Unstructured Tree Search on SIMD Parallel Computers:
A Summary of Results*

George Karypis
Department of Computer Science
University of Minnesota
Minneapolis, MN 55455

karypis@cs.umn.edu

Abstract

In this paper, we present new methods for load balanc-
ing of unstructured tree computations on large-scale
SIMD machines, and analyze the scalability of these
and other existing schemes. An efficient formulation
of tree search on a SIMD machine comprises of two
major components: (i) a triggering mechanism, which
determines when the search space redistribution must
occur to balance search space over processors; and (ii)
a scheme to redistribute the search space. We have
devised a new redistribution mechanism and a new
triggering mechanism. Either of these can be used in
conjunction with triggering and redistribution mecha-
nisms developed by other researchers. We analyze the
scalability of these mechanisms, and verify the results
experimentally. The analysis and experiments show
that our new load balancing methods are highly scal-
able on SIMD architectures. Their scalability is shown
to be no worse than that of the best load balancing
schemes on MIMD architectures. We verify our theo-
retical results by implementing the 15-puzzle problem
on a CM-2! SIMD parallel computer.

1 Introduction

Tree search is central to solving a variety of problems
in artificial intelligence [12, 26], combinatorial opti-
mization [11, 21], operations research [25] and Monte-
Carlo evaluations of functional integrals [31]. The
trees that need to be searched for most practical prob-
lems happen to be quite large, and for many tree
search algorithms, different parts can be searched rel-
atively independently. These trees tend to be highly
irregular in nature and hence, a naive scheme for par-
titioning the search space can result in highly un-
even distribution of work among processors and lead
to poor overall performance. The job of partition-
ing irregular search spaces is particularly difficult for
SIMD parallel computers such as the CM-2, in which
all processors work in lock-step to execute the same

*This work was supported by IST/SDIO through the Army
Research Office grant #28408-MA-SDI and by the Army High
Performance Computing Research Center at the University of
Minnesota.

1CM-2 is a registered trademark of Thinking Machines
Corporation.

1063-9535/92 $3.00 © 1992 IEEE

453

Vipin Kumar
Department of Computer Science,
University of Minnesota
Minneapolis, MN 55455
kumar@cs.umn.edu

program. The reason is that in SIMD machines, work
distribution needs to be done on a global scale (z.e. if
a processor becomes idle, then it has to wait until the
entire machine enters a work distribution phase). In
contrast, on MIMD machines, an idle processor can re-
quest work from another busy processor without any
other processor being involved. Many efficient load
balancing schemes have already been developed for dy-
namically partitioning large irregular trees for MIMD
parallel computers [2, 4, 6, 23, 29, 32, 33], whereas
until recently, it was common wisdom that such irreg-
ular problems cannot be solved on large-scale SIMD
parallel computers [21].

Recent research has shown that data parallel SIMD
architectures can also be used to implement parallel
tree search algorithms effectively. Powley, Korf and
Ferguson [27, 28] and Mahanti and Daniels [3, 22]
present parallel formulations of a tree search algorithm
IDA*, for solving the 15 puzzle problem on CM-2.
Frye and Myczkowski [5] presents an implementation
of a depth-first tree search algorithm on the CM-2 for
a block puzzle.

The load balancing mechanisms used in the imple-
mentations of Frye, Powley, and Mahanti are different
from each other. From the experimental results pre-
sented, it is difficult to ascertain the relative merits of
these different mechanisms. This is because the perfor-
mance of different schemes may be impacted quite dif-
ferently by changes in hardware characteristics (such
as interconnection network, CPU speed, speed of com-
munication channels etc.), number of processors, and
the size of the problem instance being solved [17].
Hence any conclusions drawn on a set of experimental
results may become invalid by changes in any one of
the above parameters. Scalability analysis of a parallel
algorithm and architecture combination is very useful
in extrapolating these conclusions [9, 17, 19]. The iso-
efficiency metric has been found to be quite useful in
characterizing scalability of a number of algorithms
[8, 20]. In particular, it has helped determine optimal
oad balancing schemes for tree search for a variety of
MIMD architectures [19, 7, 16).

In this paper, we present new methods for load
balancing of unstructured tree computations on large-
scale SIMD machines, and analyze the scalability of
these and existing schemes. The analysis and experi-

ments show that our new load balancing methods are
highly scalable on SIMD architectures. In particular,
their scalability is no worse than that of the best load
balancing schemes on MIMD architectures.

Section 2 provides a description of existing load
balancing schemes and the new schemes we have de-
veloped. Section 3 describes the various terms and
assumptions used in the analysis. Section 4 and 5
present the analysis of static triggering and its exper-
imental evaluation. Section 6 and 7 present the anal-
ysis of dynamic triggering and its experimental verifi-
cation. Section 8 comments on other related work in
this area.

2 Dynamic Load Balancing Algorithms
for Parallel Search

Specification of a tree search problem includes a de-
scription of the root node of the tree and a successor-
generation-function that can be used to generate suc-
cessors of any given node. Given these two, the entire
tree can be generated and searched for goal nodes. Of-
ten strong heuristics are available to prune the tree at
various nodes. The tree can be generated using dif-
ferent methods. Depth-first method is used in many
important tree search algorithms such as Depth-First
Branch and Bound [15], IDA* [14], Backtracking [11].
In this paper we consider parallel depth-first-search on
SIMD machines.

