
Unstructured Tree Search on

SIMD Parallel Computers�

George Karypis and Vipin Kumar

Department of Computer Science,

University of Minnesota

Minneapolis, MN 55455

karypis@cs.umn.edu

kumar@cs.umn.edu

TR 92-21, April 1992

Abstract

In this paper, we present new methods for load balancing of unstructured tree com-

putations on large-scale SIMD machines, and analyze the scalability of these and other

existing schemes. An e�cient formulation of tree search on a SIMD machine comprises

of two major components: (i) a triggering mechanism, which determines when the

search space redistribution must occur to balance search space over processors; and

(ii) a scheme to redistribute the search space. We have devised a new redistribution

mechanism and a new triggering mechanism. Either of these can be used in conjunc-

tion with triggering and redistribution mechanisms developed by other researchers.

We analyze the scalability of these mechanisms, and verify the results experimentally.

The analysis and experiments show that our new load balancing methods are highly

scalable on SIMD architectures. Their scalability is shown to be no worse than that

of the best load balancing schemes on MIMD architectures. We verify our theoretical

results by implementing the 15-puzzle problem on a CM-21 SIMD parallel computer.

�This work was supported by Army Research O�ce grant #28408-MA-SDI to the University of Minnesota
and by the Army High Performance Computing Research Center at the University of Minnesota.

1CM-2 is a registered trademark of Thinking Machines Corporation.

1

1 Introduction

Tree search is central to solving a variety of problems in arti�cial intelligence [14, 29], combi-

natorial optimization [13, 22], operations research [27] and Monte-Carlo evaluations of func-

tional integrals [35]. The trees that need to be searched for most practical problems happen

to be quite large, and for many tree search algorithms, di�erent parts can be searched rel-

atively independently. These trees tend to be highly irregular in nature and hence, a naive

scheme for partitioning the search space can result in highly uneven distribution of work

among processors and lead to poor overall performance. The job of partitioning irregular

search spaces is particularly di�cult for SIMD parallel computers such as the CM-2, in

which all processors work in lock-step to execute the same program. The reason is that in

SIMD machines, work distribution needs to be done on a global scale (i.e. if a processor

becomes idle, then it has to wait until the entire machine enters a work distribution phase).

In contrast, on MIMD machines, an idle processor can request work from another busy pro-

cessor without any other processor being involved. Many e�cient load balancing schemes

have already been developed for dynamically partitioning large irregular trees for MIMD

parallel computers [2, 4, 5, 7, 24, 25, 28, 31, 36, 37, 39, 40], whereas until recently, it was

common wisdom that such irregular problems cannot be solved on large-scale SIMD parallel

computers [22].

Recent research has shown that data parallel SIMD architectures can also be used to

implement parallel tree search algorithms e�ectively. Frye and Myczkowski [6] presents an

implementation of a depth-�rst tree (DFS) search algorithm on the CM-2 for a block puzzle.

Powley, Korf and Ferguson [30] and Mahanti and Daniels [23] present parallel formulations

of a tree search algorithm IDA*, for solving the 15 puzzle problem on CM-2.

The load balancing mechanisms used in the implementations of Frye, Powley, and Ma-

hanti are di�erent from each other. From the experimental results presented, it is di�cult

to ascertain the relative merits of these di�erent mechanisms. The reason is that the per-

formance of di�erent schemes may be impacted quite di�erently by changes in hardware

characteristics (such as interconnection network, CPU speed, speed of communication chan-

nels etc.), number of processors, and the size of the problem instance being solved [18]. Hence

any conclusions drawn on a set of experimental results may become invalid by changes in any

one of the above parameters. Scalability analysis of a parallel algorithm and architecture

combination is very useful in extrapolating these conclusions [10, 11, 18, 20]. The isoe�-

ciency metric has been found to be quite useful in characterizing scalability of a number

2

of algorithms [9, 21, 32, 38, 41, 42]. In particular, it has helped determine optimal load

balancing schemes for tree search for a variety of MIMD architectures [20, 8, 17].

In this paper, we present new methods for load balancing of unstructured tree compu-

tations on large-scale SIMD machines, and analyze the scalability of these and pre-existing

schemes. An e�cient formulation of tree search on a SIMD machine comprises of two major

components: (i) a triggering mechanism, which determines when the search space redistri-

bution must occur to balance search space over processors; and (ii) a scheme to redistribute

the search space. We have devised a new redistribution mechanism and a new triggering

mechanism. Either of these can be used in conjunction with triggering and redistribution

mechanisms developed by other researchers. We analyze the scalability of these mechanisms,

and verify the results experimentally. The analysis and experiments show that our new load

balancing methods are highly scalable on SIMD architectures. In particular, their scalability

is no worse than that of the best load balancing schemes on MIMD architectures.

Section 2 provides a description of existing load balancing schemes and the new schemes

we have developed. Section 3 describes the various terms and assumptions used in the

analysis. Section 4 and 5 present the analysis of static triggering and its experimental

evaluation. Section 6 and 7 present the analysis of dynamic triggering and its experimental

veri�cation. Section 8 comments on other related work in this area. Section 9 provides a

summary and concluding remarks.

2 Dynamic Load Balancing Algorithms for Parallel

Search

Speci�cation of a tree search problem includes description of the root node of the tree and

a successor-generator-function that can be used to generate successors of any given node.

Given these two, the entire tree can be generated and searched for goal nodes. Often strong

heuristics are available to prune the tree at various nodes. The tree can be generated using

di�erent methods. Depth-�rst method is used in many important tree search algorithms

such as Depth-First Branch and Bound [16], IDA� [15], Backtracking [13]. In this paper we

only consider parallel depth-�rst-search on SIMD machines.

A common method used for parallel depth-�rst-search of dynamically generated trees on

a SIMD machine [30, 23, 34] is as follows. At any time, all the processors are either in a

search phase or in a load balancing phase. In the search phase, each processor searches a

3

disjoint part of the search space in a depth-�rst-search (DFS) fashion by performing node

expansion cycles in lock-step. When a processor has �nished searching its part of the search

space, it stays idle until it gets additional work during the next load balancing phase. All

processors switch from the searching phase to the load balancing phase when a triggering

condition is satis�ed. In the load balancing phase, the busy processors split their work and

share it with idle processors. When a goal node is found, all of them quit. If the search space

is �nite and has no solutions, then eventually all the processors would run out of work, and

parallel search will terminate.

Since each processor searches the space in a depth-�rst manner, the (part of) state space

to be searched is e�ciently represented by a stack. The depth of the stack is the depth of the

node being currently explored; and each level of the stack keeps track of untried alternatives.

Each processor maintains its own local stack on which it executes depth-�rst-search. The

current unsearched tree space, assigned to any processor can be partitioned into two parts by

simply partitioning untried alternatives (on the current stack) into two parts. A processor

is considered to be busy if it can split its work into two non empty parts, one for itself and

one to give away. In the rest of this paper, a processor is considered to be busy if it has at

least two nodes on its stack. We denote the number of idle processors by I, the number of

busy processors by A and the total number of processors by P . Also, the terms busy and

active processors will be used interchangeably.

2.1 Previous Schemes for Load Balancing

The �rst scheme we study is similar to the one proposed in [30, 23]. In this algorithm,

the triggering condition is computed after each node expansion cycle in the searching phase.

If this condition is satis�ed, then a load balancing phase is initiated. In the load balanc-

ing phase, idle processors are matched one-on-one with busy processors. This is done by

enumerating both the idle and the busy processors; then each busy processor is matched

with the idle processor that received the same value during this enumeration. The busy

processors split their work into two parts and transfer one part to their corresponding idle

processors2. If I > A then only the �rst A idle processors are matched to busy ones and the

remaining I � A processors receive no work. After each load balancing phase, at least one

node expansion cycle is completed before the triggering condition is tested again.

A very simple and intuitive scheme [30, 34] is to trigger a load balancing phase when the

2This is done using the rendezvous allocation scheme described in [12].

4

pp
pp
pp
pp
pp
pp
p
p
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
p
pp
pp
pp
pp
pp
pp
pp
pp
p
pp
pp
pp
p
pp
pp
pp
pp
p
pp
p
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
p

pp
p
pp
pp
pp
pp
pp
pp
pp
p
pp
pp
pp
pp
pp
pp
pp
p
pp
pp
pppppp
pp
pppppppppp

ppppppppppppppppp
pppp

................
.................

