. Then, the recorded values of the objective function

*In the case of the EC coarsening scheme, the size of successive coarse graphs can be reduced by at most a factor of two.

are checked, and the point where the minimum value was achieved is selected, and all vertices that were moved after
that point are moved back to their original partition. Now, this becomes the initial partitioning for the next pass of the
algorithm.

However, refining &-way partitioning is significantly more complicated because vertices can move from a partition
to many other partitions; thus, increasing the optimization space combinatorially. An extension of the FM refinement
algorithm in the case df-way refinement is described in [4]. This algorithm ukéls — 1) priority queues, one for
each type of move. In each step of the algorithm, the moves with the highest gain are found from eactkgkthése
gueues, and the move with the highest gain that preserves or improves the balance, is performed. After the move, all
of thek(k — 1) priority queues are updated. The complexitykeivay refinement is significantly higher than that of
2-way refinement, and is only practical for small valuekofFurthermore, as the experiments in [19] suggest, the
k-way FM algorithm is also very susceptible of being trapped into a local minima that is far from being optimal.

Benchmark| No. of vertices | No. of hyperedges|
ibm01 12506 14111
ibm02 19342 19584
ibm03 22853 27401
ibm04 27220 31970
ibm05 28146 28446
ibm06 32332 34826
ibmO7 45639 48117
ibm08 51023 50513
ibm09 53110 60902
ibm10 68685 75196
ibm11 70152 81454
ibm12 70439 77240
ibm13 83709 99666
ibm14 147088 152772
ibm15 161187 186608
ibm16 182980 190048
ibm17 184752 189581
ibm18 210341 201920

Table 1: The characteristics of the various hypergraphs used to evaluate the multilevel hypergraph partitioning algorithms.

The hill-climbing capability of the FM algorithm serves a very important purpose. It allows movement of an entire
cluster of vertices across a partition boundary. Note that it is quite possible that as the cluster is moved across the
partition boundary, the value of the objective function increases, but after the entire cluster of vertices moves across
the partition, then the overall value of the objective function comes down. In the context of multilevel schemes, this
hill-climbing capability becomes less important. The reason is that these clusters of vertices are coarsened into a
single vertex at successive coarsening phases. Hence, movement of a vertex at a coarse level really corresponds to the
movement of a group of vertices in the original hypergraph.

If the hill-climbing part of the FM algorithm is eliminated €., if vertices are moved only if they lead to positive
gain), then it becomes less useful to maintain a priority queue. This is because vertices whose move results in a large
positive gain will most likely be moved anyway even if they are not moved earlier (in the priority order). Hence, a
variation of the FM algorithm that simply visits the vertices in a random order and moves them if they result in a
positive gain is likely to work well in the multilevel context. Furthermore, the complexity of this algorithm will be
independent of the number of partitions being refined, leading to a fast algorithm. This observation has lead to us
to develop agreedy refinemenalgorithm. It consists of a number of iterations. In each iteration all the vertices are
checked to see if they can be moved so that the partitioning objective function is optimized, subject to the partitioning
balancing constraint (as described in Section 2). As the results in Section 3 show, despite the simplicity of our
refinement algorithms, they produce high quality partitionings in small amount of time.

More precisely, our greedy-way refinement algorithm works as follows. Consider a hypergfaphk- (Vi, Ej),
and its partitioning vectoP,. The vertices are visited in a random order. Ldte such a vertex, I8 [v] = a be the
partition thatv belongs to. Ifv is a node internal to partitioa thenv is not moved. Ifv is at the boundary of the
partition, therw can potentially be moved to one of the partitiodév) that vertices adjacent to belong to (the set
N(v) is often refer to as thaeighborhoodof v). Let N’(v) be the subset dfl(v) that contains all partitionks such
that movement of vertex to partitionb does not violate the balancing constraint. Now the partitian N’ (v) that
leads to the greatest positive reduction (gain) in the objective function is selectedsamibved to that partition.

The above greedy refinement algorithm can be used to compute a partitioning that minimizes a variety of objective
functions, by appropriately computing the gain achieved in moving a vertex. Our current implementation allows a
choice of two different objective functions. The first minimizes the hyperedge cut and the second minimizes the sum
of external degrees (SOED) (Section 2).