A common method used for parallel depth-first-
search of dynamically generated trees on a SIMD ma-
chine [27, 22, 5] is as follows. At any time, all the
processors are either in a search phase or in a load
balancing phase. In the search phase, each processor
searches a disjoint part of the search space in a depth-
first-search (DFS) fashion by performing node expan-
sion cycles in lock-step. When a processor has finished
searching its part of the search space, it stays idle until
it gets additional work during the next load balancing
phase. All processors switch from the search phase to
the load balancing phase when a triggering condition
is satisfied. In the load balancing phase, busy proces-
sors split their work and share it with idle processors.
When a goal node is found, all processors quit. If the
search space is finite and has no solutions, then even-
tually all the processors would run out of work, and
parallel search will terminate.

Since each processor searches the space in a depth-
first manner, the (part of) state space to be searched
is efficiently represented by a stack. The depth of the
stack is the depth of the node being currently explored;
and each level of the stack keeps track of untried alter-
natives. Each processor maintains its own local stack
on which it executes depth-first-search. The current
unsearched tree space, assigned to any processor, can
be partitioned into two parts by simply partitioning
untried alternatives (on the current stack) into two
parts. A processor is considered to be busy if it can
split its work into two non empty parts, one for itself
and one to give away. In the rest of this paper, a pro-
cessor is considered to be busy if it has at least two
nodes on its stack. We denote the number of idle pro-
cessors by I, the number of busy processors by A and
the total number of processors by P. Also, the terms

454

busy and active processors will be used interchange-
ably.

2.1 Previous Schemes for Load Balanc-
ing

The first scheme we study is similar to one of the
schemes proposed in [22]. In this algorithm, the trig-
gering condition is computed after each node expan-
sion cycle in the search phase. If this condition is
satisfied, then a load balancing phase is initiated. In
the load balancing phase, idle processors are matched
one-to-one with busy processors. This is done by enu-
merating both the idle and the busy processors; then
each busy processor is matched with the idle proces-
sor that received the same value during this enumer-
ation. The busy processors split their work into two
parts and transfer one part to their corresponding idle
processors?. If I > A then only the first A idle proces-
sors are matched to busy ones and the remaining I— A
processors receive no work. After each load balancing
phase, at least one node expansion cycle is completed
before the triggering condition is tested again.

A very simple and intuitive scheme [27, 5] is to
trigger a load balancing phase when the ratio of ac-
tive to the total number of processors falls below a
fixed threshold. Formally, let 2 be a number such
that 0 < x < 1, then the triggering condition for this

scheme is:
A<LzP (1)

For the rest of this paper we will refer to this trig-
gering scheme as the static triggering scheme with
threshold z (in short the S”-triggering scheme).

An alternative to static triggering is to use a trigger
value that changes dynamically in order to adapt itself
to the characteristics of the problem. We call this kind
of triggering scheme dynamic triggering D. A dy-
namic triggering scheme was presented and analyzed
by Powley, Korf and Freguson in [27]. For the rest
of this paper we will refer to it as the DP-triggering
scheme. The DP-triggering works as follows: Let w
be the sum of the time spent by processors, let ¢ be
the elapsed time since the beginning of the current
search phase and let L be the time required to per-
form the next load balancing phase. After every node
expansion cycle, the ratio 71T is compared against the
number of active processors A, and a load balance is
initiated as soon as that ratio is greater or equal to
A. In other words the condition that triggers a load

balance is:
PRm———
I+L = (2)

Because the value of L cannot be known (it requires
knowledge of the future), it is approximated by the
cost of the previous load balancing phase. DF is a
locally greedy approach that tries to maximize the av-
erage rate of work over a search and load balancing
phase. Polwey et. al. also describe variants of DP-
triggering in [27].

A

2This is done using the rendezvous allocation scheme de-
scribed in [10).

Active
Processors
P R1 =w—A=xt
R2 = A * L
A
7
(a,) L time
Active
Processors
J Ry = widie
P /A Re=L+P
11—
A
time

(b) L

Figure 1: A graphical representation of the trigger-
ing conditions for the DP-triggering and for the DX-
triggering schemes.

Another way of stating the triggering condition for
DP is to rewrite eqn (2) as:

w—Axt>AxL (3)

From this equation and Fig. 1(a) we see that the D¥-

triggering scheme will trigger a load balancing phase
as soon as the area R; is greater or equal to area R.

2.2 Our New Schemes for Load Bal-
ancing

We have derived a new matching scheme for mapping
idle to busy processors in the load balancing phase.
This method can be used with either the static or the
dynamic triggering schemes. We have also derived a
new dynamic triggering scheme.

The new mapping algorithm is similar to the one
described earlier but with the following modification.
We now keep a pointer that points to the last pro-
cessor that gave work during the last load balancing
phase. Every time we need to load balance, we start
matching busy processors to idle processors, starting
from the first busy processor after the one pointed by
this pointer. When the pointer reaches the last pro-
cessor, it starts again from the beginning. For the rest
of this paper we will call this pointer global pointer

455

and this mapping scheme GP. Also, due to the ab-
sence of the global pointer we will name the mapping
scheme of Section 2.1, nGP.

Figure 2 illustrates the GP and the nGP match-
ing schemes with an example. Assume that at the
time when a load balancing phase is triggered, proces-
sors 6 and 7 are idle and the others are busy. Also,
assume that the global pointer points to processor 5.
Now, nGP will match processors 6 and 7 to processors
1 and 2 respectively, whereas GP will match them to
processors 8 and 1 respectively and it will advance the
global pointer to processor 1. If after the next search
phase, processors 6 and 7 are idle again and the others
remain busy, then nGP will match them exactly as be-
fore where GP will match them to processors 2 and 3.
The above example also provides the motivation be-

Processors 12345678
example 1
state BBBBBIIB
global pointer 1
nGP enumeration of busy processors 12345 6
GP enumeration of busy processors 23456 1
enumeration of idle processors 12
example 2
state BBBBBIIB
global pointer 1
nGP enumeration of busy processors 12345 6
GP enumeration of busy processors 61234 5
enumeration of idle processors 12

Figure 2: Illustration of the GP and nGP matching
schemes. B is used to denote busy processors while 1
is used to denote idle ones.

hind GP, which is to try to evenly distribute the bur-
den of sharing work among the processors. As we will
see in Section 4.1 the upper bound on the number of
load balancing phases required for GP is much smaller
than that for nGP. When z < 0.5 both schemes are
similar.