.....

ppp
pp
ppp
ppp
ppp
pp
ppp
ppp
ppp
ppp
pp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
pp
ppp
ppp
pp
ppp
ppp
ppp
ppp
ppp
pp
ppp
ppp
pp
ppp
pp
ppp
ppp
pp
ppp
ppp
ppp
pp
ppp
pp
ppp
ppp
pp
ppp
pp
ppp
pp
ppp
ppp
ppp
ppp
pp
ppp
pp
p

pp
pp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
pp
pp
pp
pp
pp
pp
ppppppppppppppppppppppppppppppppppppppp

pppp
ppp
pppp
pp
pppp
pppp
ppp
pppp
pppp
pppp
pp
pppp
pppp
pppp
pppp
ppp
ppp
pppp
pppp
ppp
pppp
pppp
pppp
pppp
pp
pppp
pppp
pppp
ppp
pppp
pppp
pppp
ppp
ppp
pppp
pppp
pppp
pp
pppp
pppp
pppp
pppp
ppp
pppp
pppp
pppp
p

pp
ppp
ppp
pp
pp
ppp
pp
ppp
p
ppp
ppp
pp
pp
ppp
ppp
ppppppppppppppppppppppppppppppppppppppp

....

....

.....

....

.....................

....

....

.....

....

.....................

................
..................

....

... pppppp
pppppp

ppp
pppppp

pppp
ppppp
pppppp

ppp
pppppp

pppp
ppppp
pppppp

ppp
pppppp

ppppp
pppppp

pppp
ppppp

pppppp
ppppp

ppppp

ppp
ppp
pppp
ppp
ppp
pppppppppppppppppppppp

...

...

R1 = w �A � t

R2 = A � L

R1 = widle

R2 = L � P
P

Processors
Active

A

t L time

(a) (b)

P

time

A

Processors

Lt

Active

Figure 1: A graphical representation of the triggering conditions for the DP -triggering and
for the DK -triggering schemes.

ratio of active to the total number of processors falls below a �xed threshold. Formally, let

x be a number such that 0 � x � 1, then the triggering condition for this scheme is:

A � xP (1)

For the rest of this paper we will refer to this triggering scheme as the static triggering

scheme with threshold x (in short the Sx-triggering scheme).

An alternative to static triggering is to use a trigger value that changes dynamically in

order to adapt itself to the characteristics of the problem. We call this kind of triggering

scheme dynamic triggering D. A dynamic triggering scheme was proposed and analyzed

by Powley, Ferguson and Korf [30]. For the rest of this paper we will refer to it as the DP -

triggering scheme. DP -triggering works as follows: Let w be the work done in processors-

seconds3, let t be the elapsed time (in seconds) since the beginning of the current search

phase and let L be the time required to perform the next load balancing phase. After every

node expansion cycle, the ratio w

t+L is compared against the number of active processors A,

and a load balance is initiated as soon as that ratio is greater or equal to A. In other words

3This is the sum of the time spent in seconds by all the processors doing node expansions during the
current search phase.

5

the condition that triggers a load balance is:

w

t+ L
� A (2)

Because the value of L cannot be known (it requires knowledge of the future), it is approx-

imated by the cost of the previous load balancing phase. We can better understand the

triggering condition for DP if we rewrite equation (2) as:

w �A � t � A � L (3)

From this equation and Figure 1(a) we see that the DP -triggering scheme will trigger a load

balancing phase as soon as the area R1 is greater or equal to area R2.

2.2 Our New Schemes for Load Balancing

We have derived a new matching scheme for mapping idle to busy processors in the load

balancing phase. This method can be used with either the static or the dynamic triggering

schemes. We have also derived a new dynamic triggering scheme.

The new mapping algorithm is similar to the one described earlier but with the following

modi�cation. We now keep a pointer that points to the last processor that gave work during

the last load balancing phase. Every time we need to load balance, we start matching busy

processors to idle processors, starting from the �rst busy processor after the one pointed by

this pointer. When the pointer reaches the last processor, it starts again from the beginning.

For the rest of this paper we will call this pointer global pointer and this mapping scheme

GP . Also, due to the absence of the global pointer we will name the mapping scheme of

Section 2.1, nGP.

Figure 2 illustrates the GP and the nGP matching schemes with an example. Assume

that at the time when a load balancing phase is triggered, processors 6 and 7 are idle and

the others are busy. Also, assume that the global pointer points at processor 5. Now, nGP

will match processors 6 and 7 to processors 1 and 2 respectively, whereas GP will match

them to processors 8 and 1 respectively and it will advance the global pointer to processor 1.

If after the next search phase, processors 6 and 7 are idle again and the others remain busy,

then nGP will match them exactly as before where GP will match them to processors 2 and

3. The above example also provides the motivation behind GP , which is to try to evenly

distribute the burden of sharing work among the processors. As we will see in Section 4.1

6

Processors 1 2 3 4 5 6 7 8
example 1

state B B B B B I I B
global pointer "

nGP enumeration of busy processors 1 2 3 4 5 6
GP enumeration of busy processors 2 3 4 5 6 1
enumeration of idle processors 1 2

example 2
state B B B B B I I B
global pointer "

nGP enumeration of busy processors 1 2 3 4 5 6
GP enumeration of busy processors 6 1 2 3 4 5
enumeration of idle processors 1 2

Figure 2: Illustration of the GP and nGP matching schemes. B is used to denote busy
processors while I is used to denote idle ones.

the upper bound on the number of load balancing phases required for GP is much smaller

than that for nGP . When x � 0:5 both schemes are similar.

Our new dynamic triggering scheme takes a di�erent approach than the DP -triggering

scheme. Our triggering scheme balances the idle time of the processors during the search

phase and the cost of the next load balancing phase. Formally, let widle be the sum of the

idle time of all the processors since the beginning of the current search phase and let L�P be

the cost of the next load balancing phase, then the condition that will trigger a load balance

is:

widle � L � P (4)

Figure 1(b) illustrates this condition, R1 is widle and R2 is L � P . This scheme will trigger

a load balancing phase as soon as R1 � R2. For the rest of this paper we will refer to this

dynamic triggering scheme as the DK -triggering scheme.

2.3 Summarizing the various Schemes

We studied all possible combinations of the matching and triggering schemes presented so far.

For the DP -triggering scheme to perform well, it is necessary that multiple work transfers

are performed within each load balancing phase until all (or most) of the processors receive

work [30] (the reason for this is given in Section 6.1). Hence every time we use the DP -

triggering scheme, we perform multiple work transfers. All load balancing schemes are listed

in Table 1. These schemes di�er in the matching scheme, triggering condition and whether

7

or not we perform multiple work transfers during each load balancing phase.

Name Comments Number of work transfers in
a single load balancing phase

nGP-Sx This scheme is similar to [30, 23] single
nGP-DP This scheme is similar to [30] multiple
nGP-DK New scheme single
GP-Sx New scheme single
GP-DP New scheme multiple
GP-DK New scheme single

Table 1: The di�erent dynamic load balancing schemes studied.

3 Analysis Framework

In this section we introduce some assumptions and basic terminology necessary to understand

the analysis.

When a work transfer is made, work in the active processor's stack is split into two

stacks one of which is given to an idle processor. In other words, some of the nodes (i.e.

alternatives) from the active processor's stack are removed and added to the idle processor's

stack. Intuitively, it is ideal to split the stack into two equal pieces. If the work given

out is too small, then the idle processor will soon become idle again and visa versa. Since

most practical trees are highly unstructured, it is not possible to split a stack into two

parts representing roughly equal halfs of the search space. In our analysis, we make the

following rather mild assumption for the splitting mechanism: if work w at one processor

is split into two parts w and (1 �)w, then 1 � � > > �, where � is an arbitrarily

small constant. We call this splitting mechanism the alpha-splitting mechanism. As

demonstrated by experiments on MIMD machines [25, 1, 8, 17, 23] it is possible to �nd

alpha-splitting mechanisms for most tree search problems.

The total number of nodes expanded in parallel search can often be higher or lower than

the number of nodes expanded by serial search [33, 30, 23] leading to speedup anomalies.

Here we study the performance of these load balancing schemes in absence of such speedup

anomalies and we assume that the number of nodes expanded by serial and parallel search

are the same.

8

3.1 De�nitions and Assumptions

� Problem size W : the number of tree nodes searched by the serial algorithm.

� Number of processors P : number of identical processors in the ensemble being used to

solve the given problem.

� Unit computation time Ucalc: the time taken for one unit of work. In our case this is

the time for a single node expansion.

� Unit communication time Ucomm: the time it takes to send a single node to neighbor

processor.

� Single load balancing time tlb: the average time to perform a load balancing phase.

Clearly, tlb depends on the size of the work transferred, the distance it travels and the

speed of the communication network. For simplicity, we assume that the size of the

messages containing work is constant. This is not an unreasonable assumption, as the

stack is a rather compact representation of the search space.

� Total load balancing time Tlb: the total time spent in load balancing by all processors

in the entire algorithm. Tlb = tlb � (number of load balancing phases) � P .

� Total idling time Tidle: the total time spent idling by all processors in the entire algo-

rithm during the search phase. This is the sum of the time spent by idle processors

during node expansion phases.

