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In this paper, we present a new multilevel k-way hypergraph partitioning algorithm that
substantially outperforms the existing state-of-the-art K-PM=LR algorithm for multi-
way partitioning, both for optimizing local as well as global objectives. Experiments on
the ISPD98 benchmark suite show that the partitionings produced by our scheme are on
the average 15% to 23% better than those produced by the K-PM=LR algorithm, both in
terms of the hyperedge cut as well as the (Kÿ 1) metric. Furthermore, our algorithm is
signi®cantly faster, requiring 4 to 5 times less time than that required by K-PM=LR.
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1. INTRODUCTION

Hypergraph partitioning is an important problem

with extensive application to many areas, includ-

ing VLSI design [10], e�cient storage of large

databases on disks [14], and data mining [13]. The

problem is to partition the vertices of a hypergraph

into k roughly equal parts, such that a certain

objective function de®ned over the hyperedges is

optimized. A commonly used objective function is

to minimize the number of hyperedges that span

di�erent partitions; however, a number of other

objective functions are also considered useful [10].

The most commonly used approach for comput-

ing a k-way partitioning is based on the recursive

bisection paradigm, that reduces the problem of

computing a k-way partitioning to that of per-

forming a sequence of bisections. The problem of

computing an optimal bisection of a hypergraph is

NP-hard [25]; however, many heuristic algorithms

have been developed. The survey by Alpert and

Kahng [10] provides a detailed description and

comparison of various such schemes. Recently a
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new class of hypergraph bisection algorithms has

been developed [11, 23, 15, 22], that are based upon

the multilevel paradigm. In these algorithms, a

sequence of successively smaller (coarser) hyper-

graphs is constructed. A bisection of the smallest

hypergraph is computed. This bisection is then

successively projected to the next level ®ner

hypergraph, and at each level an iterative re®ne-

ment algorithm (e.g., KL [1] or FM [3]) is used to

further improve the bisection. Experiments pre-

sented in [23, 15, 22] have shown that multilevel

hypergraph bisection algorithms can produce

substantially better partitionings than those pro-

duced by non-multilevel schemes. In particular,

hMETIS [20], a multilevel hypergraph bisection

algorithm based upon the work in [23] has been

shown to ®nd substantially better bisections than

current state-of-the-art iterative re®nement algo-

rithms for the ISPD98 benchmark set that

contains many large circuits [18].

Despite the success of multilevel recursive

bisection algorithms, there are a number of

advantages of computing the k-way partitioning

directly, that were identi®ed as early back as in the

seminal work by Kernighan and Lin [1]. First, a

recursive bisection algorithm does not allows us to

directly optimize objectives that are global in

nature and depend on having a direct view of all

k partitions. Some examples of such objectives are

the sum of external degrees (SOED), scaled cost,

and absorption [10]. Second, a k-way partitioning

algorithm is capable of enforcing tighter balancing

constraints while retaining the ability to su�-

ciently explore the feasible solution space to

optimize the partitioning objective. This is espe-

cially true when the partitioning solution must

simultaneously satisfy multiple balancing con-

straints [21]. Third, a method that obtains a k-

way partitioning directly can potentially produce

much better partitionings than a method that

computes a k-way partitioning via recursive bisec-

tion [8].

For these reasons, researchers have investigated

a number of k-way partitioning algorithms that try

to compute a k-way partitioning directly, rather

than via recursive bisection. The most notable of

them are the generalization of the FM algorithm

for k-way partitioning [4, 7], the spectral multi-way

ratio-cut [6], the primal-dual algorithm of [5], the

geometric embedding [9], the dual-net method [12],

and the K-PM=LR algorithm [19]. A key problem

faced by some of these algorithms is that the k-way

FM re®nement algorithm easily gets trapped in

local minima. The recently developed K-PM=LR

algorithm by Cong and Lim [19] attempts to solve

this problem by re®ning a k-way partitioning by

applying a sequence of 2-way FM re®nement to

pairs of domains. The pairing of domains is based

on the gain of the last pass, and the pairwise cell

movement passes continues until no further gain

can be obtained. The experiments presented in [19]

have shown that K-PM=LR outperforms the k-way

FM partitioning algorithm of Sanchis [4, 7] by up

to 86.2% and outperforms the recursive FM

partitioning algorithm by up to 17.3%. Never-

theless, all of the above partitioners tend to

produce solutions that are inferior to those

produced by the state-of-the-art multilevel recur-

sive bisection algorithms, especially when they are

used to optimize an objective that can directly be

optimized by the recursive bisection framework

(e.g., minimize the hyperedge cut) [18].

In this paper we present a new k-way partition-

ing algorithm that is based on the multilevel

paradigm. The multilevel paradigm can be used to

directly construct a k-way partitioning of a

hypergraph using the framework illustrated in

Figure 1. The hypergraph is coarsened successively

as before. But the coarsest hypergraph is now

directly partitioned into k parts, and this k-way

partitioning is successively re®ned as the partition-

ing is projected back into the original hypergraph.