Our new dynamic triggering scheme, called DX-
triggering, takes a different approach than the DP-
triggering scheme. Formally, let w;q4i. be the sum of
the 1dle time of all the processors since the beginning
of the current search phase and let L * P be the cost
of the next load balancing phase, then the condition
that will trigger a load balance is:

Widle > L* P (4)
Fig. 1(b) illustrates this condition, R; is w;4. and
Ry is L * P. This scheme will trigger a load balancing
phase as soon as Ry > R». Note that if triggering takes
place earlier than this point, then the load balancing
overhead will be higher than the overhead due to idling
and vice versa. Thus, our triggering scheme balances
the idle time of the processors guring the search phase
and the cost of the next load balancing phase.

3 Analysis Framework

In this section we introduce some assumptions and ba-

sic terminology necessary to understand the analysis.
When a work transfer is made, work in the active

processor’s stack is split into two stacks one of which

1s given to an idle processor. Intuitively, it is ideal

to split the stack into two equal pieces. If the work
given out is too small, then the idle processor will
soon become idle where if it is too big, then the donor
processor will soon become idle. Since most practi-
cal trees are highly unstructured, it is not possible to
split a stack into two parts representing roughly equal
halfs of the search space. In our analysis, we make
the following rather mild assumption for the splitting
mechanism: if work w at one processor is split into
two parts Yw and (1 — Y)w, then 1 —a > ¢ > a,
where « is an arbitrarily small constant. We call
this splitting mechanism the alpha-splitting mech-
anism. As demonstrated by experiments on MIMD
machines [23, 1, 7, 16, 22] it is possible to find alpha-
splitting mechanisms for most tree search problems.

The total number of nodes expanded in parallel
search can often be higher or lower than the number of
nodes expanded by serial search [30, 27, 22] leading to
speedup anomalies. Here we study the performance
of these load balancing schemes in absence of such
speedup anomalies and we assume that the number of
nodes expanded by serial and parallel search are the
same.

3.1

e Problem size W: the number of tree nodes searched
by the serial algorithm.

o Number of processors P: number of identical pro-
cessors in the ensemble being used to solve the given
problem.

e Unit computation time U4 the time taken for one
unit of work. In our case this is the time for a single
node expansion.

e Unit communication time Ugomm: the time it takes
to send a single node to neighbor processor.

o Single load balancing time #;;: the average time to
perform a load balancing phase. Clearly, ¢;;, depends
on the size of the work transferred, the distance it
travels and the speed of the communication network.
For simplicity, we assume that the size of the mes-
sages containing work is constant. Also, we assume
that t; doesn’t depend on the number of CM-2 pro-
cessors used.

o Total load balancing time Tj;: the total time spent
in load balancing by all processors in the entire al-
gorithm.

o Total idling time Tj4.: this is the sum of the
time spent by idle processors during node expansion
phases.

e Computation time Teq.: is the sum of the time
spent by all processors in useful computation. Use-
ful computation is the computation required by the
best sequential algorithm in order to solve the prob-
lem. Clearly, Teate = W x Usaie.

¢ Running time T},,: the execution time on P proces-
sor ensemble. diearly, PxTyar = Teate + Tidie + Tip-

. io T
o Speedup S: the ratio Teale.

o Efficiency E: is the speedup divided by P. E
denotes the effective utilization of computing re-

Definitions and Assumptions

456

- Teqe
sources. E = Tcate+Tidte+To

3.2 Scalability Analysis using the Iso-
efficiency function

If a parallel algorithm is used to solve a problem in-
stance of a fixed size, then the efficiency decreases as
the number of processors P increases. The reason is
that the total overhead increases with P. For many
parallel algorithms, for a fixed P, if the problem size
W is increased, then the efficiency becomes higher,
because the total overhead grows slower than W. For
these parallel algorithms, the efficiency can be main-
tained at a desired level with increasing number of
processors, provided the problem size is also increased.
We call such algorithms scalable parallel algorithms.

For a given parallel algorithm, for different parallel
architectures, the problem size may have to increase
as a different function of P in order to maintain a
fixed efficiency. The rate that W has to increase as
a function P to keep the efficiency fixed is essentially
what determines the degree of scalability of the algo-
rithm architecture combination. If W has to increase
as an exponential function of P, then the algorithm-
architecture combination is poorly scalable. On the
other hand if W needs to grow linearly as a function
of P then the algorithm-architecture combination is
highly scalable and can easily deliver linearly increas-
ing speedup with increasing number of processors for
reasonable increments of problem sizes. If W needs
to grow as fg(P) to maintain an efficiency E, then
fE FP) is defined to be the isoefficiency function for
efficiency E and the plot of fg(P) with respect to P is
defined to be the isoefficiency curve for efficiency F.

A lower bound on any isoefficiency function is that
asymptotically, it should be at least linear. This fol-
lows from the fact that all problems have a sequential
(7.e. non decomposable) component. Hence any algo-
rithm which shows a linear isoefficiency on some archi-
tecture is optimally scalable on that architecture. Al-
gorithms with isoefficiencies of O(P log® P), for small
constant c, are also reasonably optimal for practical
purposes. For a more rigorous discussion on the iso-
efficiency metric and scalability analysis, the reader is
referred to [19, 17].