� Computation time Tcalc: is the sum of the time spent by all processors in useful com-

putation. Useful computation is the computation required by the best sequential al-

gorithm in order to solve the problem. Clearly, Tcalc = W � Ucalc.

� Running time Tpar: the execution time on P processor ensemble. Clearly, P � Tpar =
Tcalc + Tidle + Tlb.

� Speedup S: the ratio Tcalc
Tpar

.

� E�ciency E: is the speedup divided by P . E denotes the e�ective utilization of

computing resources. E = Tcalc
Tcalc+Tidle+Tlb

.

9

3.2 Scalability Analysis using the Isoe�ciency function

If a parallel algorithm is used to solve a problem instance of a �xed size, then the e�ciency

decreases as the number of processors P increases. The reason is that the total overhead

increases with P . For many parallel algorithms, for a �xed P , if the problem size W is

increased, then the e�ciency becomes higher, because the total overhead grows slower than

W . For these parallel algorithms, the e�ciency can be maintained at a desired level with

increasing number of processors, provided the problem size is also increased. We call such

algorithms scalable parallel algorithms.

For a given parallel algorithm, for di�erent parallel architectures, the problem size may

have to increase as a di�erent function of P in order to maintain a �xed e�ciency. The

rate that W has to increase as a function P to keep the e�ciency �xed is essentially what

determines the degree of scalability of the algorithm architecture combination. If W has

to increase as an exponential function of P , then the algorithm-architecture combination is

poorly scalable. The reason for this is that in this case it would be di�cult to obtain good

speedup on the architecture for a large number of processors, unless the problem size being

solved is enormously large. On the other hand if W needs to grow linearly as a function

of P then the algorithm-architecture combination is highly scalable and can easily deliver

linearly increasing speedup with increasing number of processors for reasonable increments

of problem sizes. If W needs to grow as fE(P) to maintain an e�ciency E, then fE(P) is

de�ned to be the isoe�ciency function for e�ciency E and the plot of fE(P) with respect

to P is de�ned to be the isoe�ciency curve for e�ciency E.

A lower bound on any isoe�ciency function is that asymptotically, it should be at least

linear. This follows from the fact that all problems have a sequential (i:e: non decomposable)

component. Hence any algorithm which shows a linear isoe�ciency on some architecture is

optimally scalable on that architecture. Algorithms with isoe�ciencies of O(P logc P), for

small constant c, are also reasonably optimal for practical purposes. For a more rigorous

discussion on the isoe�ciency metric and scalability analysis, the reader is referred to [20, 18].

3.3 Cost of each load balancing phase

In both nGP and GP matching schemes, each load balancing phase requires a setup step

and a work transfer step. During the setup step we match idle processors to busy processors

by using sum-scans [3]. In the case of GP we also perform some bookkeeping calculations,

involving sum-scans, in order to maintain the global pointer. The complexity of the sum-scan

10

is O(log P) for a hypercube and O(
p
P) for a mesh. In computers where there is dedicated

hardware for sum-scans this operation can be done in constant time. The work transfer step

requires sending data from the busy to idle processors. The complexity of �xed size data

transfer among any pair of processors is O(log2 P) for a hypercube4 and O(
p
P) for a mesh.

Hence the cost of a load balancing phase for a hypercube is:

tlb = O(log2 P) (5)

and for a mesh is:

tlb = O(
p
P) (6)

All our experiments were done on our 32K-processor CM-2 SIMD parallel computer,

which contains groups of 16 1-bit processors connected in a hypercube con�guration. On

CM-2, due to hardware optimization, the cost of sending data from busy to idle processors is

a large constant and doesn't change with the number of processors (the biggest con�guration

of the machine contains 64K processors). The cost of performing sum-scan operations is also

constant but a lot smaller than that of performing general communication. Hence, during

the analysis, we assume that tlb = O(1). For other values of tlb the isoe�ciency functions

are presented in Table 6 in Section 9.

4 Scalability Analysis of the Static Triggering Scheme

In order to analyze the scalability of a load balancing scheme, we need to compute Tlb and

Tidle. Due to the dynamic nature of the load balancing algorithms being analyzed, it is very

di�cult to come up with a precise expression for Tlb. We can compute the upper bound

for Tlb by using a technique that was originally developed in the context of Parallel Depth

First Search on MIMD computers [5, 20]. In dynamic load balancing, the communication

overheads are caused by work transfers. The total number of work transfers de�nes an upper

bound on the total communication overhead. Let V (P) be the number of load balancing

phases needed so that each busy processor has shared its work (with some other processor) at

least once. As shown in Appendix A, the maximum number of load balancing phases neces-

sary in any load balancing algorithm using the alpha-splitting mechanism is V (P) log 1

1��
W .

For the rest of this analysis, the maximum number of load balancing phases will be written

4This is the complexity of performing a general permutation. Depending on the permutation and on the
network for general communication the complexity might be O(logP).

11

as V (P) logW . In the rest of the analysis, we will use this upper bound as an estimate of the

total number of load balancing phases (our experimental results here as well as for MIMD

[17] demonstrate that it is a good approximation).

Hence the load balancing overhead Tlb is:

Tlb = P � V (P) logW � tlb (7)

The idling time Tidle, depends on the characteristics of the search space and the triggering

threshold of the Sx-triggering scheme. In any node expansion cycle, the number of busy

processors will decrease and will remain between P and xP . As the value of x increases,

Tlb goes up and Tidle comes down. The overhead due to idling can be computed as follows:

Assume that the average number of busy processors during node expansion cycles is (x+�)P ;

clearly 0 � � � 1 � x. The average number of idle processors during each node expansion

cycle is (1�x��)P . The total time spent during node expansion cycles is W

x+�Ucalc. Hence:

Tidle =
1 � x� �

x+ �
W � Ucalc (8)

From equation (7) and equation (8) we have that:

E =
Tcalc

Tcalc + Tidle + Tlb

=
W � Ucalc

W � Ucalc +
1�x��
x+� W � Ucalc + P � V (P) logW � tlb

=
1

1
x+�

+ P�V (P) logW�tlb
W�Ucalc

(9)

From equation (9) we can see that the maximum e�ciency of the algorithm is bounded by

x+�. If the problem sizeW is �xed and P increased, then Tlb will increase and the e�ciency

will come downward approaching 0. If P is �xed and W is increased then Tcalc will increase

faster than Tlb and hence the e�ciency will approach x+ �. To maintain a �xed e�ciency,

Tcalc should remain proportional to Tlb. Hence for isoe�ciency,

W � Ucalc � P � V (P) logW � tlb

W = O(P � V (P) logW)

12

As long as V (P) is a polynomial in W , we can approximate the above equation by the

following:

W = O(P � V (P) logP) (10)

The isoe�ciency de�ned by the above equation is the overall isoe�ciency of the algorithm.

4.1 Analysis for GP-Sx

In order to analyze the scalability of GP , we have to calculate V (P). Let x be the static

trigger. Consider the P processors as being divided into 1
1�x non overlapping blocks each

containing (1 � x)P processors. Because we use a global pointer, during consecutive load

balancing phases, the (1�x)P processors that became idle will get work from a di�erent set

of (1 � x)P processors. Hence, in the worst case, V (P) = d 1
1�xe, which we approximate by

V (P) = 1
1�x (in the best case, V (P) = 1

2
1

1�x).

Substituting that value of V (P) in equation (7) and equation (9) we get:

Tlb = P
1

1 � x
logW � tlb (11)

E =
W � Ucalc

W
x+�Ucalc + P 1

1�x logW � tlb
(12)

Now we substitute V (P) = 1
1�x = O(1) in equation (10) to get the isoe�ciency function:

W = O(P logP) (13)

4.2 Analysis for nGP-Sx

In order to analyze the behavior of the nGP matching scheme, we have to determine the

value of V (P) for any value of x. If x � 0:5, (i.e. we let half or more of the processors to go

idle before we load balance), then in each load balancing phase, each busy processor (among

the total P processors) is forced to share its work once with some other idle processor. Hence

clearly V (P) = 1, and thus the performance of nGP-Sx will be similar to GP-Sx.

When x > 0:5, it is possible that some busy processors (those at the beginning of the

enumeration sequence) will share their work many times (during successive load balancing

phases) before other processors (at the end of the enumeration sequence) will share their

work for the �rst time. As a result, V (P) will become higher.

It is shown in Appendix B that for any x, 0:5 � x � 1:0, V (P) � log
2x�1
1�x W . If we

13

substitute V (P) = log
2x�1
1�x W in equation (7), equation (9), and equation (10) we get:

Tlb = P log
2x�1
1�x W logW � tlb (14)

E =
W � Ucalc

W

x+� � Ucalc + P log
2x�1
1�x W logW � tlb

(15)

Isoe�ciency function: W = O(P log
x

1�x P) (16)

Clearly we see that the scalability of nGP-Sx becomes worse as the value of x increases.