Experiments with this greedgway refinement algorithm show that it converges after a small number of iterations.

In our experiments, we found that for most hypergraphs, the algorithm converged within four to eight iterations.

3 Experimental Results

We experimentally evaluated the quality of the partitionings produced by our multidevay hypergraph partitioning
algorithm AMETIS-Kway) on the 18 hypergraphs that are part of the ISPD98 circuit partitioning benchmark suite [18].
The characteristics of these hypergraphs are shown in Table 1. In addition to the circuits, the ISPD98 benchmark also
contains the actual areas for each one of the cell. However, to make it easy to compare our results with those of other
researchers [19], we used only unit cell-areas in our experiments. Furthermore, for some circuits, the actual areas
of some cells is higher than 1/8 of the overall area, making it impossible to produced balanced 8-, 16-, and 32-way
partitionings. We performed all of our experiments on a 300MHz Pentium lI-based Linux workstation.

3.1 Comparison with the Multilevel Recursive Bisection

In our first set of experiments, we compare the performance of our multikewaly partitioning algorithm to that
of the multilevel recursive bisection algorithm for computing 8-, 16-, and 32-way partitionings. Our mulkilevel
way partitioning algorithm was compared against the multilevel bisection algorithm [26] that is part iVi#h&
[20] hypergraph partitioning package. For the rest of this paper, we will refer to this recursive bisection algorithm as
hMETIS-RB, and we will refer to our multilevek-way partitioning algorithm abMENS-Kway.

Both hMENS-RB andhMETiS-Kway used the FC scheme for coarsening (Section 2.1). For refinehh#iS-RB
used the FM algorithm whereas thMENS-Kway used the greedy refinement algorithm described in Section 2.3.
To compute a bisection usifdVENS-RB, we performed a total of 20 different runs, and then we further improved
the best bisection using the V-cycle refinement technique [26]. To ensure that the kweagilpartitioning does
not become significantly unbalanced, each bisection was computed ug#8y5®] balancing constraint.€., the
smaller part must contain at least 48% of the vertices). Consequently, the effective overall balancing constraints for
the 8-, 16-, and 32-way partitionings wei@48® = 0.111, .52 = 0.141], [0.48* = 0.053 .52* = 0.073], and
[0.48° = 0.025, .52° = 0.038], respectively. In other words, these balancing constraints allow an overall maximum
load imbalance of 12.5%, 17.0%, and 21.7%, for the 8-, 16-, and 32-way partitionings, respectively. We also performed
a total of 20 different runs fdiMETIS-Kway, and we also used the V-cycle refinement technique to further improve the
quality of the besk-way partitioning. In all the experimentsMEeTS-Kway used an overall load imbalance tolerance
of 1.10, meaning that the weight of the heaviest partition will be less than 10% higher than the average weight of the
k partitions.

Table 2 shows the number of hyperedges that are cut bydgiS-RB and hMENS-Kway for an 8-, 16-, and
32-way partitioning for all the circuits of the ISPD98 benchmark. For this set of experiments, the objebtileis-

hMETIS-RB hMETIS-Kway
Circuit 8-way 16-way 32-way 8-way 16-way 32-way
ibm01 760 1258 1723 795 1283 1702
ibm02 1720 3150 4412 1790 3210 4380
ibm03 2503 3256 4064 2553 3317 4120
ibm04 2857 3989 5094 2902 3896 5050
ibm05 4548 5465 6211 4464 5612 5948
ibm06 2452 3356 4343 2397 3241 4231
ibm07 3454 4804 6300 3422 4764 6212
ibm08 3696 4916 6489 3544 4718 6154
ibm09 2756 3902 5502 2680 3968 5490
ibm10 4301 6190 8659 4263 6209 8612
ibm11 3592 5260 7514 3713 5371 7534
ibm12 5913 8540 11014 6183 8569 11392
ibm13 3042 5522 7541 2744 5329 7610
ibm14 5501 8362 12681 5244 8293 12838
ibm15 6816 8691 13342 6855 9201 13853
ibm16 6871 10230 15589 6737 10250 15335
ibm17 9341 15088 20175 9420 15206 19812
ibm18 5310 8860 13410 5540 9025 13102
ARQ 1.002 0.996 1.006 0.998 1.004 0.994
Run-time | 21872.22| 25941.12 | 30325.48| 10551.7 | 14227.52| 19572.45