4 Scalability Analysis of the Static Trig-
gering Scheme
In order to analyze the scalability of a load balancing
scheme, we need to compute T3, and Tjg.. Due to the
dynamic nature of the load balancing algorithms being
analyzed, it is very difficult to come up with a precise
expression for Tj. We can compute the upper bound
for Tiy by using a technique that was originally de-
veloped in the context of Parallel Depth First Search
on MIMD computers [4, 19]. In dynamic load bal-
ancing, the communication overheads are caused by
work transfers. The total number of work transfers
defines an upper bound on the total communication
overhead. Let V(P) be the number of load balancing
phases needed so that each busy processor has shared
its work (with some other processor) at least once. As
shown in [13], in any load balancing algorithm using

the alpha-splitting, the maximum number of load bal-
ancing phases required to solve a problem of size W, is
V(P)log_1_ W. For the rest of this analysis, the max-

imum number of load balancing phases will be written
as V(P)log W and this upper bound will be used as an
estimate of the total number of load balancing phases
Sour experimental results here as well as for MIMD [16]
emonstrate that it is a good approximation). Hence
the load balancing overhead T is:
T =P x V(P)logW x ti %)
The idling time T; 4, depends on the characteristics
of the search space and the triggering threshold of the
S%-triggering scheme. In any node expansion cycle,
the number of busy processors will decrease and will
remain between P and z P. As the value of z increases,
Ty goes up and T;4i. comes down. The overhead due
to idling can be computed as follows: Assume that
the average number of busy processors during node
expansion cycles is (z+8) P; clearly 0 < f < 1—z. The
average number of idle processors during each node
expansion cycle is (1 — z — 8)P. The total time spent

during node expansion cycles is %Umc. Hence:
1—z-—
Tiqte = TB'BW X Ueale (6)
From eqn (5) and eqn (6) we have:
E = Tcalc
Teate + Tidte + Ty
= (M

1
1 + PxV(P)log W xt1,
z+B XUcale

From eqn (7) we can see that the maximum efficiency
of the algorithm is bounded by z + 3. If the problem
size W is fixed and P increased, then Tj; will increase
and the efficiency will come downward approaching 0.
If P is fixed and W 1is increased then T4, will increase
faster than Tj; and hence the efficiency will approach
z + B. To maintain a fixed efficiency, T4 should
remain proportional to Tj;. Hence for isoefficiency,

W x Umxc P x V(P) logW X tp
W O(P x V(P)logW)

~

As long as V%P) is a polynomial in W, we can ap-
proximate the above equation by the following:

W = O(P x V(P)log P) (8)
The isoefficiency defined by the above equation is the
overall isoefficiency of the algorithm.

4.1 Analysis for GP-S°

In order to analyze the scalability of GP, we have to
calculate V(P). When = < 0.5 it will take one load
balancing phase for all the busy processors to be re-
quested at least once, hence V(P) = 1. Whereas, as

457

shown in [13], when z > 0.5, V(P) = 125. Substi-

tuting this value of V(P) in eqn (5) and eqn (7) we
get:

)

T",:.PI 1 logW x tipy

-z
W x Ucalc

FE =
Ucate + PﬁIOEW Xt

(10)

w
z+8

Now we substitute V(P) = 12~ = O(1) in eqn (8) to
get the isoefficiency function:

W = O(Plog P)

(11)

4.2 Analysis for nGP-5*

Similarly, in order to analyze the behavior of the nGP
matching scheme, we have to determine the value of
V(P) for any value of z. When z < 0.5 it will take
one load balancing phase for all the busy processors to
be requested at least once, hence V(P) = 1. Whereas,

as shown in [13}, when z > 0.5, V(P) = log'zl_’--Tl w.
Substituting this value of V(P) in eqn (5), eqn (7),
and eqn (8) we get:

T = Plog?-_-rl WilogW x tp (12)

E=— W x Ueate (13)
745 X Ucate + PlogT™= WlogW x tp

Isoefficiency function: W = O(PlogT™= P) (14)

Clearly, the scalability of nGP-S* becomes worse as
the value of z increases. From eqn (9) and eqn (12),
we see that as we try to achieve higher efficiencies
by increasing z, the upper bound on load balancing
overhead for nGP increases rapidly while for GP it
only increases moderately. For example if z increases
from 0.80 to 0.90, then Tj; increases by a factor of
log® W for nGP, while it only increases by a factor of
2 for GP.

4.3 Optimal Static Trigger for GP

If we increase the value of z for the static triggering
scheme, then the load balancing overhead increases
and the idling overhead decreases. Clearly, maximum
efficiency is obtained for the value of # which mini-
mizes the sum T;4. + T;». We call such value of z the
optimal static trigger z,. For a given value of 3 we
can analytically compute a good approximation of z,.
As shown in [13], for § = 0 the optimal static trigger
is:
1

T, =
Vi log o W x gl +1

From this equation we can clearly see the depen-
dence of the optimal static trigger on the various pa-
rameters involved in dynamic load balancing. As W
increases, the value of z, also increases, meaning that
higher efficiencies are possible for larger problems. As

(15)