From equation (11) and equation (14), we see that as we try to achieve higher e�ciencies by

increasing x, the upper bound on load balancing overhead for nGP increases rapidly while

for GP it only increases moderately. For example if x increases from 0:80 to 0:90, then Tlb

increases by a factor of log5W for nGP , while it only increases by a factor of 2 for GP .

In the above analysis recall that the expression for Tlb and the isoe�ciency functions

are upper bounds. In practice the isoe�ciency function and Tlb can be better than the one

derived here. In particular, the number of load balancing cycles in nGP -Sx or GP -Sx are

bounded from above by the number of node expansion cycles. Hence, as x increases, the

di�erence between the number of load balancing cycles for nGP -Sx and GP -Sx will continue

to increase until the number of load balancing cycles of nGP -Sx approaches the upper bound

mentioned above. Since the number of node expansion cycles is greater for larger problems,

this "saturation\ e�ect occurs for higher values of x for larger problems.

4.3 Optimal Static Trigger for GP

If we increase the value of x for the static triggering scheme, then the load balancing overhead

increases and the idling overhead decreases. Clearly, maximum e�ciency is obtained for the

value of x which minimizes the sum Tidle + Tlb. We call such value of x the optimal static

trigger xo. For a given value of � we can analytically compute a good approximation of

xo. Let assume that � = 0, meaning that as soon as we load balance, (1 � x)P processors

become idle right away. From equation (12):

E =
W � Ucalc

W

x
Ucalc + P 1

1�x logW � tlb

=
1

1
x
+ 1

1�x
P logW

W

tlb
Ucalc

(17)

To maximize E, we just have to minimize the denominator. The denominator is a [

14

shaped graph; therefore it has a minimum point. To obtain that, we set the derivative equal

to 0 and solve for x, giving us the optimal static trigger:

xo =
1r

P

W
log 1

1��
W � tlb

Ucalc
+ 1

(18)

From this equation we can clearly see the dependence of the optimal static trigger on the

various parameters involved in dynamic load balancing. As W increases, the value of xo also

increases, meaning that higher e�ciencies are possible for larger problems. As P increases,

xo decreases, meaning that the e�ciency of the algorithm decreases when P increases. Also

as the ratio tlb
Ucalc

increases (i.e. performing a load balance gets relatively more expensive),

the value of xo decreases and visa versa. Finally as � decreases (i.e. the work splitting

scheme is getting worse), the value of xo also decreases implying that the overall e�ciency

drops as the alpha-splitting mechanism becomes worse.

From equation (18) we can calculate the value of the optimal static trigger if we know

�, the ratio tlb
Ucalc

W and P . The equation itself is not too sensitive on � and any reasonable

approximation should be acceptable. The ratio of the load balancing cost over the node

expansion cost can be calculated experimentally. Given this ratio, we can calculate values

for xopt for any combination of P and W . As our experimental results in Section 5 show,

the experimentally obtained value of xo is close to the value obtained from equation (18).

In general, when � > 0, the value of the optimal static trigger will be smaller than the one

given by equation (18)5.

5 Static Triggering: Experimental Results

We solved various instances of the 15-puzzle problem [26] taken from [15], on a CM-2

massively parallel SIMD computer. 15-puzzle is a 4 � 4 square tray containing 15 square

tiles. The remaining sixteenth square is uncovered. Each tile has a number on it. A tile

that is adjacent to the blank space can be slid into that space. An instance of the problem

consists of an initial position and a speci�ed goal position. The goal is to transform the

initial position into the goal position by sliding the tiles around. The 15-puzzle problem

is particularly suited for testing the e�ectiveness of dynamic load balancing schemes, as

5We calculated the value for the optimal static trigger for the case where � = 1�x
2

(i.e. the number of
active processors decrease s following a linear function) and the di�erence between xo for � = 0 and xo for
� = 1�x

2
was relatively small.

15

Static Trigger 0.50 0.60 0.70 0.80 0.90 Analytical
W Metric nGP GP nGP GP nGP GP nGP GP nGP GP trigger, xo

Nexpand 198 198 181 174 164 161 151 150 153 142
941852 Nlb 54 54 77 59 119 69 138 88 151 122 0.82

E 0.52 0.52 0.53 0.58 0.53 0.60 0.55 0.61 0.52 0.59
Nexpand 606 606 542 535 459 486 420 445 409 417

3055171 Nlb 59 59 111 62 234 76 353 98 408 152 0.89
E 0.59 0.59 0.63 0.66 0.67 0.72 0.65 0.77 0.64 0.78
Nexpand 1155 1155 1022 1029 894 936 809 863 774 805

6073623 Nlb 56 56 133 63 336 78 577 104 736 170 0.92
E 0.63 0.63 0.69 0.70 0.71 0.76 0.70 0.82 0.67 0.85
Nexpand 2969 2969 2657 2652 2339 2422 2109 2240 2015 2099

16110463 Nlb 52 52 177 61 655 75 1303 101 1756 172 0.95
E 0.66 0.66 0.72 0.73 0.75 0.80 0.74 0.86 0.71 0.91

Table 2: Experimental results obtained using 8192 CM-2 processors. Nexpand is the number
of node expansion cycles, Nlb is the number of load balancing phases and E is the e�ciency.
The last column contains values for the static trigger obtained using the optimal static
triggering equation.

it is possible to create search spaces of di�erent sizes (W) by choosing appropriate initial

positions. IDA� is the best known sequential depth-�rst-search algorithm to �nd optimal

solution paths for the 15-puzzle problem [15], and generates highly irregular search trees.

We have parallelized IDA� to test the e�ectiveness of the various load balancing algorithms.

The same algorithm was also used in [30, 23]. Our parallel implementations of IDA� �nd

all the solutions of the puzzle up to a given tree depth. This ensures that the number of

nodes expanded by the serial and the parallel search is the same, and thus we avoid having

to consider superlinear speedup e�ects [33, 30, 23].

We obtained experimental results using both the nGP and the GP matching schemes for

di�erent values of static threshold x. In our implementation, each node expansion cycle takes

about 30ms while each load balancing phase takes about 13ms. Every time work is split we

transfer the node at the bottom of the stack, for the 15-puzzle, this appears to provide a

reasonable alpha-splitting mechanism. In calculating e�ciencies, we used the average node

expansion cycle time of parallel IDA� as an approximation of the sequential node expansion

cost. Because of higher node expansion cost associated with SIMD parallel computers, the

actual e�ciencies will be lower by a constant ratio than those presented here. However, this

does not change the relative comparison of any of these schemes.

Some of these results are shown in Table 2. All the timings in this table have been taken

on 8k processors. From the results shown in this table, we clearly see how GP and nGP relate

to each other. When x = 0:50 both algorithms perform similarly, which is expected because

16

0

200

400

600

800

1000

1200

1400

1600

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Di�erence in the number of load balances

Static triggering threshold x

6

-

W � 1.6e7 3

3

3

3

3

3

W � 6.0e6 +

+
+

+

+
+

W � 3.0e6 2

2
2

2
2 2

W � 0.9e6 �

� � � � �

Figure 3: Graph of the di�erence in the number of load balancing phases performed by nGP

and GP with respect to the static threshold x, for the instances of the 15-puzzle problem
shown in Table 2.

in this case both GP and nGP have V (P) = 1. As x increases, the gap in the performance of

nGP and GP increases. This gap is more prominent for larger W . The relation between the

number of load balancing phases performed by nGP and GP , for increasing values of x and

W , as discussed in Section 4.2, can be better seen in Figure 3. In this graph we plotted the

di�erence in the number of load balancing phases performed by nGP and GP with respect

to x for the four problems shown in Table 2.

fewer than this

We constructed experimental isoe�ciency graphs for both nGP-Sx and GP-Sx. Those

graphs are shown in Figure 4. These graphs were obtained by performing a large number

of experiments for a range of W and P , and then collecting the points with equal e�ciency.

From Figure 4a, we see that the isoe�ciency of GP-S0:90 on the CM-2 is O(P logP). Fig-

ures 4b, 4c and 4d (for nGP-S0:90, nGP-S0:80 and nGP-S0:70) show the dependence of the

isoe�ciency of nGP on the triggering threshold x. As x increases, the isoe�ciency functions

become worse. The e�ect is more prominent for higher e�ciencies. For example, the isoe�-

ciency graph for E = 0:72 for nGP-S0:70 is near O(P log P), but much worse for nGP-S0:80

and nGP-S0:90. But, the isoe�ciency graphs for small e�ciencies such as E = 0:50, are near

O(P logP) in all cases. The reason is that for small problems, the number of load balances

17

W

941852 x 0.79 0.80 0.81 0.82 0.83 0.84 0.85
E 0.60 0.61 0.61 0.61 0.60 0.60 0.59

3055171 x 0.86 0.87 0.88 0.89 0.90 0.91 0.92
E 0.75 0.77 0.77 0.78 0.78 0.77 0.75

6073623 x 0.89 0.90 0.91 0.92 0.93 0.94 0.95
E 0.85 0.85 0.85 0.84 0.84 0.83 0.82

16110463 x 0.92 0.93 0.94 0.95 0.96 0.97 0.98
E 0.90 0.91 0.91 0.89 0.89 0.87 0.85

Table 3: E�ciencies for triggering values around the value for x calculated using the optimal
static triggering equation.

is bounded by the number of node expansion cycles and is much smaller than the upper

bound given by log
2x�1
1�x W . This can also be seen in Figure 3.