A key contribution of our work is a simple and yet

powerful scheme for re®ning a k-way partitioning

in the multilevel context. This k-way partitioning

re®nement scheme is substantially simpler and

faster than either the k-way FM [4], or the

K-PM=LR algorithm [19], but is equally e�ective

in the multilevel context. Furthermore, this new k-

way re®nement algorithm is inherently parallel [17]
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making it possible to develop high-quality parallel

hypergraph partitioning algorithms.

We evaluate the performance of our multilevel

k-way partitioning algorithm both in terms of the

partitioning quality as well as computational

requirements on the ISPD98 benchmark [18].

Our experiments show that the multilevel k-way

hypergraph partitioning algorithm produces high

quality partitioning in a relatively small amount of

time. The quality of the partitionings produced by

our scheme are on the average 15% to 23% better

than those produced by the K-PM=LR [19] algo-

rithm, both in terms of the hyperedge cut as well as

the (Kÿ 1) metric. Furthermore, our algorithm is

signi®cantly faster, requiring 4 to 5 times less time

than that required by K-PM=LR and provides

partitions that adhere to tighter balancing con-

straints. Compared to the state-of-the-art multi-

level recursive bisection, our experiments show

that with respect to the hyperedge cut, our

algorithm produces partitions of comparable

quality, whereas with respect to the SOED, our

algorithm produces partitions that are up to 18%

better. Furthermore, our multilevel k-way parti-

tioning algorithm is in general two times faster

than multilevel recursive bisection, and this ratio

increases with the size of the hypergraph.

The rest of this paper is organized as follows.

Section 2 describes the di�erent algorithms used in

the three phases of our multilevel k-way hyper-

graph partitioning algorithm. Section 3 compares

the results produced by our algorithm to those

FIGURE 1 The various phases of the multilevel k-way partitioning algorithm. During the coarsening phase, the size of the
hypergraph is successively decreased; during the initial partitioning phase, a k-way partitioning of the smaller hypergraph is
computed (a 6-way partitioning in this example); and during the uncoarsening phase, the partitioning is successively re®ned as it is
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produced by earlier hypergraph partitioning algo-

rithms. Finally, Section 4 provides some conclud-

ing remarks.

2. MULTILEVEL k-WAY HYPERGRAPH

PARTITIONING

Formally, a hypergraph G=(V,E ) is de®ned as a

set of vertices V and a set of hyperedges E, where

each hyperedge is a subset of the vertex set V [24],

and the size of a hyperedge is the cardinality of this

subset. The k-way hypergraph partitioning pro-

blem is de®ned as follows: Given a hypergraph

G=(V,E ) (where V is the set or vertices and E is

the set of hyperedges) and an overall load

imbalance tolerance c such that c� 1.0, the goal

is to partition the set V into k disjoint subsets,

V1,V2, . . . ,Vk such that the number of vertices in

each set Vi is bounded by jV j/(ck)� jVij � cjV j/k,

and a function de®ned over the hyperedges is

optimized.

The requirement that the size of each partition is

bounded is referred to as the partitioning con-

straint, and the requirement that a certain function

is optimized is referred to as the partitioning

objective. Over the years, a number of partitioning

objective functions have been developed. The

survey by Alpert and Kahng [10] provides a

comprehensive description of a variety of objective

functions that are commonly used for hypergraph

partitioning in the context of VLSI design.

One of the most commonly used objective

function is to minimize the hyperedge-cut of the

partitioning; i.e., the total number of hyperedges

that span multiple partitions. Another objective

that is often used is to minimize the sum of external

degrees (SOED) of all hyperedges that span

multiple partitions. Given a k-way partitioning

and a hyperedge e, the external degree of e is

de®ned to be 0, if e is not cut by the partitioning,

otherwise it is equal to the number of partitions

that is spanned by e. Then, the goal of the

partitioning algorithm is to compute a k-way

partitioning that minimizes the sum of external

degrees of the hyperedges. An objective related to

SOED is to minimize the (Kÿ 1) metric [10, 19]. In

the case of the (Kÿ 1) metric, the cost of a

hyperedge that spans K partitions is (Kÿ 1),

whereas for the SOED metric, the cost is K.

Next we describe the three phases of the

multilevel k-way partitioning algorithm in detail.

2.1. Coarsening Phase

During the coarsening phase, a sequence of

successively smaller hypergraphs is constructed.

As in the case of the multilevel hypergraph

bisection algorithm [16], the coarsening phase

serves the following three purposes. First it leads

to a small hypergraph such that a good k-way

partitioning of the small hypergraph is not

signi®cantly worse than the k-way partitioning

directly obtained for the original hypergraph.

Second, the di�erent successively coarsened ver-

sions of the hypergraph allow local re®nement

techniques such as FM to become e�ective. Third,

hypergraph coarsening also helps in successively

reducing the sizes of the hyperedges. That is, at

each level of coarsening, large hyperedges are

contracted to smaller hyperedges. This is particu-

larly helpful, since re®nement heuristics based on

the KLFM family of algorithms [1 ± 3] are very

e�ective in re®ning small hyperedges but are quite

ine�ective in re®ning hyperedges with a large

number of vertices belonging to di�erent parti-

tions.