Table 2: The number of hyperedges that are cut by the multilevel recursive bisection algorithm (hMENS-RB) and the multilevel k-
way partitioning algorithm (hMETS-Kway) for 8-, 16-, and 32-way partitionings. The row labeled 'ARQ’ shows the Average Relative
Quality of one scheme versus the other. For example, the ARQ value of 1.002 for the 8-way partitioning of hMETS-RB means that
the cuts produced by hMETS-RB are on the average 0.2% higher than the corresponding cuts produced by hMETS-Kway. An ARQ
value that is less than 1.0 indicates that the particular scheme on the average performs better. The last row shows the total amount
of time required by each of the partitioners for all 18 circuits (the times are in seconds).

Kway algorithm was to minimize the hyperedge cut. The same set of data was also used to plot the bar-charts shown
in Figure 3 that show the cut obtained biMETS-Kway relative to that obtained byMEINS-RB. These bars were
obtained by dividing the cut obtained biMETS-Kway to the cut obtained bMETIS-RB. Any bars lower than 1.0
indicate thahMEINS-Kway performs better. As can be seen from Figur@MeNS-Kway produces partitions whose

cut is comparable to those producedHENS-RB. On the averagehMENS-Kway performs 0.2% and 0.6% better
thanhMETIS-RB for the 8- and 32-way partitionings, respectively, and 0.4% worse for the 16-way partitioning. The
fact thathMeTiS-Kway cuts the same number of hyperedge$slsliS-RB, is especially interesting if we consider

(i) the simplicity of the greedy refinement scheme usediMgliS-Kway as opposed to the much more sophisticated

FM algorithm used by)WMETIS-RB, and (ii) the fact that compared lMENS-Kway, hMETIS-RB operates under more
relaxed balancing constraints.

The last row of Table 2 shows the total amount of time required by the two algorithms in order to compute the 8-,
16-, and 32-way partitionings. As we can sbRIETIS-Kway is 2.07, 1.82, and 1.55 times faster tHa@veTS-RB for
computing an 8-, 16-, and a 32-way partitioning, respectively. Note that this relative speed advahMgesoKway
decreases dsincreases. This is primarily due to the fact that the recursive bisection algorithm used in the initial
partitioning takes a larger fraction of the overall time (as the size of the coarsest hypergraph is proportional to the
number of partitions).hMENS-Kway will continue running faster thahMEelS-RB if the size of the hypergraph is
increased proportionally to the number of partitions.

To test the effectiveness GMENS-Kway for optimizing the SOED, we ran another set of experiments in which
the objective othMENS-Kway was to minimize the SOED. Table 3 shows the sum of external degrees (SOED) of
the partitionings produced by botMENS-RB andhMENS-Kway for an 8-, 16-, and 32-way partitioning for all the
circuits of the ISPD98 benchmark. The same set of data was also used to plot the bar-charts shown in Figure 4 that
show the SOED obtained hMETIS-Kway relative to that obtained byMETIS-RB. From this figure we can see that
for all caseshMENS-Kway produces partitionings whose SOEDs are better than those produtdERg-RB. On

hMETIS-RB hMETIS-Kway

Circuit | 8-way | 16-way | 32-way | 8-way | 16-way | 32-way
ibm01 1768 2938 4566 | 1750 2883 4149
ibm02 3940 8040 | 13039 | 3850 7556 | 11821
ibm03 5909 8719 | 11667 | 5820 8205 | 11077
ibm04 6461 9595 | 13008 | 6214 8992 | 12495
ibm05 | 11572 | 16070 | 22708 | 10749 | 15206 | 20020
ibm06 6160 9631 | 13988 5784 8661 | 12779
ibm07 7885 | 12116 | 16806 | 7586 | 11040 | 15559
ibm08 9031 | 13040 | 18819 | 7979 | 10976 | 15327
ibm09 6073 9016 | 13193 5822 8634 | 12460
ibm10 9458 14543 21060 9144 13130 19941
ibm11 7940 12023 17857 7874 11706 17118
ibm12 | 12975 19563 27026 | 12910 17848 25228
ibm13 7010 | 12792 | 18484 | 6079 | 11819 | 17350
ibm14 | 12360 | 19189 | 30484 | 11258 | 18232 | 29699
ibm15 | 15198 | 21314 | 32039 | 14586 | 20826 | 31874
ibm16 | 14853 23237 37234 | 14616 22924 | 34879
ibm17 | 20423 | 34177 | 48256 | 19930 | 33344 | 45961
ibm18 | 12940 | 21765 | 34069 | 12177 | 19598 | 30558
ARQ 1.048 1.068 1.076 | 0.954 0.936 0.929