Even though we can see a signi�cant di�erence in the number of load balancing phases

between nGP and GP , the actual e�ciencies are relatively similar (the di�erence is less that

25%). The reason is that in our 15-puzzle implementation, the cost of performing a load

balancing phase is considerably less than the cost of the node expansion cycle. The reason is

that each CM-2 processor is a slow 1-bit processor. In architectures with more powerful CPU

like MASPAR (4-bit processor) and CM-5 (32-bit processor), the relative cost of performing

a load balancing phase will be substantially higher than node expansion. In such cases GP

will substantially outperform nGP .

The last column in Table 2 shows the values of static trigger xo, obtained from equa-

tion (18). In order to verify that these values are good approximations for xo, we obtained a

number of experimental results for x around the analytically computed value for the optimal

static triggering threshold. These results are shown in Table 3. From this table we see that

the computed values for xo are very close to the actual optimal static triggering values.

6 Dynamic Triggering, Analysis Framework

Analyzing dynamic triggering schemes is a lot more complicated than analyzing static trig-

gering. In order to do a precise analysis we need to know the structure of the search tree,

something that is almost impossible to know. Nevertheless, we can make some observations

about the relative performance of DP ,DK and Sxo triggering schemes under some reasonable

assumptions for the structure of the search space.

18

6.1 Analysis of the DP -triggering scheme

Even though the DP -triggering scheme seems to be a reasonable dynamic triggering scheme,

under certain circumstances, it can perform arbitrarily poorly. From equation (3) and Fig-

ure 1(a) we see that the DP -triggering scheme is going to perform a load balancing phase as

soon as R1 � R2. From this we can make the following observations:

1. The dynamic triggering equation (3) fails to take into account the total number of

processors P , or in other words, the potential rate of work. Due to this limitation

this triggering scheme works the best if it is invoked when all the processors are active

and if after each load balancing phase they become active again. This is why this

scheme requires multiple work transfers during each load balancing phase. We can

better understand this if we consider the case where only one processor is active. In

this case R1 = 0 for the entire duration of the search and the DP -triggering scheme

will never trigger a load balancing phase (assuming that L > 0).

2. If after a load balancing phase, the distribution of work among processors is highly

uneven then the number of active processors will fall sharply. In that case the area

R1 will be very small and it will not trigger a load balancing phase for a substantially

long period of time. During that time the number of active processors will be very

small compared to P , resulting in poor e�ciencies. In the worst case the number of

active processors will drop down to one and for the rest of the search, the DP -triggering

scheme will never trigger a load balancing phase.

3. If the cost of performing a load balancing phase is high then it will also take a long

time before the DP -triggering scheme triggers a load balancing phase. This is because

in this case area R2 will be quite large; it will take quite some time before R1 exceeds

R2. For any tree there is a load balancing cost such that the DP -triggering scheme will

never trigger a load balancing phase. To see this, consider Figure 5(a). Let t1 be the

time at which the number of active processors becomes 1, and let A= R t10 (W (t)� 1)dt.

If L > A, then the DP -triggering scheme will not trigger a load balancing phase for

the rest of the search.

From the above we see that depending on the load balancing cost, there is a set of search

spaces such that the DP -triggering scheme will give us poor e�ciencies. The size of that

set increases as the load balancing cost increases. In general we expect the DP -triggering

scheme to perform well when the load balancing cost is small compared to node expansion

19

cost and the number of active processors decrease similar to Figure 5(a), and not that well

in situations where the load balancing cost is high or where the number of active processors

decrease similar to Figure 5(b).

6.2 Analysis of the DK-triggering scheme

We can analyze the behavior of the DK -triggering scheme with respect to the optimal static

triggering schemeSxo. Let D(t) be the number of active processors at time t when a dynamic

triggering scheme triggers a load balance. Clearly D(t) is de�ned only at discrete values of

t, these times at which a load balancing is triggered. We are going to assume that D(t) is a

non-increasing function. Let T Sxo

idle and T Sxo

lb be the sum of the idle time and load balancing

time over all the processors for Sxo, and let TDK

idle and TDK

lb be the sum of the idle time and

load balancing time over all the processors for the DK -triggering scheme. From the de�nition

of the DK -triggering scheme, equation (4), clearly:

TDK

idle = TDK

lb (19)

Let DK(t) be the triggering function for the DK -triggering scheme and let Sxo(t) be the

triggering function for the optimal static trigger. We are going to consider the following

three cases that are shown at Figure 6.

case 1, DK(t) = DK
1(t)

From Figure 6 we see that the DK -triggering scheme always triggers at a lower point

than xo and hence it performs fewer load balancing phases. In this case we have that

TDK

lb � T Sxo

lb . From equation (19) we have that:

TDK

idle + TDK

lb � 2� T Sxo

lb

hence:

TDK

idle + TDK

lb < 2 � (T Sxo

idle + T Sxo

lb) (20)

case 2, DK(t) = DK
2 (t)

From Figure 6 we see that the DK -triggering scheme always triggers at a higher point

than xo. At any given time, more processors are active in the DK triggering scheme,

20

thus TDK

idle � T Sxo

idle . From equation (19) we have that:

TDK

idle + TDK

lb � 2� T Sxo

idle

hence:

TDK

idle + TDK

lb < 2 � (T Sxo

idle + T Sxo

lb) (21)

case 3, DK(t) = DK
3 (t)

From Figure 6, we see that the DK -triggering scheme triggers at a point higher than

xo up to time I and at a point lower than that after time I. For the time interval

before I, from equation (20), we know that the overheads of the DK -triggering are

bounded and also for the time interval after I, from equation (21), the overheads are

also bounded. Hence for this case we also have that:

TDK

idle + TDK

lb < 2 � (T Sxo

idle + T Sxo

lb) (22)

From the above we see that the overheads of the DK -triggering scheme, in the worst case

are:

TDK

idle + TDK

lb � 2� (T Sxo

idle + T Sxo

lb)

Due to this property, the overheads of the DK -triggering scheme will never be more than

twice of that for the Sxo-triggering scheme. Hence, the e�ciency obtained by using the DK -

triggering scheme cannot be much smaller than that obtained by using the Sxo-triggering

scheme, although it can be better. For example if the e�ciency of the Sxo-triggering scheme

is 0.90 then the DK -triggering scheme's e�ciency will be at least 0.82 and could be even

better than 0.90.

To get an understanding of the relative performance of theDP and DK triggering schemes

let us consider Figure 5. In situations similar to Figure 5(a), the DP -triggering scheme will

trigger a load balancing phase slightly earlier than the DK -triggering scheme. On the other

hand, in situations similar to Figure 5(b), the DK -triggering scheme will trigger a load

balancing phase signi�cantly earlier than the DP -triggering scheme. Hence in the worst

case, the DK -triggering scheme will perform slightly worse than the DP -triggering scheme

but in certain cases it will perform considerably better.

21

6.3 Summary of Dynamic Triggering Results

From the analysis presented above it is clear that reasonable dynamic triggering schemes can

be developed for the class of load balancing algorithms discussed here. Particularly, it was

shown that even though the DP -triggering scheme has been shown to perform reasonably

well [30], under certain circumstances it can perform arbitrarily poorly. Also, it was shown

that the overheads of the DK -triggering scheme are bounded and they can not be higher

than twice the overheads of the optimal static triggering scheme.

From the analysis of the GP and nGP matching schemes for static triggering, we know

their scalability depends on the value of static trigger or in other words, how frequent we

perform a load balancing phase. It has been shown that an increase in the frequency we

perform load balancing phases a�ects more the scalability of the nGP matching scheme than

that of the GP matching scheme. Hence, the scalability of any of the dynamic triggering

schemes depends on how frequent we perform load balancing phases. For the GP matching

scheme both the DK and the DP triggering schemes will yield a scalable algorithm (provided

that the DP -triggering scheme doesn't perform arbitrarily poorly). For the nGP matching

scheme depending on the load balancing phases frequency, both the DP and the DK schemes

can yield either scalable or unscalable algorithms.