Two primary schemes have been developed for

selecting what groups of vertices will be merged

together to form single vertices in the next level

coarse hypergraphs. The ®rst scheme called edge-

coarsening (EC) [16, 15, 22], selects the groups by

®nding a maximal set of pairs of vertices (i.e.,

matching) that belong in many hyperedges. In this

scheme, each group consists of at most two

vertices (some vertices are not combined at all),

and each vertex belongs to exactly one group. The

second scheme that is called hyperedge-coarsening

(HEC) [16] ®nds a maximal independent set of
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hyperedges, and the sets of vertices that belong to

each hyperedge becomes a group of vertices to be

merged together. In this scheme, each group can

have an arbitrary number of vertices (even though

preference is given to smaller groups), and each

vertex also belongs to exactly one group. Experi-

ments in [16] show that for certain problems, the

hyperedge-coarsening scheme and its variations

tend to outperform the edge-coarsening scheme, as

they do a better job of reducing the total

hyperedge weight of successively coarser hyper-

graphs.

However, both the edge- and the hyperedge-

coarsening schemes share one characteristic that

can potentially lead to less than ideal coarse

representations of the original hypergraph, espe-

cially for hypergraphs corresponding to circuits.

This common characteristic is that the grouping

schemes employed by both approaches ®nd max-

imal independent groups. That is, both the edge-

and the hyperedge-coarsening schemes will ®nd as

many groups of vertices as they can, that are pair-

or hyperedge-wise independent. The potential

problem with this approach is that the indepen-

dence (and to a certain degree, the maximality)

requirement may destroy some clusters of vertices

that naturally exist in the hypergraph. To see that

consider the example shown in Figure 2(a). As we

can see from this ®gure there are two natural

clusters. The ®rst cluster contains the ®ve vertices

on the left and the second cluster contains the ®ve

vertices on the right. These two clusters are

connected by a single hyperedge; thus the natural

cut for this hypergraph is one. Figure 2(b) shows

the pairs of vertices that are found by the edge-

coarsening scheme. In the edge-coarsening scheme,

vertex F will prefer to merge with vertex G, but

vertex G had already been grouped with vertex H,

consequently, vertex E is grouped together with

vertex E. Once the hypergraph is coarsened as

shown in Figure 2(c), we can see that the natural

separation point in this hypergraph has been

eliminated, as it has been contracted in the vertex

that resulted from merging E and F. A similar kind

of example can be constructed using the hyper-

edge-coarsening as well.

The above observation, led us to develop a new

coarsening scheme that we will refer to as the

FirstChoice (FC) coarsening scheme. The FC

coarsening scheme is based up on the edge-

coarsening scheme, and understanding how the

EC scheme works is essential in understanding FC.

In the rest of this section we brie¯y describe the EC

scheme (further details can be found in [16, 15]),

and describe how FC can be derived by modifying

EC.

In the EC coarsening scheme, the vertices are

visited in a random order. For each vertex v, all

unmatched vertices that belong to hyperedges

incident to v are considered, and the one that is

connected via the edge with the largest weight is

matched with v. The weight of an edge connecting

two vertices v and u is computed as the sum of the

edge-weights of all the hyperedges that contain v

and u. Each hyperedge e of size jej is assigned an

edge-weight of 1/(jej ÿ1), and as hyperedges

collapse on each other during coarsening, their

edge-weights are added up accordingly. This edge

coarsening scheme is similar in nature to the

schemes that treat the hypergraph as a graph by

replacing each hyperedge with its clique represen-

tation [26]. However, this hypergraph to graph

conversion is done implicitly during matching

without forming the actual graph.

The FC coarsening scheme is derived from the

EC coarsening scheme by relaxing the requirement

that a vertex is matched only with another

unmatched vertex. Speci®cally, in the FC coarsen-

ing scheme, the vertices are again visited in a

random order. However, for each vertex v, all

vertices (both matched and unmatched) that

belong to hyperedges incident to v are considered,

and the one that is connected via the edge with the

largest weight is matched with v, breaking ties in

favor of unmatched vertices. As a result, each

group of vertices to be merged together can

contain an arbitrarily large number of vertices.

The one potential problem with this coarsening

scheme is that the number of vertices in successive
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coarse graphs may decrease by a large factor,1

potentially limiting the e�ect of re®nement [15].

For this reason, at each coarsening level, we stop

the FC coarsening scheme as soon as the size of the

resulting coarse graph has been reduced by a

factor of 1.7. Our experiments have shown that by

controlling the rate of coarsening in this fashion,

we can ensure that there are su�ciently many

coarsening levels, and that the re®nement algo-

rithm is e�ective in improving the partitioning

quality during the uncoarsening phase.

The coarsening phase ends when the coarsest

hypergraph has a small number of vertices. Since

our goal is to compute a k-way partitioning, the

number of vertices in this smaller hypergraph

should be a function of k, to ensure that a

reasonably balanced partitioning can be computed

by the initial partitioning algorithm. In our

experiments, for a k-way partition, we stop the

coarsening process when the number of vertices

becomes less than ck, where c=100.

2.2. Initial Partitioning Phase

The second phase of a multilevel k-way partition-

ing algorithm is to compute a k-way partitioning

of the coarsest hypergraph such that the balancing

constraint is satis®ed and the partitioning objec-

FIGURE 2 An example in which the edge-coarsening scheme can lead to a coarse representation in which the natural clusters of the
hypergraph have been obscured. The weights on the hyperedges of the coarse hypergraph (c) represent the number of hyperedges in
the original hypergraph that span the same set of vertices in the coarse representation.