Table 3: The sum of external degrees (SOED) of the hyperedges that are cut by the partitionings produced by the multilevel
recursive bisection algorithm (hMENS-RB) and the multilevel k-way partitioning algorithm (hMETS-Kway) for 8-, 16-, and 32-way
partitionings. The row labeled 'ARQ’ shows the Average Relative Quality of one scheme versus the other. For example, the ARQ
value of 1.048 for the 8-way partitioning of hMES-RB means that the SOEDs produced by hMES-RB are on the average 4.8%
higher than the corresponding SOEDs produced by hMETS-Kway. An ARQ value that is less than 1.0 indicates that the particular
scheme on the average performs better.

the averagehMENS-Kway performs 4.8%, 6.8%, and 7.6% better tH@iENS-RB for the 8-way, 16-way, and 32-
way partitionings, respectively. These results show HMENIS-Kway is effective in incorporating global objective
functions which can only be optimized in the context ¢Fevay refinement algorithm.

3.2 Comparison with K-PM/LR

We compared the performance of our multileketiay partitioning algorithm against the multi-way partitioning algo-
rithm K-PM/LR developed by Cong and Lim [19].

Table 4 shows the number of hyperedges that are cut byhdghS-Kway andK-PM/LR for an 8- and a 16-way
partitioning®In these experiments, for botiVETIS-Kway andK-PM/LR, the partitioning objective was to minimize
the hyperedge cut. The results fdvENIS-Kway are the same as shown in Table 2, whereas the resultd&BM/LR
are taken from [19]. Note that the results ®PM/LR were obtained by using balancing constraints that correspond
to those obtained by recursive bisection if it usefa5, 0.55] balancing constraint at each level. Consequently,
the balancing constraints for the 8- and 16-way partitioning[@45° = 0.091, 0.55° = 0.166] and [0.45* =
0.041, 0.55* = 0.092], respectively. Note that these balancing constraints are considerably more relaxed than the 10%
overall load imbalanced used IWETS-Kway. If we translate the balancing constraints enforcedbyM/LR to
maximum allowable load imbalances fiiway partitioning, we see tha¢-PM/LR allows up to 32.8% and 47.2%
load imbalance, for the 8-, and 16-way partitionings, respectively.

The data in Table 4 was also used to plot the bar-charts shown in Figure 5 that compares the cut obhdEES-by
Kway relative to those obtained b§PM/LR. From this figure we can see tHa¥IETIS-Kway produces partitionings
that cut significantly fewer hyperedges than those cutf®BM/LR. In fact, on the averag@METNS-Kway cuts 20%
and 23% fewer hyperedges th&KWPM/LR for the 8- and 16-way partitionings, respectively. Thus, even though

“We were not able to compare results for 32-way partitioning, because they are not reported in [19].

10

Performance of hMETIS-Kway relative to hMETIS-RB
(in terms of the hyperedge cut)

11 l dO8-way [O16-way H32-way

- —

0.9

0.8

0.7

0.6

0.5 +

0.4 +H

0.3

0.2 +

0.1 +

. $» © QA g O S > N2] » o A \J
N} N N N S N O NG O 2 O & 4 N
& & & S & & & S & & S & & & S & & &

Figure 3: The quality of the partitionings in terms of the cuts produced by hMETS-Kway relative to those produced by hMETS-RB for
an 8-, 16-, and 32-way partitioning. Bars bellow the 1.0 line indicate that hMETS-Kway performs better than hMETS-RB.