7 Dynamic Triggering, Experimental Results

We implemented all four combinations of the two dynamic triggering schemes DP and DK ,

and the two matching schemes nGP and GP , in the parallel IDA� to solve the 15-puzzle

problem on CM-2. In all cases, the root node is given to one of the processors and static

triggering with x = 0:85 is used until 85% of the processors became active. Thus in the

initial distribution phase, each node expansion cycle was followed by a work distribution

cycle until 85% of the processors had work. As stated in Section 6.1, for the DP -triggering

scheme to work, it is essential that most of the processors have work at the beginning of the

search phase. For the DK -triggering scheme, this initialization phase is not required, but we

still used it in order to make the comparisons easier. After the initialization phase, triggering

was done using the respective dynamic triggering schemes. The results are summarized in

Table 4.

From the results shown in this table we can see that the two schemes have quite sim-

ilar overall performance for the same matching schemes. The DP -triggering schemes per-

forms more load balancing cycles and fewer node expansion cycles, while the DK -triggering

22

Dynamic Trigger DP -triggering DK-triggering
W Metric nGP GP nGP GP

Nexpand 153 149 176 164
941852 *Nlb 164 100 89 70

E 0.51 0.58 0.53 0.58
Nexpand 441 426 486 440

3055171 *Nlb 312 143 179 104
E 0.64 0.76 0.66 0.77
Nexpand 842 808 905 819

6073623 *Nlb 518 170 285 132
E 0.68 0.83 0.72 0.84
Nexpand 2191 2055 2293 2067

16110463 *Nlb 935 217 598 192
E 0.75 0.92 0.76 0.92

Table 4: Experimental results obtained using 8192 CM-2 processors using various dynamic
triggering schemes. Nexpand is the number of node expansion cycles, *Nlb is the number of
work transfers and E is the e�ciency. Note that for the DK -triggering scheme *Nlb is equal
to the number of load balancing phases.

scheme performs fewer load balancing phases and more node expansion cycles. For the nGP

matching scheme, we see that the DP -triggering scheme performs slightly worse than the

DK -triggering scheme because the di�erence in the number of load balancing phases for the

two triggering schemes is much larger. The overall performance of the two schemes is similar

because the cost of load balancing is very small for our problem. Comparing the two dynamic

triggering schemes in Table 4, with the static triggering scheme in Table 2, we see that the

dynamic triggering schemes perform as good as the optimal static triggering schemes. Also

the GP matching scheme constantly outperforms nGP for both dynamic triggering schemes

as it does for static triggering.

We constructed experimental isoe�ciency graphs for all four combinations of matching

schemes and dynamic triggering schemes. These graphs are shown in Figure 7. From Fig-

ure 7a and Figure 7b, we see that for the GP matching scheme, the scalability of the two

dynamic triggering schemes is almost identical, and is O(P logP). In the case of the nGP

matching scheme, for the DK -triggering scheme, Figure 7c, the isoe�ciency of the algorithm

is O(P logP) while for theDP -triggering scheme, Figure 7d, the isoe�ciency of the algorithm

is worse than O(P log P). As discussed in Section 6.3, the scalability of the nGP matching

scheme when dynamic triggering schemes are used depends on the frequency of load bal-

ancing phases. In our experiments, the DP -triggering scheme triggers load balancing phases

more frequently that the DK -triggering scheme, hence yielding less scalable algorithms.

23

To study the impact of higher load balancing cost, we simulated higher tlb by sending

larger than necessary messages and compared the performance of the DP -triggering and the

DK -triggering schemes for the GP matching scheme. We increased the load balancing cost by

a factor of 12 and by a factor of 16. The results are shown in Table 5. From this table we can

see that when the load balancing cost was 12 times higher, the e�ciency of the DK -triggering

scheme was 23% higher than that for the DP -triggering and when the load balancing cost

was 16 times higher the e�ciency of the DK -triggering scheme was 40% higher. In both

cases the e�ciency of the DK -triggering scheme was similar to that of the Sxo-triggering

scheme (less by 10%). To better understand what actually happens, we plotted the number

Actual Cost 12 times higher 16 times higher
Metric DP DK Sxo DP DK Sxo DP DK Sxo

Nexpand 310 314 307 505 487 365 615 533 410
Nlb 110 83 87 102 44 58 109 45 50
E 0.69 0.71 0.72 0.26 0.32 0.34 0.20 0.28 0.31

Table 5: Experimental results obtained for W = 2067137 using GP , for di�erent load bal-
ancing costs. The last line shows the optimal e�ciencies obtained using static triggering.

of busy processors at each node expansion cycle. These graphs for the actual and for the

16 times higher load balancing costs, are shown in Figure 8. Looking at Figure 8a and

Figure 8b (those for the actual load balancing costs) we see that the two dynamic triggering

schemes perform quite similar. Looking at Figure 8c and Figure 8d (those for the higher

load balancing costs) we see that the DP -triggering scheme triggers load balancing phases

at a lower level than the DK -triggering scheme does. This is consistent with our observation

in Section 6.1 that for high load balancing costs, the DP -triggering scheme might trigger

too late. Also, due to the multiple work transfers in each load balancing phase, the DP -

triggering scheme performs more work transfers than the DK -triggering scheme. Due to

poorer load balancing the DP -triggering scheme performs more node expansion cycles than

the DK -triggering scheme.

8 Related Work

Mahanti and Daniels proposed two dynamic load balancing algorithms, FESS and FEGS,

in [23]. In both these schemes a load balancing phase is initiated as soon as one processor

becomes idle and the matching scheme used is similar to nGP . The di�erence between FESS

24

and FEGS is that during each load balancing phase FESS performs a single work transfer

while FEGS performs as many work transfers as required so that the total number of nodes

is evenly distributed among the processors. As our analysis has shown the FESS scheme has

poor scalability and because this scheme usually performs as many load balancing phases as

node expansion cycles, its performance depends on the ratio Ucalc
Ucomm

. FEGS performs better

than FESS and due to better work distribution the number of load balancing phases is

reduced.

Frye and Myczkowski proposed two dynamic load balancing algorithms in [34]. The �rst

scheme is similar to nGP-Sx with the di�erence that each busy processor gives one piece of

work to as many idle processors as many pieces of work it has. Clearly this scheme has a

poor splitting mechanism. Also as shown in [23], extending this algorithm in such a way

so that the total number of nodes is evenly distributed among the processors the memory

requirements of this algorithm become unbounded. The second algorithm is based on nearest

neighbor communication. In this scheme after each node expansion cycle the processors that

have work check to see if their neighbors are idle. If this is the case then they transfer

work to them. This scheme is similar to the nearest neighbor load balancing schemes for

MIMD machines. As shown in [19] the isoe�ciency for a hypercube is
(P log2
1+ 1

�
2), while

the isoe�ciency for a mesh is
(c
p
P) where c > 1. Hence, this algorithm is sensitive to the

quality of the alpha-splitting mechanism.

9 Summary of Results and Conclusion

From our investigation, it is clear that parallel search of unstructured trees can e�ciently be

implemented on SIMD parallel computers. Our new matching scheme GP provides substan-

tially higher performance than the pre-existing scheme nGP for all triggering mechanisms.

In particular, the GP-Sx algorithm is highly scalable for all values of the static threshold

x. Also, for the GP-Sx algorithm we have derived the expression for the optimal threshold

as a function of W and P . The isoe�ciencies of the various static triggering schemes for

di�erent architectures are summarized in Table 6. Our DK -triggering scheme is guaranteed

to perform very similar to the Sxo triggering scheme. This is useful, as the problem sizeW is

not often known, thus making it hard to estimate the optimal static trigger for GP-Sx. We

have also shown that the performance of the DP -triggering scheme becomes substantially

worse than the DK -triggering scheme when the load balancing cost becomes relatively high.

Until now, MIMD computers were considered to be better suited for parallel search of

25

Scheme ! nGP-Sx GP-Sx

Architecture #

Hypercube O(P log
2�x

1�x P) O(P log3P)

Mesh O(P 1:5 log
x

1�x P) O(P 1:5 logP)

Table 6: Isoe�ciencies for the di�erent matching and static triggering schemes (where x �
0:5).

unstructured trees than SIMD computers. In light of the results presented in this paper, we

see that there are algorithms for parallel search of unstructured trees, with similar scalability,

for both MIMD and SIMD computers. The e�ciency of parallel search will be lower on SIMD

computers because of a) the idling overhead between load balancing phases and b) the higher

node expansion cost. As we have seen, the overhead due to idling doesn't signi�cantly

hinders the e�ciency of parallel search. But the higher node expansion cost, depending on

the problem, will set an upper bound on the achievable e�ciency. If we consider that the

cost of building large scale parallel computers is substantially higher for MIMD than for

SIMD, then in terms of cost/performance, SIMD computers might be a better choice.