1In the case of the EC coarsening scheme, the size of successive coarse graphs can be reduced by at most a factor of two.
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tive is optimized. Since during coarsening, the

weights of the vertices and hyperedges of the

coarser hypergraph were set to re¯ect the weights

of the vertices and hyperedges of the ®ner

hypergraph, the coarsest hypergraph contains

su�cient information to intelligently enforce the

balancing constraint and optimize the partitioning

objective.

One way to produce the initial k-way partition-

ing is to keep coarsening the hypergraph until it

has only k vertices left. These coarse k vertices can

serve as the initial k-way partitioning of the

original hypergraph. There are two problems with

this approach. First, for many hypergraphs, the

reduction in the size of the hypergraph in each

coarsening step becomes very small after some

coarsening steps, making it very expensive to

continue with the coarsening process. Second,

even if we are able to coarsen the hypergraph

down to only k vertices, the weights of these

vertices are likely to be quite di�erent, making the

initial partitioning highly unbalanced.

In our algorithm, the k-way partitioning of the

coarsest hypergraph is computed using our multi-

level hypergraph bisection algorithm [16], that is

available in the hMETIS package [20].

2.3. Uncoarsening Phase

During the uncoarsening phase, a partitioning of

the coarser hypergraph is successively projected to

the next level ®ner hypergraph, and a partitioning

re®nement algorithm is used to optimize the

objective function without violating the partition-

ing balancing constraints. Since the next level ®ner

hypergraph has more degrees of freedom, such

re®nement algorithms tend to improve the solution

quality.

In the case of bisection re®nement, the FM

algorithm [3] has been shown to produce very

good results [16]. For each vertex v, the FM

algorithm computes the gain which is the reduc-

tion in the value of the objective function achieved

by moving v to the other partition. These vertices

are inserted into two priority queues, one for each

partition, according to their gains. Initially all

vertices are unlocked, i.e., they are free to move to

the other partition. The algorithm iteratively

selects an unlocked vertex v with the largest gain

from one of the two priority queues and moves it

to the other partition. When a vertex v is moved, it

is locked and the gain of the vertices adjacent to v

are updated. After each vertex movement, the

algorithm also records the value of the objective

function achieved at this point. A single pass of the

algorithm ends when there are no more unlocked

vertices. Then, the recorded values of the objective

function are checked, and the point where the

minimum value was achieved is selected, and all

vertices that were moved after that point are

moved back to their original partition. Now, this

becomes the initial partitioning for the next pass of

the algorithm.

However, re®ning a k-way partitioning is

signi®cantly more complicated because vertices

can move from a partition to many other

partitions; thus, increasing the optimization space

combinatorially. An extension of the FM re®ne-

ment algorithm in the case of k-way re®nement is

described in [4]. This algorithm uses k(kÿ 1)

priority queues, one for each type of move. In

each step of the algorithm, the moves with the

highest gain are found from each of these k(kÿ 1)

queues, and the move with the highest gain that

preserves or improves the balance, is performed.

After the move, all of the k(kÿ 1) priority queues

are updated. The complexity of k-way re®nement

is signi®cantly higher than that of 2-way re®ne-

ment, and is only practical for small values of k.

Furthermore, as the experiments in [19] suggest,

the k-way FM algorithm is also very susceptible of

being trapped into a local minima that is far from

being optimal.

The hill-climbing capability of the FM algo-

rithm serves a very important purpose. It allows

movement of an entire cluster of vertices across a

partition boundary. Note that it is quite possible

that as the cluster is moved across the partition

boundary, the value of the objective function

increases, but after the entire cluster of vertices
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moves across the partition, then the overall value

of the objective function comes down. In the

context of multilevel schemes, this hill-climbing

capability becomes less important. The reason is

that these clusters of vertices are coarsened into a

single vertex at successive coarsening phases.

Hence, movement of a vertex at a coarse level

really corresponds to the movement of a group of

vertices in the original hypergraph.

If the hill-climbing part of the FM algorithm is

eliminated (i.e., if vertices are moved only if they

lead to positive gain), then it becomes less useful to

maintain a priority queue. This is because vertices

whose move results in a large positive gain will

most likely be moved anyway even if they are not

moved earlier (in the priority order). Hence, a

variation of the FM algorithm that simply visits

the vertices in a random order and moves them if

they result in a positive gain is likely to work well

in the multilevel context. Furthermore, the com-

plexity of this algorithm will be independent of the

number of partitions being re®ned, leading to a

fast algorithm. This observation has lead to us to

develop a greedy re®nement algorithm. It consists

of a number of iterations. In each iteration all the

vertices are checked to see if they can be moved so

that the partitioning objective function is opti-

mized, subject to the partitioning balancing con-

straint (as described in Section 2). As the results in

Section 3 show, despite the simplicity of our

re®nement algorithms, they produce high quality

partitionings in small amount of time.

More precisely, our greedy k-way re®nement

algorithm works as follows. Consider a hyper-

graph Gi=(vi,Ei), and its partitioning vector Pi.