Performance of hMETIS-Kway relative to hMETIS-RB
(in terms of the SOED)

11 \ O 8-way O016-way H32-way
T]] i —

0.9 H M] — 1 M
0.8 1+

0.7 H

0.6 H

0.5 +

0.4 H

0.3 H

0.2 H

0.1 +

o L] L L L L L L L L L L L L L L L L L
« > @@& .®<~‘°n’ @@& \Q@@ §,@°@ @oé @@& @«@ @@@ vs&” @@Q 0@”% @@”V _@@é’ 0&@ v%,@”“ @@&

Figure 4: The quality of the partitionings in terms of the SOEDs produced by hMETS-Kway relative to those produced by hMETS-RB
for an 8-, 16-, and 32-way partitioning. Bars bellow the 1.0 line indicate that hMETS-Kway performs better than hMENS-RB.

11

hMETIS-Kway operates under tighter balancing constraints, it is able to produce partitionings that cut substantially
fewer hyperedges that-PM/LR.

hMETS-Kway K-PM/LR
Circuit 8-way 16-way 8-way | 16-way
ibm01 795 1283 1020 1699
ibm02 1790 3210 1751 3592
ibm03 2553 3317 3882 5736
ibm04 2902 3896 3559 5349
ibm05 4464 5612 4834 6419
ibm06 2397 3241 3198 4815
ibm07 3422 4764 4398 6854
ibm08 3544 4718 4466 6477
ibm09 2680 3968 4115 6046
ibm10 4263 6209 5252 8559
ibm11 3713 5371 6086 8871
ibm12 6183 8569 7736 | 11000
ibm13 2744 5329 3570 7066
ibm14 5244 8293 6753 9854
ibm15 6855 9201 8965 | 11345
ibm16 6737 10250 7543 | 10456
ibm17 9420 15206 | 10654 | 17653
ibm18 5540 9025 5765 9653
ARQ 0.802 0.771 1.247 1.297
Run-time | 10551.7 | 14227.52| 105840 | 134640

Table 4: The number of hyperedges that are cut by hMEIS-Kway and the K-PM/LR partitioning algorithms for 8- and 16-way
partitionings. The row labeled 'ARQ’ shows the Average Relative Quality of one scheme versus the other. For example, the ARQ
value of 1.247 for the 8-way partitioning of K-PM/LR means that the cuts produced by K-PM/LR are on the average 24.7% higher
(worse) than the corresponding cuts produced by hMETS-Kway. An ARQ value that is less than 1.0 indicates that the particular
scheme on the average performs better. The last row shows the total amount of time required by each of the partitioners for all
18 circuits (the times are in seconds). Note that hMETS-Kway was run on a Pentium [1@300Mhz, whereas K-PM/LR was run on a
Ultra Sparc1@143Mhz.

The last row of Table 4 shows the amount of time requirechilgliS-Kway and K-PM/LR. Note that theK-

PM/LR was run on a Sun Ultra Sparcl running at 143Mhz. Our experiments have shown that the Sun Ultra Sparcl
running at 143Mhz is about twice as slow than the Pentium Il running at 300Mhz that we used MeEd&-Kway
experiments). Taking this CPU performance difference into account, we seeMileb-Kway is 5 times faster for

the 8-way partitioning, and 4.7 times faster for the 16-way partitioning. Thus, compakeBM/LR, hMETIS-Kway

not only cuts substantially fewer hyperedges but it is also significantly faste Ktirivi/LR.

Finally, Cong and Lim [19] also reported results using the minimization of(khe- 1) metric as the objective
function of K-PM/LR. Table 5 shows the cost of the solutions with respect toKe- 1) metric obtained by both
hMETIS-Kway andK-PM/LR for an 8- and a 16-way partitioning. Note that fdviENIS-Kway, the value for théK —1)
metric was obtained by performing the partitioning using the minimization of the SOED as the objective. The data
in Table 5 was also used to plot the bar-charts shown in Figure 6 that compares the cost of the partitions obtained by
hMETIS-Kway relative to those obtained B¢-PM/LR. From this figure we can see tHa¥lIETIS-Kway also produces
partitionings that are consistently and significantly better than those produ¢e®b/LR. In particular, thg K — 1)-
metric cost ohMETIS-Kway is, on the average, 15% and 14% smaller than the cd&tR¥I/LR for the 8- and 16-way
partitionings, respectively.