Static Trigger 0.50 0.60 0.70 0.80 0.90 Analytical
~W | Metric nGP GP nGFP | GP nGP GP nGP | GP nGP GP | trigger, zo
Nezpand 547 | 547 479 | 483 438 | 438 400 | 406 384 | 379
2488958 | Nip 62 62 . 105 69 179 78 309 | 102 376 | 154 0.67
E 041 [041 || 037 | 043 || 029 | 043 || 0.21 | 041 [019 | 035
Necpand 1957 | 1957 || 1708 | 1730 || 1520 | 1563 || 1364 | 1429 || 1320 | 1325
9076121 | Nip 72 72 245 84 560 102 || 1005 | 134 || 1317 | 226 0.79
E 051 | 051 || 043 | 055 || 032 | 058 || 0.22 | 0.59 [| 0.19 | 054
Nezpand 4629 | 4629 || 4078 | 4091 || 3588 | 3687 || 3234 | 3376 || 3104 | 3113
21540929 | Ny, 73 73 407 90 1251 | 107 || 2339 | 151 || 3044 | 250 0.85
E 054 | 054 || 048 | 0.60 || 033 | 065 || 0.24 | 0.68 || 0.20 | 0.67
Nezpand 9510 | 9510 || 8457 | 8450 || 7565 | 7637 || 6881 | 7009 |l 6475 | 6494
45584793 | N 73 73 515 84 1880 | 106 || 3636 | 150 || s911 | 260 0.89
E 0.57 | 057 || 054 | 0.64 || 039 | 070 |} 0.29 | 0.74 || 0.21 | 0.76

Table 1: Experimental results obtained using 8192 CM-2 processors. Nezpand is the number of node expansion
cycles, Ny is the number of load balancing phases and E is the efficiency. The last column contains values for
the static trigger obtained using the optimal static triggering equation.

P increases, z, decreases, meaning that the efficiency
of the algorithm decreases when P increases. Also

as the ratio U—’-‘f; increases (i.e. performing a load
C

balancing phase gets relatively more expensive), the
value of 2, decreases and visa versa. Finally as'a de-
creases (i.e. the work splitting scheme gets worse),
the value of z, also decreases implying that the over-
all efficiency drops as the alpha-splitting mechanism
becomes worse.

5 Static Triggering:
sults
We solved various instances of the 15-puzzle problem
g24] taken from [14], on a CM-2 massively parallel
IMD computer. 15-puzzle is a 4 x 4 square tray
containing 15 square tiles. The remaining sixteenth
square is uncovered. Each tile has a number on it. A
tile that is adjacent to the blank space can be slid into
that space. An instance of the problem consists of an
initial position and a specified goal position. The goal
is to transform the initial position into the goal posi-
tion by sliding the tiles around. The 15-puzzle prob-
lem is particularly suited for testing the effectiveness
of dynamic load balancing schemes, as it is possible to
create search spaces of different sizes (W) by choosing
appropriate initial positions. IDA* is the best known
sequential depth-first-search algorithm to find optimal
solution paths for the 15-puzzle problem [14], and gen-
erates highly irregular search trees. We have paral-
lelized IDA* to test the effectiveness of the various
load balancing algorithms. The same algorithm was
also used in {27, 22]. Our parallel implementations of
IDA* find all the solutions of the puzzle up to a given
tree depth. This ensures that the number of nodes
expanded by the serial and the parallel search is the
same, and thus we avoid having to consider superlin-
ear speedup effects [30, 27, 22].

We obtained experimental results using both the
nGP and the GP matching schemes for different val-
ues of static threshold «. In our implementation, each
node expansion cycle takes about 10ms while each load
balancing cycle takes about 34ms. Every time work is
split we transfer the node at the bottom of the stack.
For the 15-puzzle problem, this appears to provide a
reasonable alpha-splitting mechanism. In calculating
efficiencies, we used the average node expansion cycle

Experimental Re-

time of parallel IDA* as an approximation of the se-
quential node expansion cost. Because of higher node
expansion cost associated with SIMD parallel com-
puters [27], the actual efficiencies are lower by a con-
stant ratio than those presented here. However, this
does not affect the relative comparison of any of these
schemes.

Some of these results are shown in Table 1. All the
timings in this table have been taken on 8k processors.
From the results shown in this table, we clearly see
how GP and nGP relate to each other. When z = 0.50
both algorithms perform similarly, which is expected
because in this case both GP and nGP have V(P) = 1.
Where, as predicted by our theoretical analysis, the
difference between the performance of GP and nGP
increases as z increases. From the results shown in
Table 1, we also see that the relative performance of
GP versus nGP increases as W increases. The reason
for that is explained in [13]. Finally, the last column in
Table 1 shows the values of static trigger z,, obtained
from eqn (15) using o = 0.5. These values for the
static trigger are similar to the static trigger values
where GP performs the best for each problem.

We constructed experimental isoefficiency graphs
for both nGP-S* and GP-S%. These graphs are shown
in figures 3, 4 and 5. These graphs were obtained by
performing a large number of experiments for a range
of W and P, and then collecting the points with equal
efficiency. From Fig. 3, we see that the isoefficiency of
GP-5°8 on the CM-2 is O(Plog P). Figures 4 and 5
(for nGP-S°™ and nGP-S°°) show the dependence
of the isoefficiency of nGP on the triggering threshold
z. As z increases, the isoefficiency functions become
worse. The effect is more prominent for higher efficien-
cies. For example, the isoefficiency graph for E = 0.40
for nGP-5%90 is near O(Plog P), but much worse for
nGP-§°70,

6 Dynamic Triggering:
sults
We analyzed the behavior of both the DP-triggering
and the D¥_triggering schemes. Especially, we ana-
lyzed how they perform under a wide range of different
search spaces and different load balancing costs. Due
to space limitations in this section we only present a
summary of our analytical results. The reader should

Analytical Re-

w

3.2e+8+
2.8e+8— E=.7 o—
2.4e+8- E=.70 +—
E = .65 -8—

PlogP

50.80

Figure 3: Isoefficiency of GP- scheme

w
3.2¢+8+4
2.8e+8~
2.4e+8
2.0e+-8
1.6e48-
1.2e48+

8e+ 7

I
32k
PlogP

2k4k 8k

Figure 4: Isoefficiency of nGP-S%™ scheme

w
3.2e+8+4
2.8e+8-
2.4e+8—
2.0e+8—
1.6e4-8
1.2e+48-

8e+47-

4e+7]
Oe+0

+
32k
PlogP

1
2 16k

Figure 5: Isoefficiency of nGP-S%6° scheme

459

refer to [13] for a more detailed analysis.