The vertices are visited in a random order. Let v be

such a vertex, let Pi[v]=a be the partition that v

belongs to. If v is a node internal to partition a

then v is not moved. If v is at the boundary of the

partition, then v can potentially be moved to one

of the partitions N(v) that vertices adjacent to v

belong to (the set N(v) is often refer to as the

neighborhood of v). Let N 0(v) be the subset of N(v)

that contains all partitions b such that movement

of vertex v to partition b does not violate the

balancing constraint. Now the partition b2 N 0(v)

that leads to the greatest positive reduction (gain)

in the objective function is selected and v is moved

to that partition.

The above greedy re®nement algorithm can be

used to compute a partitioning that minimizes a

variety of objective functions, by appropriately

computing the gain achieved in moving a vertex.

Our current implementation allows a choice of two

di�erent objective functions. The ®rst minimizes

the hyperedge cut and the second minimizes the

sum of external degrees (SOED) (Section 2).

Experiments with this greedy k-way re®nement

algorithm show that it converges after a small

number of iterations. In our experiments, we

found that for most hypergraphs, the algorithm

converged within four to eight iterations.

3. EXPERIMENTAL RESULTS

We experimentally evaluated the quality of the

partitionings produced by our multilevel k-way

hypergraph partitioning algorithm (hMETIS-Kway)

on the 18 hypergraphs that are part of the ISPD98

circuit partitioning benchmark suite [18]. The

characteristics of these hypergraphs are shown in

Table I. In addition to the circuits, the ISPD98

TABLE I The characteristics of the various hypergraphs used
to evaluate the multilevel hypergraph partitioning algorithms

Benchmark No. of vertices No. of hyperedges

ibm01 12506 14111
ibm02 19342 19584
ibm03 22853 27401
ibm04 27220 31970
ibm05 28146 28446
ibm06 32332 34826
ibm07 45639 48117
ibm08 51023 50513
ibm09 53110 60902
ibm10 68685 75196
ibm11 70152 81454
ibm12 70439 77240
ibm13 83709 99666
ibm14 147088 152772
ibm15 161187 186608
ibm16 182980 190048
ibm17 184752 189581
ibm18 210341 201920
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benchmark also contains the actual areas for each

one of the cell. However, to make it easy to

compare our results with those of other research-

ers [19], we used only unit cell-areas in our

experiments. Furthermore, for some circuits, the

actual areas of some cells is higher than 1/8 of the

overall area, making it impossible to produced

balanced 8-, 16- and 32-way partitionings. We

performed all of our experiments on a 300MHz

Pentium II-based Linux workstation.

3.1. Comparison with the Multilevel

Recursive Bisection

In our ®rst set of experiments, we compare the

performance of our multilevel k-way partitioning

algorithm to that of the multilevel recursive

bisection algorithm for computing 8-, 16- and 32-

way partitionings. Our multilevel k-way partition-

ing algorithm was compared against the multilevel

bisection algorithm [23] that is part of the hMETIS

[20] hypergraph partitioning package. For the rest

of this paper, we will refer to this recursive

bisection algorithm as hMETIS-RB, and we will

refer to our multilevel k-way partitioning algo-

rithm as hMETIS-Kway.

Both hMETIS-RB and hMETIS-Kway used the FC

scheme for coarsening (Section 2.1). For re®ne-

ment, hMETIS-RB used the FM algorithm whereas

the hMETIS-Kway used the greedy re®nement

algorithm described in Section 2.3. To compute a

bisection using hMETIS-RB, we performed a total

of 20 di�erent runs, and then we further improved

the best bisection using the V-cycle re®nement

technique [23]. To ensure that the overall k-way

partitioning does not become signi®cantly unba-

lanced, each bisection was computed using a

[48, 52] balancing constraint (i.e., the smaller part

must contain at least 48% of the vertices).

Consequently, the e�ective overall balancing con-

straints for the 8-, 16- and 32-way partitionings

were [0.483=0.111, .523=0.141], [0.484=

0.053, .524=0.073], and [0.485=0.025, .525

=0.038], respectively. In other words, these

balancing constraints allow an overall maximum

load imbalance of 12.5%, 17.0% and 21.7%, for

the 8-, 16- and 32-way partitionings, respectively.

We also performed a total of 20 di�erent runs for

hMETIS-Kway, and we also used the V-cycle

re®nement technique to further improve the

quality of the best k-way partitioning. In all the

experiments, hMETIS-Kway used an overall load

imbalance tolerance of 1.10, meaning that the

weight of the heaviest partition will be less than

10% higher than the average weight of the k

partitions.