26

0e+0

4e+7

8e+7

1.2e+8

1.6e+8

2.0e+8

2.4e+8

100000 200000 300000 400000 500000

W

P logP

Figure 4a: GP-S0:90

6

-

E = .90 3

3

3

3

E = .85 +

+
+

+

E = .80 2

2
2

2

E = .70 �

� � �
0e+0

4e+7

8e+7

1.2e+8

1.6e+8

2.0e+8

2.4e+8

100000 200000 300000 400000 500000

W

P logP

estimated

Figure 4b: nGP-S0:90

W = 3:5e+ 8

6

-

E = .70 3

3

3

E = .69 +

+

+

+

E = .67 2

2

2

2

E = .60 �

� � �

E = .50 4

4 4 4

3

3

0e+0

4e+7

8e+7

1.2e+8

1.6e+8

2.0e+8

2.4e+8

100000 200000 300000 400000 500000

W

P logP

estimatedW = 4:6e+ 8

Figure 4c: nGP-S0:80

6

-

E = .74 3

3

3

E = .72 +

+

+

+

E = .65 2

2 2
2

E = .50 �

� � �

3

3

0e+0

4e+7

8e+7

1.2e+8

1.6e+8

2.0e+8

2.4e+8

100000 200000 300000 400000 500000

W

P logP
Figure 4d: nGP-S0:70

6

-

E = .74 3

3

3

3
E = .72 +

+
+

+

E = .70 2

2
2

2

E = .65 �

� � �

E = .50 4

4 4 4

Figure 4: Experimental isoe�ciency curves for nGP-Sx and GP-Sx. The reader should note
that labels in the graphs represent di�erent e�ciencies in di�erent graphs.

27

................
..................

....

....

....
.....
....
.....................

...

....

....

.....

....

.....................

................
..................

....

...

..

..

PP

time

Processors
Active

A

W(t)

(a)

Active
Processors

time

A

W(t)

(b)

Figure 5: When the number of active processors falls similar to (a) the DP -triggering scheme
will perform well, but when it falls similar to (b) it might lead to poor e�ciencies.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....

.....
....
.....
....................

.................
..................

...

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........

..........
..........

..........
..........

..........
..........

..........

I

Sxo(t)

DK
1 (t)

DK
3 (t)

DK
2 (t)

time t

Processors

Number of

Figure 6: A graphical representation of the di�erent graphs for the interpolated triggering
functions DK(t) and Sxo(t).

28

0e+0

4e+7

8e+7

1.2e+8

1.6e+8

2.0e+8

2.4e+8

100000 200000 300000 400000 500000

W

P logP

Figure 7a: GP-DK

6

-

E = .91 3

3

3

3

E = .85 +

+
+

+

E = .80 2

2
2

2

E = .75 �

� � �
0e+0

4e+7

8e+7

1.2e+8

1.6e+8

2.0e+8

2.4e+8

100000 200000 300000 400000 500000

W

P logP

Figure 7b: GP-DP

6

-

E = .91 3

3

3

3

E = .85 +

+
+

+

E = .80 2

2
2

2

E = .75 �

� � �

0e+0

4e+7

8e+7

1.2e+8

1.6e+8

2.0e+8

2.4e+8

100000 200000 300000 400000 500000

W

P logP

Figure 7c: nGP-DK

6

-

E = .75 3

3

3

3

E = .70 +

+ +
+

E = .65 2

2 2
2

E = .50 �

� � � 0e+0

4e+7

8e+7

1.2e+8

1.6e+8

2.0e+8

2.4e+8

100000 200000 300000 400000 500000

W

P logP

Figure 7d: nGP-DP

6

-

E = .74 3

3

3

3

E = .70 +

+
+

+

E = .65 2

2
2

2

E = .50 �

� � �

Figure 7: Experimental isoe�ciency curves for theDP -triggering andDK -triggering schemes.
The reader should note that labels in the graphs represent di�erent e�ciencies in di�erent
graphs.

29

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 100 200 300 400 500 600

P

Node expansion cycles

Figure 8a

6

-

DP -triggering

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 100 200 300 400 500 600

P

Node expansion cycles

Figure 8b

6

-

DK -triggering

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 100 200 300 400 500 600

P

Node expansion cycles

Figure 8c

6

-

DP -triggering

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 100 200 300 400 500 600

P

Node expansion cycles

Figure 8d

6

-

DK-triggering

Figure 8: Number of active processors with respect to node expansion cycles, for the GP-DP

and the GP-DK algorithms, for two di�erent load balancing costs.

30

References

[1] S. Arvindam, Vipin Kumar, and V. Nageshwara Rao. E�cient Parallel Algorithms for Search Prob-

lems: Applications in VLSI CAD. In Proceedings of the Frontiers 90 Conference on Massively Parallel

Computation, October 1990.

[2] S. Arvindam, Vipin Kumar, V. Nageshwara Rao, and Vineet Singh. Automatic test Pattern Generation

on Multiprocessors. Parallel Computing, 17, number 12:1323{1342, December 1991.

[3] Guy E. Blelloch. Scans as Primitive Parallel Operations. IEEE Transactions on Computers, 11:1526{

1538, 1989.

[4] Chris Ferguson and Richard Korf. Distributed Tree Search and its Application to Alpha-Beta Pruning.

In Proceedings of the 1988 National Conference on Arti�cial Intelligence, August 1988.

[5] Raphael A. Finkel and Udi Manber. DIB - A Distributed implementation of Backtracking. ACM Trans.

of Progr. Lang. and Systems, 9 No. 2:235{256, April 1987.

[6] Roger Frye and Jacek Myczkowski. Exhaustive Search of Unstructured Trees on the Connection Machine.

In Thinking Machines Corporation Technical Report, 1990.

[7] M. Furuichi, K. Taki, and N. Ichiyoshi. A Multi-Level Load Balancing Scheme for OR-Parallel Ex-

haustive Search Programs on the Multi-PSI. In Proceedings of the 2nd ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, 1990. pp.50-59.

[8] Ananth Grama, Vipin Kumar, and V. Nageshwara Rao. Experimental Evaluation of Load Balancing

Techniques for the Hypercube. In Proceedings of the Parallel Computing 91 Conference, 1991.

[9] Anshul Gupta and Vipin Kumar. On the scalability of FFT on Parallel Computers. In Proceedings of

the Frontiers 90 Conference on Massively Parallel Computation, October 1990. An extended version of

the paper is available as a technical report from the Department of Computer Science, and as TR 90-20

from Army High Performance Computing Research Center, University of Minnesota, Minneapolis, MN

55455.

[10] John L. Gustafson. Reevaluating Amdahl's Law. Communications of the ACM, 31(5):532{533, 1988.

[11] John L. Gustafson, Gary R. Montry, and Robert E. Benner. Development of Parallel Methods for a

1024-Processor Hypercube. SIAM Journal on Scienti�c and Statistical Computing, 9 No. 4:609{638,

1988.

[12] W. Daniel Hillis. The Connection Machine. MIT Press, 1991.

[13] Ellis Horowitz and Sartaj Sahni. Fundamentals of Computer Algorithms. Computer Science Press,

Rockville, Maryland, 1978.

[14] Laveen Kanal and Vipin Kumar. Search in Arti�cial Intelligence. Springer-Verlag, New York, 1988.

[15] Richard E. Korf. Depth-First Iterative-Deepening: An Optimal Admissible Tree Search. Arti�cial

Intelligence, 27:97{109, 1985.

31

[16] Vipin Kumar. DEPTH-FIRST SEARCH. In Stuart C. Shapiro, editor, Encyclopaedia of Arti�cial

Intelligence: Vol 2, pages 1004{1005. John Wiley and Sons, Inc., New York, 1987. Revised version

appears in the second edition of the encyclopedia to be published in 1992.

[17] Vipin Kumar, Ananth Grama, and V. Nageshwara Rao. Scalable Load Balancing Techniques for Par-

allel Computers. Technical report, Tech Report 91-55, Computer Science Department, University of

Minnesota, 1991.

[18] Vipin Kumar and Anshul Gupta. Analyzing Scalability of Parallel Algorithms and Architectures. Tech-

nical report, TR-91-18, Computer Science Department, University of Minnesota, June 1991. A short

version of the paper appears in the Proceedings of the 1991 International Conference on Supercomputing,

Germany, and as an invited paper in the Proc. of 29th Annual Allerton Conference on Communuication,

Control and Computing, Urbana,IL, October 1991.

[19] Vipin Kumar, Dana Nau, and Laveen Kanal. General Branch-and-bound Formulation for AND/OR

Graph and Game Tree Search. In Laveen Kanal and Vipin Kumar, editors, Search in Arti�cial Intelli-

gence. Springer-Verlag, New York, 1988.

[20] Vipin Kumar and V. Nageshwara Rao. Parallel Depth-First Search, Part II: Analysis. International

Journal of Parallel Programming, 16 (6):501{519, 1987.

