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ABSTRACT
Motivation: Identifying residues that interact with ligands is use-
ful as a first step to understanding protein function and as an aid
to designing small molecules that target the protein for interaction.
Several studies have shown sequence features are very informative
for this type of prediction while structure features have also been
useful when structure is available. We develop a sequence-based
method, called LIBRUS, that combines homology-based transfer and
direct prediction using machine learning and compare it to previous
sequence-based work and current structure-based methods.
Results: Our analysis shows that homology-based transfer is slightly
more discriminating than a support vector machine learner using
profiles and predicted secondary structure. We combine these two
approaches in a method called LIBRUS. On a benchmark of 885
sequence independent proteins, it achieves an area under the ROC
curve (ROC) of 0.83 with 45% precision at 50% recall, a significant
improvement over previous sequence-based efforts. On an indepen-
dent benchmark set, a current method, FINDSITE, based on structure
features achieves a 0.81 ROC with 54% precision at 50% recall while
LIBRUS achieves a ROC of 0.82 with 39% precision at 50% recall at
a smaller computational cost. When LIBRUS and FINDSITE predicti-
ons are combined, performance is increased beyond either reaching
an ROC of 0.86 and 59% precision at 50% recall.
Availability: Software developed for this study is available at
http://bioinfo.cs.umn.edu/supplements/binf2009 along
with supplemental data on the study.
Contact: kauffman@cs.umn.edu, karypis@cs.umn.edu

1 INTRODUCTION
Recent advances in high-throughput sequencing technologies have
continued to increase the gap between the number of proteins whose
function is well-characterized and the proteins for which there is
no experimental functional data. As a result, life sciences resear-
chers are becoming increasingly more dependent on computational
methods to infer the function of proteins. To address this challenge,
a number of novel and sophisticated methods have been develo-
ped within the field of computational biology which are designed
to predict different aspects of a protein’s function.

∗to whom correspondence should be addressed

The focus of this paper is on methods that predict from the pro-
tein’s primary sequence the residues that bind to small molecules,
which are commonly referred to as ligand-binding residues. Being
able to reliably identify these residues has applications to under-
standing the overall role and function of the protein by using them
to subsequently predict the types of ligands that they bind to and,
in the case of enzymes, the types of reactions that they catalyze.
Moreover, knowing the residues that are involved in protein-ligand
interactions has broad applications in drug discovery and chemical
genetics as it can be used to better virtually screen large chemi-
cal compound libraries (Bock and Gough (2005)) and to aid the
process of lead optimization (Bleicher et al. (2003); Weber et al.
(2002)). In addition, the ligand-binding residues of a protein can be
used to influence target-template sequence alignment in compara-
tive protein modeling approaches which has been shown to improve
the quality of the 3D models produced for the target’s binding site
(Kauffman et al. (2008)). These quality improvements in the bin-
ding site’s 3D model is critical to docking-based approaches for
virtual screening (Moitessier et al. (2007)).

Existing approaches for identifying ligand-binding residues can
be broadly classified into two groups.

The first group applies machine learning methods that use a trai-
ning set of residues with known ligand-binding information to learn
a model of binding residues that takes into account residue-level
features in order to make predictions. Various types of features and
supervised learning methods have been explored. These include fea-
tures such as sequence conservation measures and position specific
scoring matrices and supervised learning methods based on Baye-
sian learning and support vector machines (Petrova and Wu (2006);
Youn et al. (2007); Fischer et al. (2008)). The consensus of these
studies has been that sequence profiles and conservation are the
important features and support vector machines provide the best
discrimination.

The second group of methods identify the ligand-binding residues
of a protein (target) by aligning it to proteins with known ligands.
These are referred to as homology-based transfer methods (HT)
as properties of the target sequence are predicted by transferring
them from homologous proteins (templates) (López et al. (2007)).
Alignment of a target to the templates can be either sequence-
or structure-based. The firestar algorithm of López et al. (2007)
utilizes sequence profiles to align the target to templates and the
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resulting multiple sequence alignment is used to transfer known bin-
ders from the templates to the target. The FINDSITE method by
Brylinski and Skolnick (2008) identifies template by threading the
target through candidate templates and retaining good scoring tem-
plates. The accumulated templates are then structurally aligned to
the target structure. If the target structure is not available, it is pre-
dicted using one of several methods. The binding status of template
residues is then transferred to target residues based on this structu-
ral alignment. This structure-based approach allows characteristics
of potential binding molecules to be discerned but has the drawback
of requiring the target structure. Predicting the structure of the target
protein can be a computationally expensive proposition.