Table II shows the number of hyperedges that

are cut by both hMETIS-RB and hMETIS-Kway for

an 8-, 16- and 32-way partitioning for all the

circuits of the ISPD98 benchmark. For this set of

experiments, the objective of hMETIS-Kway algo-

rithm was to minimize the hyperedge cut. The

same set of data was also used to plot the bar-

charts shown in Figure 3 that show the cut

obtained by hMETIS-Kway relative to that ob-

tained by hMETIS-RB. These bars were obtained by

dividing the cut obtained by hMETIS-Kway to the

cut obtained by hMETIS-RB. Any bars lower than

1.0 indicate that hMETIS-Kway performs better. As

can be seen from Figure 3, hMETIS-Kway produces

partitions whose cut is comparable to those

produced by hMETIS-RB. On the average,

hMETIS-Kway performs 0.2% and 0.6% better

than hMETIS-RB for the 8- and 32-way partition-

ings, respectively, and 0.4% worse for the 16-way

partitioning. The fact that hMETIS-Kway cuts the

same number of hyperedges as hMETIS-RB, is

especially interesting if we consider (i) the simpli-

city of the greedy re®nement scheme used by

hMETIS-Kway as opposed to the much more

sophisticated FM algorithm used by hMETIS-RB,

and (ii) the fact that compared to hMETIS-Kway,

hMETIS-RB operates under more relaxed balancing

constraints.

The last row of Table II shows the total amount

of time required by the two algorithms in order to

compute the 8-, 16- and 32-way partitionings. As

we can see, hMETIS-Kway is 2.07, 1.82 and 1.55

times faster than hMETIS-RB for computing an 8-,
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FIGURE 3 The quality of the partitionings in terms of the cuts produced by hMETIS-Kway relative to those produced by
hMETIS-RB for an 8-, 16- and 32-way partitioning. Bars below the 1.0 line indicate that hMETIS-Kway performs better than
hMETIS-RB.

TABLE II The number of hyperedges that are cut by the multilevel recursive bisection algorithm (hMETIS-RB) and the multilevel k-
way partitioning algorithm (hMETIS-Kway) for 8-, 16- and 32-way partitionings. The row labeled ``ARQ'' shows the Average Relative
Quality of one scheme versus the other. For example, the ARQ value of 1.002 for the 8-way partitioning of hMETIS-RBmeans that the
cuts produced by hMETIS-RB are on the average 0.2% higher than the corresponding cuts produced by hMETIS-Kway. An ARQ value
that is less than 1.0 indicates that the particular scheme on the average performs better. The last row shows the total amount of time
required by each of the partitioners for all 18 circuits (the times are in seconds)

hMETIS-RB hMETIS-Kway

Circuit 8-way 16-way 32-way 8-way 16-way 32-way

ibm01 760 1258 1723 795 1283 1702
ibm02 1720 3150 4412 1790 3210 4380
ibm03 2503 3256 4064 2553 3317 4120
ibm04 2857 3989 5094 2902 3896 5050
ibm05 4548 5465 6211 4464 5612 5948
ibm06 2452 3356 4343 2397 3241 4231
ibm07 3454 4804 6300 3422 4764 6212
ibm08 3696 4916 6489 3544 4718 6154
ibm09 2756 3902 5502 2680 3968 5490
ibm10 4301 6190 8659 4263 6209 8612
ibm11 3592 5260 7514 3713 5371 7534
ibm12 5913 8540 11014 6183 8569 11392
ibm13 3042 5522 7541 2744 5329 7610
ibm14 5501 8362 12681 5244 8293 12838
ibm15 6816 8691 13342 6855 9201 13853
ibm16 6871 10230 15589 6737 10250 15335
ibm17 9341 15088 20175 9420 15206 19812
ibm18 5310 8860 13410 5540 9025 13102

ARQ 1.002 0.996 1.006 0.998 1.004 0.994

Run-time 21872.22 25941.12 30325.48 10551.7 14227.52 19572.45
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16- and a 32-way partitioning, respectively. Note

that this relative speed advantage of hMETIS-Kway

decreases as k increases. This is primarily due to

the fact that the recursive bisection algorithm used

in the initial partitioning takes a larger fraction of

the overall time (as the size of the coarsest

hypergraph is proportional to the number of

partitions). hMETIS-Kway will continue running

faster than hMETIS-RB if the size of the hypergraph

is increased proportionally to the number of

partitions.

To test the e�ectiveness of hMETIS-Kway for

optimizing the SOED, we ran another set of

experiments in which the objective of

hMETIS-Kway was to minimize the SOED. Table

III shows the sum of external degrees (SOED) of

the partitionings produced by both hMETIS-RB

and hMETIS-Kway for an 8-, 16- and 32-way

partitioning for all the circuits of the ISPD98

benchmark. The same set of data was also used to

plot the bar-charts shown in Figure 4 that show

the SOED obtained by hMETIS-Kway relative to

that obtained by hMETIS-RB. From this ®gure we

can see that for all cases, hMETIS-Kway produces

partitionings whose SOEDs are better than those

produced by hMETIS-RB. On the average,

hMETIS-Kway performs 4.8%, 6.8% and 7.6%

better than hMETIS-RB for the 8-way, l6-way and

32-way partitionings, respectively. These results

show that hMETIS-Kway is e�ective in incorporat-

ing global objective functions which can only be

optimized in the context of a k-way re®nement

algorithm.

3.2. Comparison with K-PM/LR

We compared the performance of our multilevel k-

way partitioning algorithm against the multi-way

partitioning algorithm K-PM=LR developed by

Cong and Lim [19].