The DP-triggering schemes appears to be a reason-
able dynamic trig%ering scheme for a large range of
search spaces and load balancing costs. Nevertheless
it has some serious limitations. The triggering condi-
tion, eqn (2), doesn’t take into account the number of
processors P, but instead is based on the change in
the number of busy processors. Hence any load bal-
ancing algorithm that uses the D -triggering scheme
must do the following: a) it has to have an initializa-
tion phase where work is distributed to most of the
processors and b) during each load balancing cycle, it
has to perform multiple work transfers so that most
of the processors become active. Also in certain situa-
tions, the DP-triggering scheme will trigger too late or
not trigger at all and hence can yield arbitrarily poor
efficiencies. We have shown 13} that for any given
unstructured tree, if the load balancing cost is above
some threshold, then the DP-triggering scheme will
never trigger a load balance and after some period of
time, the number of busy processors will become one
and no more load balancing cycles will be triggered for
the rest of the search. In general, given a load balanc-
in% cost, there is a set of search spaces for which the
D" -triggering scheme will perform poorly. The size of
this set increases as the load balancing cost increases.

The DX -triggering scheme as defined from eqn (4)
doesn’t have the limitations of the DP-triggering
scheme. This triggering condition takes into account
the total number of processors P indirectly through
the idling overhead; and if the number of busy pro-
cessors becomes small, the DX -triggering scheme will
soon trigger a load balancing cycle. Hence this scheme
neither requires an initial work distribution phase nor
multiple work transfers during each load balancing cy-
cle. Also, the D¥ -triggering scheme has the property
that its overheads will never be more than twice of
that for the optimal static triggering scheme S$°. This
means that the efficiency obtained by using the DX-
triggering scheme cannot be much smaller than that
obtained by using the S”°-triggering scheme, although
it can be better. For example if the efficiency of the
S%e-triggering scheme is 0.90 then the DX -triggering
scheme’s efficiency will be at least 0.82 (i.e i

T+2/10
and could be even better than 0.90. Note that a sim-
ilar bound on the overhead cannot be made for the
DP-triggering scheme.

7 Dynamic Triggering, Experimental Re-

sults

We implemented all four combinations of the two dy-
namic triggering schemes DP and D¥ | and the two
matching schemes nGP and GP, in the parallel IDA*
to solve the 15-puzzle problem on CM-2. In all cases,
the root node is given to one of the processors and
static triggering with £ = 0.85 is used until 85% of the
processors became active. Thus in the initial distribu-
tion phase, each node expansion cycle was followed
by a work distribution cycle until 85% of the proces-
sors had work. After the initialization phase, trigger-
ing was done using the respective dynamic triggering
schemes. The results are summarized in Table 2.

Dynamic Trigger DY -triggering | D¥-triggering
\id

Metric nGP GP nGP GP
Nezpand 685 596 552 500
2488958 | *Np, 137 100 83 68

029 | 034 || 037 | 042
Nezpand || 2002 | 1778 || 1758 | 1467
9076121 | *Nyp, 161 | 110 186 114

E 045 | 0.52 || 0.46 | o.60
Nezpand || 4436 | 3894 || 4002 | 3200

21540929 | *Np, 214 | 116 378 | 183
E 052 | 062 || 049 | 0.9
Nezpand || 8682 | 7517 || 8014 | 6406
45584793 | *Ny, 314 | 137 || 669 | 279

0.57 0.70 0.54 0.77

Table 2: Experimental results obtained using 8192
CM-2 processors using various dynamic triggering
schemes. Nezpand is the number of node expansion
cycles, * Ny, is the number of work transfers and F is
the efficiency. Note that for the DX -triggering scheme
* Ny is equal to the number of load balancing phases.

From the results shown in this table we can see
that for the nGP matching scheme, the DX -triggering
scheme performs slightly worse than the D -triggering
scheme for larger problems. For the GP match-
ing scheme, DX -triggering performs consistently bet-
ter that DP-triggering for all problems. Also the
GP matching scheme constantly outperforms nGP for
both dynamic triggering schemes as it does for static
triggering. Comparing the two dynamic triggering
schemes 1n Table 2, with the static triggering scheme
in Table 1, we see that GP-DX performs as good as
the GP-S® schemes using optimal trigger values for
each problem.

We constructed experimental isoefficiency graphs
for all four combinations of matching schemes and dy-
namic triggering schemes. These graphs are shown
in figures 6, 7, 8 and 9. From figures 6 and 7, we
see that for the GP matching scheme, the asymptotic
scalability of the two dynamic triggering schemes is
similar, and is O(Plog P). However, GP-D® has a
somewhat higher constant than GP-DX . In the case
of the nGP matching scheme, for E' < 0.55 the isoeffi-
ciency of both nGP-DX (Fig. 8) and nGP-DP (Fig. 9)
is O(Plog P) while for higher ‘efficiencies it becomes
worse. The reason is that the nGP matching scheme
leads to a more uneven distribution of the search tree
compared to the GP matching scheme.