12

Performance of hMETIS-Kway relative to K-PM/LR
(in terms of the hyperedge cut)

11

O8-way W 16-way
1 [
09 M
0.8 1
071 H
06 1
0.5 1
0.4 1
0.3
02]
01 1]
o Ll
@‘QQN 's@@ -s@& »@‘Q& »@‘Q@ »Q@QB »:o@@ s‘\& \o@@ \O‘\@ \0&0 \0‘& \o&{b @&b ‘s‘& ‘s‘&@ -s@é »@‘&

Figure 5: The quality of the partitionings in terms of the cuts produced by hMETS-Kway relative to those produced by K-PM/LR for
an 8- and 16-way partitioning. Bars bellow the 1.0 line indicate that hMeETS-Kway performs better than K-PM/LR.

Performance of hMETIS-Kway relative to K-PM/LR
(interms of (K- 1) metric)
11

O8-way W 16-way
1
09
0.8
07 H
06 1
0.5 1
0.4 1
0.3
02]
01 1]
o Ll
@@ 's@& -s@& »s@& »@‘Q@ »Q@QB »:o@@ s‘@‘b @“\QQ \v@& \0&0 \O‘& \0&{5 @&b @& ‘s‘&@ -s@é »:e‘&

Figure 6: The quality of the partitionings in terms of the (K — 1) metric produced by hMETS-Kway relative to those produced by
K-PMILR for an 8- and 16-way partitioning. Bars bellow the 1.0 line indicate that hMElS-Kway performs better than K-PM/LR.

13

hMETIS-Kway K-PM/LR

Circuit | 8-way | 16-way | 8-way | 16-way
ibm01 930 1592 [1109 1821
ibm02 1750 4058 | 1892 4152
ibm03 3083 4745 | 4119 5662
ibm04 3320 4956 | 3671 5766
ibm05 5958 8982 | 6543 9344
ibm06 3300 5248 | 3988 5900
ibm07 4115 5948 | 4707 6854
ibm08 4312 6102 | 5426 7364
ibm09 3043 4564 | 4187 5978
ibm10 4763 6944 | 5518 8525
ibm11 4174 6303 | 5321 8420
ibm12 6598 9358 | 7530 | 10495
ibm13 3319 6394 | 3667 7382
ibm14 5962 9734 7427 12476
ibm15 8104 11182 | 11008 14448
ibm16 7529 12052 9322 14901
ibm17 | 10510 | 17740| 11818 | 20830
ibm18 6410 | 10498 | 6982 | 11692
ARQ 0.840 0.849 | 1.191 1.178

Table 5: The (K — 1) metric of the partitionings obtained by hMEIS-Kway and the K-PM/LR partitioning algorithms for 8- and
16-way partitionings. The row labeled 'ARQ’ shows the Average Relative Quality of one scheme versus the other. For example,
the ARQ value of 1.191 for the 8-way partitioning of K-PM/LR means that the (K — 1) metric solutions produced by K-PM/LR are
on the average 19.1% higher (worse) than the corresponding solution produced by hMETS-Kway. An ARQ value that is less than
1.0 indicates that the particular scheme on the average performs better.

4 Conclusions

The multilevelk-way partitioning scheme presented in this paper substantially outperforms the state-ofkhe-art
PM/LR algorithm for multi-way partitioning [19] both for minimizing the hyperedge cut as well as minimizing the
(K — 1) metric. The power ohMETIS-Kway is primarily derived from the robustness of the multilevel paradigm that
allows the use of a simpleway partitioning refinement heuristic instead of Bék?) complexityk-way FM refine-
ment [4] or a sequence of pair-wise FM refinements [19]. The sikplay refinement heuristic is able to perform
an excellent job in optimizing the objective function, as it is applied to successively finer hypergraphs. Furthermore,
as our experiments indicate, the multilekelvay paradigm offers the additional benefit of producing high quality
partitionings while enforcing tight balancing constraints.

A version ofhMETIS is available on the WWW at the following URttp://www.cs.umn.edu/ metis.

References

[1] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning grapftee Bell System Technical Journal
49(2):291-307, 1970.