Table IV shows the number of hyperedges that

are cut by both hMETIS-Kway and K-PM=LR for an

TABLE III The sum of external degrees (SOED) of the hyperedges that are cut by the partitionings produced by the multilevel
recursive bisection algorithm (hMETIS-RB) and the multilevel k-way partitioning algorithm (hMETIS-Kway) for 8-, 16- and 32-way
partitionings. The row labeled `ARQ' shows the Average Relative Quality of one scheme versus the other. For example, the ARQ
value of 1.048 for the 8-way partitioning of hMETIS-RB means that the SOEDs produced by hMETIS-RB are on the average 4.8%
higher than the corresponding SOEDs produced by hMETIS-Kway. An ARQ value that is less than 1.0 indicates that the particular
scheme on the average performs better

hMETIS-RB hMETIS-Kway

Circuit 8-way 16-way 32-way 8-way 16-way 32-way

ibm01 1768 2938 4566 1750 2883 4149
ibm02 3940 8040 13039 3850 7556 11821
ibm03 5909 8719 11667 5820 8205 11077
ibm04 6461 9595 13008 6214 8992 12495
ibm05 11572 16070 22708 10749 15206 20020
ibm06 6160 9631 13988 5784 8661 12779
ibm07 7885 12116 16806 7586 11040 15559
ibm08 9031 13040 18819 7979 10976 15327
ibm09 6073 9016 13193 5822 8634 12460
ibm10 9458 14543 21060 9144 13130 19941
ibm11 7940 12023 17857 7874 11706 17118
ibm12 12975 19563 27026 12910 17848 25228
ibm13 7010 12792 18484 6079 11819 17350
ibm14 12360 19189 30484 11258 18232 29699
ibm15 15198 21314 32039 14586 20826 31874
ibm16 14853 23237 37234 14616 22924 34879
ibm17 20423 34177 48256 19930 33344 45961
ibm18 12940 21765 34069 12177 19598 30558

ARQ 1.048 1.068 1.076 0.954 0.936 0.929
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8- and a 16-way partitioning.2 In these experi-

ments, for both hMETIS-Kway and K-PM=LR, the

partitioning objective was to minimize the hyper-

edge cut. The results for hMETIS-Kway are the

same as shown in Table II, whereas the results

from K-PM=LR are taken from [19]. Note that the

results for K-PM=LR were obtained by using

balancing constraints that correspond to those

obtained by recursive bisection if it used a

[0.45, 0.55] balancing constraint at each level.

Consequently, the balancing constraints for the

8- and 16-way partitioning are [0.453=0.091,

0.553= 0.166] and [0.454=0.041, 0.554=0.092],

respectively. Note that these balancing constraints

are considerably more relaxed than the 10%

overall load imbalanced used by hMETIS-Kway. If

we translate the balancing constraints enforced by

K-PM=LR to maximum allowable load imbalances

for k-way partitioning, we see that K-PM=LR

allows up to 32.8% and 47.2% load imbalance,

for the 8- and 16-way partitionings, respectively.

The data in Table IV was also used to plot the

bar-charts shown in Figure 5 that compares the

cut obtained by hMETIS-Kway relative to those

obtained by K-PM=LR. From this ®gure we can see

that hMETIS-Kway produces partitionings that cut

signi®cantly fewer hyperedges than those cut by

K-PM=LR. In fact, on the average, hMETIS-Kway

cuts 20% and 23% fewer hyperedges than

K-PM=LR for the 8- and 16-way partitionings,

respectively. Thus, even though hMETIS-Kway

operates under tighter balancing constraints, it is

able to produce partitionings that cut substantially

fewer hyperedges than K-PM=LR.

The last row of Table IV shows the amount of

time required by hMETIS-Kway and K-PM=LR.

Note that the K-PM=LR was run on a Sun Ultra

Sparc 1 running at 143Mhz. Our experiments have

shown that the Sun Ultra Sparc 1 running at

143Mhz is about twice as slow than the Pentium II

running at 300Mhz that we used for our

hMETIS-Kway experiments). Taking this CPU

FIGURE 4 The quality of the partitionings in terms of the SOEDs produced by hMETIS-Kway relative to those produced by
hMETIS-RB for an 8-, 16- and 32-way partitioning. Bars below the 1.0 line indicate that hMETIS-Kway performs better than
hMETIS-RB.

2We were not able to compare results for 32-way partitioning, because they are not reported in [19].
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TABLE IV The number of hyperedges that are cut by hMETIS-Kway and the K-PM=LR partitioning algorithms for 8- and 16-way
partitionings. The row labeled `ARQ' shows the Average Relative Quality of one scheme versus the other. For example, the ARQ
value of 1.247 for the 8-way partitioning of K-PM=LR means that the cuts produced by K-PM=LR are on the average 24.7% higher
(worse) than the corresponding cuts produced by hMETIS-Kway. An ARQ value that is less than 1.0 indicates that the particular
scheme on the average performs better. The last row shows the total amount of time required by each of the partitioners for all 18
circuits (the times are in seconds). Note that hMETIS-Kway was run on a Pentium II@300Mhz, whereas Kÿ PM=LR was run on a
Ultra Sparc 1@143Mhz

hMETIS-Kway K-PM=LR

Circuit 8-way 16-way 8-way 16-way

ibm01 795 1283 1020 1699
ibm02 1790 3210 1751 3592
ibm03 2553 3317 3882 5736
ibm04 2902 3896 3559 5349
ibm05 4464 5612 4834 6419
ibm06 2397 3241 3198 4815
ibm07 3422 4764 4398 6854
ibm08 3544 4718 4466 6477
ibm09 2680 3968 4115 6046
ibm10 4263 6209 5252 8559
ibm11 3713 5371 6086 8871
ibm12 6183 8569 7736 11000
ibm13 2744 5329 3570 7066
ibm14 5244 8293 6753 9854
ibm15 6855 9201 8965 11345
ibm16 6737 10250 7543 10456
ibm17 9420 15206 10654 17653
ibm18 5540 9025 5765 9653