8 Related Work

Powley, Korf and Ferguson [27, 28] present load bal-
ancing algorithms which have different triggering and
matching schemes. Their matching scheme, min- f or-
dering, 1s identical to nGP or GP when the num-
ber of active processors is less than the number of
idle ones; but when the active processors are more
than the idle ones, work is given out from processors
that have nodes with smaller f-value (i.e., the lower
bound on the cost of the node). The primary moti-
vation behind the min-f ordering is that nodes with
smaller f-values are likely to represent more work than

460

1
32k
PlogP

Figure 6: Isoefficiency of GP-D¥ scheme

w

3.2e+8-4

2.8e48-1
2.4e+8—
2.0e+8-
1.6e4-8—
1.2e+8-

8e+7

4e+ 7

T
32k
Plog P

Figure 7: Isoefficiency of GP-DF scheme

T
32k
PlogP

Figure 8: Isoefficiency of nGP-D¥ scheme

w
3.2e48-4
2.8e+8-
2.4e+48-
2.0e+8—
1.6e+8-
1.2e+8

8e+ 7~
4e+7—

)
32k
PlogP

Figure 9: Isoefficiency of nGP-D¥ scheme

those with larger f-values. Clearly, the min-f order-
ing should lead to no more load balancing phases than
nGP. It may even lead to fewer number of load bal-
ancing phases than GP depending upon how good a
predictor the f-value is of the overall load. But un-
like GP, it is difficult to put an upper bound on the
number of load balancing phases for the min-f order-
ing scheme. Also, implementation of min-f requires a
sorting step which is more time consuming than simple
enumeration required by GP. This will become impor-
tant if the cost of sorting is high compared with the
rest of the load balancing phase. In our experiments
with the 15-puzzle problem, we found min-f and GP
to require about the same number of load balancing
phases. But, in our experimental setup, the load bal-
ancing cost for min-f is about 2.5 times that of GP.
Hence GP leads to somewhat higher efficiencies.

Powley et. al. also report experimental results for a
matching scheme which randomly matches idle proces-
sors to busy processors, and point out that its perfor-
mance is similar to the min- f scheme. By an analysis
similar to that for load balancing schemes for MIMD
computers in [16], it can be shown that the upper
bound on the asymptotic isoefficiency of the random
scheme is worse than that for GP only by a factor of
log P.

Powley et. al. present three different triggering
schemes: static triggering, DP-triggering and a varia-
tion of DP-triggering with the following modifications:
A load balancing cycle is triggered when either the
DPF-triggering condition holds or when the number of
active processors is less than P/2 and the time spent
searching is at least half of the time spent in load bal-
ancing. These modifications to DP guarantee that at
least one third of the total time is spent searching, and
alleviate many of the drawbacks of the original Df-
triggering scheme. Besides load balancing within iter-
ations of IDA*, Powley et.al. perform load balancing
during the initial work distribution and between iter-
ations of IDA*. These steps may not be applicable, in
general, to dynamic distribution of unstructured trees
on parallel computers.

Mahanti and Daniels proposed two dynamic load
balancing algorithms, FESS and FEGS, in [22, 3]. In

461

both these schemes a load balancing phase is initi-
ated as soon as one processor becomes idle and the
matching scheme used is similar to #GP. The differ-
ence between FESS and FEGS is that during each load
balancing phase FESS performs a single work transfer
while FEGS performs as many work transfers as re-
quired so that the total number of nodes is evenly
distributed among the processors. As our analysis
has shown the FESS scheme has poor scalability and
because this scheme usually performs as many load
balancing phases as node expansion cycles, its perfor-

mance depends on the ratio ﬁu-““‘- FEGS performs

comm

better work distribution thus requires fewer number
of load balancing phases. Hence it has better perfor-
mance than FESS, and its scalability may be close to
the GP matching scheme. The memory requirements
of FEGS is unbounded, and modifications to handle
this problem are discussed in [22].

Frye and Myczkowski proposed two dynamic load
balancing algorithms in [5f The first scheme is similar
to nGP-S® with the difference that each busy proces-
sor gives one piece of work to as many idle processors
as many pieces of work it has. Clearly this scheme
has a poor splitting mechanism. Extending this algo-
rithm in such a way so that the total number of nodes
is evenly distributed among the processors results in
a scheme similar to FEGS of Mahanti et. al.. The
second algorithm is based on nearest neighbor com-
munication. In this scheme after each node expansion
cycle the processors that have work check to see if
their neighbors are idle. If this is the case then they
transfer work to them. This scheme is similar to the
nearest neighbor load balancing schemes for MIMD
machines. As shown in [18] the isoefficiency for a hy-

144
percube is Q(P°8: —3*), while the isoefficiency for a
mesh is Q(cﬁ) where ¢ > 1. Hence, this algorithm is

sensitive to the quality of the alpha-splitting mecha-
nism.

References

[1] S. Arvindam, Vipin Kumar, and V. Nageshwara Rao.
Efficient Parallel Algorithms for Search Problems:
Applications in VLSI CAD. In Proc. of the Frontiers
90 Conf. on Massively Parallel Computation, October
1990.

[2] S. Arvindam, Vipin Kumar, V. Nageshwara Rao, and
Vineet Singh. Automatic test Pattern Generation
on Multiprocessors. Parallel Computing, 17, number

12:1323-1342, December 1991.

M. Evett, James Hendler, Ambujashka Mahanti, and
Dana Nau. PRA*: A Memory-Limited Heuristic
Search Procedure for the Connection Machine. In
Proc. of the third symposium on the Frontiers of Mas-
sively Parallel Computation, pages 145-149, 1990.

Raphael A. Finkel and Udi Manber. DIB - A Dis-
tributed implementation of Backtracking. ACM Trans.
of Progr. Lang. and Systems, 9 No. 2:235-256, April
1987.

3]

8]

(6]

(7]

(8]

[9

—

(14

sy

(15]

(16]

(17]

(18]

Roger Frye and Jacek Myczkowski. Ezhaustive Search
of Unstructured Trees on the Connection Machine.
Thinking Machines Corporation Tech. Rep., 1990.