[2] D. G. Schweikert and B. W. Kernighan. A proper model for the partitioning of electrical circuiBrda. ACM/IEEE Design
Automation Conferenc@ages 57-62, 1972.

[3] C. M. Fiduccia and R. M. Mattheyses. A linear time heuristic for improving network partitioris. fnoc. 19th IEEE Design
Automation Conferen¢gages 175-181, 1982.

[4] L. A. Sanchis. Multiple-way network partitionindEEE Transactions on Computersages 62—81, 1989.

[5] C. W. Yeh, C. K. Cheng, and T. T. Lin. A general purpose multiple-way partitioning algorithmPrde. of the Design
Automation Conferencpages 421-426, 1991.

[6] P. Chan, M. Schlag, and J. Zien. Speckalay ratio-cut partitioning and clustering. Froc. of the Design Automation
Conferencepages 749-754, 1993.

[7] L. A. Sanchis. Multiple-way network partitioning with different cost function&EE Transactions on Computergages
1500-1504, 1993.

14

(8]

(9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]

(18]
[19]

[20]
[21]
[22]
[23]

[24]

[25]
[26]

Horst D. Simon and Shang-Hua Teng. How good is recursive bisection? Technical Report RNR-93-012, NAS Systems
Division, NASA, Moffet Field, CA, 1993.

C. J. Alpert and A. B. Kahng. Multi-way partitioning via space-filling curves and dynamic programmingrom of the
Design Automation Conferengeages 652—657, 1994.

Charles J. Alpert and Andrew B. Kahng. Recent directions in netlist partitiohitegration, the VLSI Journall9(1-2):1-81,
1995.

S. Hauck and G. Borriello. An evaluation of bipartitioning techniquePioc. Chapel Hill Conference on Advanced Research
in VLSI, 1995.

J. Cong, W. Labio, and N. Shivakumar. Multi-way VLSI circuit partitioning based on dual net represent&itf.Trans.
on Computer-Aided Design of Integrated Circuits and Systpages 396—409, 1996.

B. Mobasher, N. Jain, E.H. Han, and J. Srivastava. Web mining: Pattern discovery from world wide web transactions.
Technical Report TR-96-050, Department of Computer Science, University of Minnesota, Minneapolis, 1996.

S. Shekhar and D. R. Liu. Partitioning similarity graphs: A framework for declustering problimésrmation Systems
Journal 21(4), 1996.

C. J. Alpert, J. H. Huang, and A. B. Kahng. Multilevel circuit partitioning Piroc. of the 34th ACM/IEEE Design Automation
Conference1997.

George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multilevel hypergraph partitioning: Application in visi
domain. InProceedings of the Design and Automation Confereh887.

George Karypis and Vipin Kumar. A coarse-grain parallel multildegay partitioning algorithm. IrfProceedings of the
eighth SIAM conference on Parallel Processing for Scientific Computiag?.

C. J. Alpert. The ISPD98 circuit benchmark suite Piroc. of the Intl. Symposium of Physical Desigages 80-85, 1998.

Jason Cong and Sung Kyu Lim. Multiway Partitioning with Pairwise Movementintin Conference on Computer Aided
Design 1998.

G. Karypis and V. Kumar.hMETS 1.5: A hypergraph partitioning package. Technical report, Department of Computer
Science, University of Minnesota, 1998. Available on the WWW at Utp://www.cs.umn.edu/"metis

G. Karypis and V. Kumar. Multilevel algorithms for multi-constraint graph partitioningPloceedings of Supercomputing
1998. Also available on WWW at URL http://www.cs.umn.edu/ karypis.

Sverre Wichlund and Einar J. Aas. On Multilevel Circuit Partitioninglrith. Conference on Computer Aided Desig®98.
C. Berge.Graphs and HypergraphsAmerican Elsevier, New york, 1976.

Michael R. Garey and David S. Johnsddomputers and Instractability: A Guide to the Theory of NP-Completerivyds
Freeman, San Francisco, CA, 1979.

T. LengauerCombinatorial Optimization: Networks and Matroiddolt, Rinehart, and Winston, Boston, MA, 1976.

George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multilevel hypergraph partitioning: Application in visi
domain.|EEE Transactions on VLSI Systert998 (to appear). A short version appears in the proceedings of DAC 1997.

15