ARQ 0.802 0.771 1.247 1.297

Run-time 10551.7 14227.52 105840 134640

FIGURE 5 The quality of the partitionings in terms of the cuts produced by hMETIS-Kway relative to those produced by K-PM=LR
for an 8- and 16-way partitioning. Bars below the 1.0 line indicate that hMETIS-Kway performs better than K-PM=LR.

13HYPERGRAPH PARTITIONING

I207T001020 . 207
T001020d.207



FIGURE 6 The quality of the partitionings in terms of the (Kÿ 1) metric produced by hMETIS-Kway relative to those produced by
K-PM=LR for an 8- and 16-way partitioning. Bars below the 1.0 line indicate that hMETIS-Kway performs better than K-PM=LR.

TABLE V The (Kÿ 1) metric of the partitionings obtained by hMETIS-Kway and the K-PM=LR partitioning algorithms for 8- and
16-way partitionings. The row labeled `ARQ' shows the Average Relative Quality of one scheme versus the other. For example, the
ARQ value of 1.191 for the 8-way partitioning of K-PM=LR means that the (Kÿ 1) metric solutions produced by K-PM=LR are on the
average 19.1% higher (worse) than the corresponding solution produced by hMETIS-Kway. An ARQ value that is less than 1.0
indicates that the particular scheme on the average performs better

hMETIS-Kway K-PM=LR

Circuit 8-way 16-way 8-way 16-way

ibm01 930 1592 1109 1821
ibm02 1750 4058 1892 4152
ibm03 3083 4745 4119 5662
ibm04 3320 4956 3671 5766
ibm05 5958 8982 6543 9344
ibm06 3300 5248 3988 5900
ibm07 4115 5948 4707 6854
ibm08 4312 6102 5426 7364
ibm09 3043 4564 4187 5978
ibm10 4763 6944 5518 8525
ibm11 4174 6303 5321 8420
ibm12 6598 9358 7530 10495
ibm13 3319 6394 3667 7382
ibm14 5962 9734 7427 12476
ibm15 8104 11182 11008 14448
ibm16 7529 12052 9322 14901
ibm17 10510 17740 11818 20830
ibm18 6410 10498 6982 11692
ARQ 0.840 0.849 1.191 1.178

14 G. KARYPIS AND V. KUMAR

I207T001020 . 207
T001020d.207



performance di�erence into account, we see that

hMETIS-Kway is 5 times faster for the 8-way

partitioning, and 4.7 times faster for the 16-way

partitioning. Thus, compared to K-PM=LR,

hMETIS-Kway not only cuts substantially fewer

hyperedges but it is also signi®cantly faster than

K-PM=LR.

Finally, Cong and Lim [19] also reported results

using the minimization of the (Kÿ 1) metric as the

objective function of K-PM=LR. Table V shows the

cost of the solutions with respect to the (Kÿ 1)

metric obtained by both hMETIS-Kway and

K-PM=LR for an 8- and a 16-way partitioning.

Note that for hMETIS-Kway, the value for the

(Kÿ 1) metric was obtained by performing the

partitioning using the minimization of the SOED

as the objective. The data in Table V was also used

to plot the bar-charts shown in Figure 6 that

compares the cost of the partitions obtained by

hMETIS-Kway relative to those obtained by

K-PM=LR. From this ®gure we can see that

hMETIS-Kway also produces partitionings that

are consistently and signi®cantly better than those

produced by K-PM=LR. In particular, the (Kÿ 1)-

metric cost of hMETIS-Kway is, on the average,

15% and 14% smaller than the cost of K-PM=LR

for the 8- and 16-way partitionings, respectively.

4. CONCLUSIONS

The multilevel k-way partitioning scheme pre-

sented in this paper substantially outperforms the

state-of-the-art K-PM=LR algorithm for multi-way

partitioning [19] both for minimizing the hyper-

edge cut as well as minimizing the (Kÿ 1) metric.

The power of hMETIS-Kway is primarily derived

from the robustness of the multilevel paradigm

that allows the use of a simple k-way partitioning

re®nement heuristic instead of the O(k2) complex-

ity k-way FM re®nement [4] or a sequence of pair-

wise FM re®nements [19]. The simple k-way

re®nement heuristic is able to perform an excellent

job in optimizing the objective function, as it is

applied to successively ®ner hypergraphs. Further-

more, as our experiments indicate, the multilevel

k-way paradigm o�ers the additional bene®t of

producing high quality partitionings while enfor-

cing tight balancing constraints.

A version of hMETIS is available on the WWW

at the following URL: http://www.cs.umn.edu/�-

metis.
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