[21] Vipin Kumar and Vineet Singh. Scalability of Parallel Algorithms for the All-Pairs Shortest Path

Problem: A Summary of Results. In Proceedings of the International Conference on Parallel Processing,

1990. Extended version appears in Journal of Parallel and Distributed Processing (special issue on

massively parallel computation), Volume 13, 124-138, 1991.

[22] Karp R. M. Challenges in Combinatorial Computing. To appear January 1991.

[23] A. Mahanti and C. Daniels. SIMD Parallel Heuristic Search. To appear in Arti�cial Intelligence, 1992.

Also available as a technical report, University of Maryland, Computer Science Department.

[24] B. Monien and O. Vornberger. Parallel Processing of Combinatorial Search Trees. In Proceedings of

International Workshop on Parallel Algorithms and Architectures, May 1987.

[25] V. Nageshwara Rao and Vipin Kumar. Parallel Depth-First Search, Part I: Implementation. Interna-

tional Journal of Parallel Programming, 16 (6):479{499, 1987.

[26] Nils J. Nilsson. Principles of Arti�cial Intelligence. Tioga Press, 1980.

[27] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization, Algorithms and Com-

plexity. Prentice Hall, 1982.

[28] Srinivas Patil and Prithviraj Banerjee. A Parallel Branch and Bound Algorithm for Test Generation.

In IEEE Transactions on Computer Aided Design, Vol. 9, No. 3, March 1990.

[29] Judea Pearl. Heuristics - Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley,

Reading, MA, 1984.

[30] C. Powley, R. Korf, and C. Ferguson. IDA* on the Connection Machine. To appear in Arti�cial

Intelligence, 1992. Also available as a technical report, Department of Computer Science, UCLA.

32

[31] Abhiram Ranade. Optimal Speedup for Backtrack Search on a Buttery Network. In Proceedings of the

Third ACM Symposium on Parallel Algorithms and Architectures, 1991.

[32] S. Ranka and S. Sahni. Hypercube Algorithms for Image Processing and Pattern Recognition. Springer-

Verlag, New York, 1990.

[33] V. Nageshwara Rao and Vipin Kumar. On the E�cicency of Parallel Depth-First Search. IEEE

Transactions on Parallel and Distributed Systems, (to appear), 1992. available as a technical report TR

90-55, Computer Science Department, University of Minnesota.

[34] Jasec Myczkowski Roger Frye. Exhaustive Search of Unstructured Trees on the Connection Machine.

Technical report, Thinking Machines Corporation, 1990.

[35] Jasec Myczkowski Roger Frye. Load Balancing Algorithms on the Connection Machine and their Use

in Monte-Carlo Methods. In Proceedings of the Unstructured Scienti�c Computation on Multiprocessors

Conference, 1992.

[36] Vikram Saletore and L. V. Kale. Consistent Linear Speedup to a First Solution in Parallel State-Space

Search. In Proceedings of the 1990 National Conference on Arti�cial Intelligence, pages 227{233, August

1990.

[37] Wei Shu and L. V. Kale. A Dynamic Scheduling Strategy for the Chare-Kernel System. In Proceedings

of Supercomputing 89, pages 389{398, 1989.

[38] Vineet Singh, Vipin Kumar, Gul Agha, and Chris Tomlinson. Scalability of parallel sorting on mesh

multicomputers. In Proceedings of the Fifth International Parallel Processing Symposium, March 1991.

Extended version available as a technical report (number TR 90-45) from the department of computer

science, University of Minnesota, Minneapolis, MN 55455, and as TR ACT-SPA-298-90 from MCC,

Austin, Texas.

[39] Benjamin W. Wah, G.J. Li, and C. F. Yu. Multiprocessing of Combinatorial Search Problems. IEEE

Computers, June 1985 1985.

[40] Benjamin W. Wah and Y. W. Eva Ma. MANIP - A Multicomputer Architecture for Solving Combina-

torial Extremum-Search Problems. IEEE Transactions on Computers, c{33, May 1984.

[41] Jinwoon Woo and Sartaj Sahni. Hypercube Computing : connected Components. Journal of Supercom-

puting, 1991.

[42] Jinwoon Woo and Sartaj Sahni. Computing Biconnected Components on a Hypercube. Journal of

Supercomputing, June 1991.

33

Appendix A Upper Bound of the Work Transfers

Due to the dynamic nature of the load balancing algorithms being analyzed, it is very di�cult

to come up with a precise expression for the total communication overheads. In this Section,

we review a framework of analysis that provides us with an upper bound on these overheads.

This technique was originally developed in the context of Parallel Depth First Search in

[5, 20].

In dynamic load balancing the communication overheads are caused by work transfers.

The total number of work transfers de�nes an upper bound on the total communication

overhead. In all the techniques being analyzed here, the total work is dynamically partitioned

among the processors and processors work on disjoint parts independently, each executing

the piece of work it is assigned. Initially an idle processor polls around for work and when

it �nds a processor with work of size Wi, the work Wi is split into disjoint pieces of size Wj

and Wk. We assume that the partitioning strategy satis�es the following property:

There is a constant � > 0 such that Wj > �Wi and Wk > �Wi .

Let us assume that in every V(P) work transfers, every processor in the system is re-

quested at least once. Clearly, V (P) � P . In general, V(P) depends on the load balancing

algorithm. Recall that in a transfer, work (w) available in a processor is split into two parts

(�w and (1 � �)w) and one part is taken away by the requesting processor. Hence after a

transfer neither of the two processors (donor and requester) have more than (1� �)w work

(note that � is always less than or equal to 0.5). The process of work transfer continues

until work available in every processor is less than �. Initially processor 0 has W units of

work, and all other processors have no work.

After V (P) requests maximum work available in any processor is less than (1� �)W

After 2V (P) requests maximum work available in any processor is less than (1� �)2W
...

After (log 1

1��

W
�
)V (P) requests maximum work available in any processor is less than �.

Hence total number of transfers � V (P) log 1

1��
W .

Appendix B Upper Bound on V (P) for nGP

In this section we will calculate the upper bound of V (P), that of the number of work

transfers required so that every processor has shared his work at least once, for the nGP

algorithm. We will do this by �rst considering some simple cases and then derive the general

34

formula for V (N).

If we assume that x � 0:5, (i.e. we let half or more of the processors to go idle before

we load balance) then in each load balancing phase, each busy processor (among the total

P processors) is forced to share its work once with some other idle processor. Hence clearly

V (P) = 1.

Lets now assume that x = 0:66, (i.e. we let a third of the processors to go idle before we

load balance). Lets b1; b2; b3 be the �rst, second and third block of processors each containing

P=3 non overlapping consecutive processors. Let wi be the largest piece of work in each of

the processor blocks bi and let assume that block b3 is the one that becomes idle all the time

and requests work from block b1. It will take roughly logw1 work transfers to consume the

work of the b1 processor block, The next work request will go to block b2 (from either b1

or b3) and as soon as this happens then all the processors will have been requested at least

once. Hence in this case V (P) = O(logw1) which in turns gives us that V (P) � O(logW).

Lets now assume that x = 0:75. As before let bi and wi where i = 1; 2; 3; 4, be the

processors blocks and the largest units of work they have. It will take logw1 work transfers

in order to consume the work at block b1. After that, block b1 will get a work piece of size

�w2 from block b2. It will take log�w2 work transfers to consume that piece of work and

after that block b1 will get an other piece of work of size �(1 � �)w2 from block b2 and so

on. The number of work transfers in order to consume the work of block b2 is:

logw2X
i=1

log(�(1 � �)(i�1)w2) =
logw2X
i=1

(log� + (i� 1) log(1� �) + logw2)

=
logw2X
i=1

log �+
logw2X
i=1

(i� 1) log(1 � �) +
logw2X
i=1

logw2

= log� � logw2 + log(1� �) � (logw2 � 1) logw2

2
+ log2w2

= O(log2w2)

As soon as we consume w2 the next work request go to the b3 block and after that all the

processors will have been requested at least once. Therefore in this case:

V (P) � logw1 + log2w2

< logW + log2W

< O(log2W)

35

In the general case when we have d 1
1�xe blocks the number of work transfers to consume

the wi pieces of work at each processor block bi, will be O(log
i wi) and in order for all the

processors to have been requested at least once we have to consume the work at the �rst

d 1
1�xe � 2 blocks. In this case V (P) is:

V (P) �
d 1

1�x
e�2X

i=1

logi wi

� O(logd
1

1�x
e�2wd 1

1�x
e�2)

� O(log
2x�1
1�x W) (23)

From this equations we see that as the value of x increases the number of work transfers

increases substantially. Equation (23) represents the upper bound for the worst case analysis.

The worst case occurs when work is transferred from block bi to block bi�1 and from block

b1 to the last block. In any other case, work will be transferred from di�erent blocks (and

also overlapping blocks) and this will reduce V (P).

36