M. Furuichi, K. Taki, and N. Ichiyoshi. A Multi- Level
Load Balancing Scheme for OR-Parallel Ezhaustive
Search Programs on the Multi-PSI. In Proc. of the
2nd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 1990. pp.50-59.
Ananth Grama, Vipin Kumar, and V. Nageshwara
Rao. Ezperimental Evaluation of Load Balancing
Techniques for the Hypercube. In Proc. of the Par-
allel Computing 91 Conf., 1991.

Anshul Gupta and Vipin Kumar. On the scalability of
FFT on Parallel Computers. In Proc. of the Frontiers
90 Conf. on Massively Parallel Computation, October
1990. An extended version of the paper will appear
in IEEE Trans. on Parallel and Distributed Systems,
1993.

John L. Gustafson, Gary R. Montry, and Robert E.
Benner. Development of Parallel Methods for a 1024-
Processor Hypercube. SIAM Journal on Scientific and
Statistical Computing, 9 No. 4:609-638, 1988.

W. Daniel Hillis. The Connection Machine. MIT
Press, 1991. '

Ellis Horowitz and Sartaj Sahni. Fundamentals
of Computer Algorithms. Computer Science Press,
Rockville, Maryland, 1978.

Laveen Kanal and Vipin Kumar. Search in Artificial
Intelligence. Springer-Verlag, New York, 1988.
George Karypis and Vipin Kumar. Unstructured Tree
Search on SIMD Parallel Computers. Tech. Rep. TR-
92-21, Computer Science Department, University of
MN, 1992.

Richard E. Korf. Depth-First Iterative- Deepening: An
Optimal Admissible Tree Search. Artificial Intelli-
gence, 27:97-109, 1985.

Vipin Kumar. DEPTH-FIRST SEARCH. In Stu-
art C. Shapiro, editor, Encyclopaedia of Artificial In-
telligence: Vol 2, pages 1004-1005. John Wiley and
Sons, Inc., New York, 1987. Revised version appears
in the second edition of the encyclopedia to be pub-
lished in 1992.

Vipin Kumar, Ananth Grama, and V. Nageshwara
Rao. Scalable Load Balancing Technigues for Parallel
Computers. Tech. Rep., TR-91-55, Computer Science
Department, University of MN, 1991.

Vipin Kumar and Anshul Gupta. Analyzing Scala-
bility of Parallel Algorithms and Architectures. Tech.
Rep., TR-91-18, Computer Science Department, Uni-
versity of MN, June 1991. A short version of the paper
appears in the Proc. of the 1991 Int. Conf. on Super-
computing, Germany, and as an invited paper in the
Proc. of 29th Annual Allerton Conf. on Communuica-
tion, Control and Computing, Urbana,IL, October
1991.

Vipin Kumar, Dana Nau, and Laveen Kanal. Gen-
eral Branch-and-bound Formulation for AND/OR

462

(19]

[20]

[21]
[22]

(23]

(24]

[25]

(26]

(27]

[28]

(29]

30]

(31]

(32

[33]

Graph and Game Tree Search. In Laveen Kanal and
Vipin Kumar, editors, Search in Artificial Intelli-
gence. Springer-Verlag, New York, 1988.

Vipin Kumar and V. Nageshwara Rao. Parallel
Depth-First Search, Part II: Analysis. Int. Journal
of Parallel Programming, 16, 1987.

Vipin Kumar and Vineet Singh. Scalability of Parallel
Algorithms for the All-Pairs Shortest Path Problem:
A Summary of Results. Extended version appears in
Journal of Parallel and Distributed Processing (spe-
cial issue on massively parallel computation), Volume
13, 1991.

Karp R. M. Challenges in Combinatorial Computing.
To appear January 1991.

A. Mahanti and C. Daniels. SIMD Parallel Heuristic
Search. To appear in Artificial Intelligence, 1992.

V. Nageshwara Rao and Vipin Kumar. Parallel
Depth-First Search, Part I: Implementation. Int.
Journal of Parallel Programming, 16, 1987.

Nils J. Nilsson. Principles of Artificial Intelligence.
Tioga Press, 1980.

Christos H. Papadimitriou and Kenneth Steiglitz.
Combinatorial Optimization, Algorithms and Com-
plezity. Prentice Hall, 1982.

Judea Pearl. Heuristics - Intelligent Search Strate-
gies for Computer Problem Solving. Addison-Wesley,
Reading, MA, 1984.

C. Powley, R. Korf, and C. Ferguson. IDA* on the
Connection Machine. To appear in Artificial Intelli-
gence, 1992,

Curt Powley and Richard E. Korf. SIMD and MIMD
Parallel Search. In Proc. of the AAAI Spring Symp.,
pages 49-53, 1989.

Abhiram Ranade. Optimal Speedup for Backtrack
Search on a Butterfly Network. In Proc. of the Third
ACM Symp. on Parallel Algorithms and Architec-
tures, 1991.

V. Nageshwara Rao and Vipin Kumar. On the Ef-
ficicency of Parallel Backtracking. IEEE Trans. on
Parallel and Distributed Systems, (to appear), 1992.
available as a tech. rep. TR 90-55, Computer Science
Department, University of MN.

Jasec Myczkowski Roger Frye. Load Balancing Al-
gorithms on the Connection Machine and their Use
in Monte-Carlo Methods. In Proc. of the Un-
structured Scientific Computation on Multiprocessors
Conf., 1992.

Wei Shu and L. V. Kale. A Dynamic Scheduling Strat-
egy for the Chare-Kernel System. In Proc. of Super-
computing 89, pages 389-398, 1989.

Berjamin W. Wah and Y. W. Eva Ma. MANIP -
A Multicomputer Architecture for Solving Combina-
torial Extremum-Search Problems. IEEE Trans. on
Computers, c-33, May 1984.