In this paper we present a new method for predicting the
ligand-binding residues of a protein from its primary sequence.
This method, called LIBRUS, combines elements from the above
machine learning and homology-based transfer methods and achie-
ves accuracy improvements over either one of them. LIBRUS uses
support vector machines (SVM) (Vapnik (1995)) to build a predic-
tion model based on features derived from (i) the protein’s PSI-
BLAST-computed position specific scoring matrix, (ii) its predicted
secondary structure, and (iii) a homology-based transfer score that
is computed for each residue by using a profile-based sequence
alignment scoring method to align the protein to a database of pro-
tein sequences with known ligands. Experiments on a set of 885
sequence independent proteins show that LIBRUS achieves ROC
and PR (area under ROC and precision-recall curves, Section 3.6)
of 0.83 and 0.48, respectively. These are higher than those achie-
ved by the next best-performing method (homology-based transfer),
which reached corresponding scores of 0.78 and 0.45. Moreover,
comparisons on a set of 564 proteins used in the evaluation of
FINDSITE, show that LIBRUS performs comparably to FINDSITE
at a fraction of FINDSITE’s computational requirements. We also
present a ligand-binding prediction method that combines the pre-
dictions made by LIBRUS and FINDSITE. This combined predictor
outperforms LIBRUS and FINDSITE alone, achieving ROC and
PR of 0.86 and 0.56, respectively. These improvements indicate
that the sequence-based nature of LIBRUS exploits different but
complementary types of signals than the structure-based nature of
FINDSITE.

2 METHODS
The ligand-binding residue prediction method that we developed is a hybrid
scheme that combines elements of an SVM-based machine learning method
trained on sequence-derived features and features derived from a homology-
based transfer method. In the subsequent sections we first describe the
methods that we developed for predicting the ligand-binding residues of a
protein using these two approaches in isolation and then proceed to describe
how we combined them to derive LIBRUS.

Note that throughout the rest of this paper we utilize terminology common
to the protein homology modeling field: a protein for which prediction is
to be made is referred to as a target while proteins whose ligand-binding
residues are known and are utilized to make the prediction are referred to as
templates.

2.1 Prediction with Support Vector Machines
In this method, the prediction problem is treated as a supervised learning
problem whose goal is to build a model that can predict whether a residue
is ligand-binding or not (i.e., binary classification problem). In supervised

Table 1. Average norms of residue features.

Statistic PSSM SSE HTS

Average 13.53 2.00 0.07
Std. Dev. 3.88 0.53 0.11
Weight 1.00 6.75 207.00

Columns are position specific scoring matrices (PSSM), predicted secondary
structure vector (SSE), and homology transfer scores (HTS). The bottom row
is the weight used on these features in the combined SVMs of Section 2.1 and
Section 2.3.

learning, each object of interest is encoded by a feature vector and a model
is learned that can predict the class based on those features.

Following recent research on building models for predicting various struc-
tural and functional properties of protein residues in Karypis (2006) and
Rangwala et al. (2007), we utilized SVMs (Vapnik (1995)) on sequence fea-
tures of each residue to classify the residue as a ligand-binder or non-binder.
Our set of features was comprised of position specific scoring matrices and
predicted secondary structure in a window around each residue. We used a
sliding window of nine residues centered on the residue of interest and con-
catenated the PSSMs and SSEs of adjacent residues for a total of 207 features
per residue (9×(20+3)). Window features which extended beyond the first
or last residue of the sequence were assigned zero values.

Note that this feature representation is closest to that of Youn et al. (2007)
where PSSMs in a sliding window of size 21 were employed in one of their
methods for the related problem of predicting a protein’s catalytic residues.
We used a smaller window size, nine residues, as preliminary parameter
searches indicated that increasing this to eleven residues did not improve
ROC.

One important aspect of this combination was providing proper weights
on the features as their numerical ranges varied greatly. We took the fol-
lowing approach. In our dataset, we computed the average norm of PSSM
columns and SSE vectors. The average norm for SSEs was smaller than
for PSSMs so we up-weighted SSEs to be of equal norm. Relations bet-
ween the norms and weighting are given in Table 1. Properly weighting the
combination of features significantly enhanced the performance of the final
model.

2.2 Prediction by Homology-based Transfer
In this method, given a target protein, a database of template sequences with
known binding information is searched for high scoring profile-based ali-
gnments to the target. The templates in this database were determined by
the experiment (see Section 3.2 and Section 3.4). Once the good templates
are identified, a score was assigned to each residue in the target based on
the number of template residues which aligned against it and are known to
be ligand binders. We optimized the alignment and prediction along a num-
ber of dimensions including the profile-based scoring mechanism and the
prediction score weighting. When not otherwise noted, parameters for the
algorithms that are described below were selected based on performance of
homology-based transfer during cross-validation.

2.2.1 Alignment Scoring The profile-based alignment scoring scheme
that we used is derived from the work on PICASSO by Mittelman et al.
(2003) which was shown to be very sensitive in subsequent studies by others
(Heger and Holm (2001); Rangwala and Karypis (2007)). Briefly, we aligned
sequences by computing an optimal alignment using an affine gap model
with aligned residues i and j in sequences X and Y , respectively, sco-
red using a combination of profile-to-profile scoring and secondary structure
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matching. The score is given by

S(Xi, Yj) =

20X
k=1

PSSMX(i, k)× PSFMY (j, k)

+

20X
k=1

PSSMY (j, k)× PSFMX(i, k)

+ wSSE

3X
k=1

SSEX(i, k)× SSEY (j, k),

(1)

where PSSM and PSFM are the position specific scoring and frequency
matrices, respectively and SSE is a position-specific matrix encoding the
secondary structure (i.e., H, E, C) associated with each position. For a
sequence with n residues, these matrices are of sizes n × 20, n × 20,
and n × 3, respectively. The parameter wSSE is the relative weighting
of the secondary structure score which is set to wSSE = 3 based on our
experience in Kauffman et al. (2008).

We obtained SSE matrices for target proteins by predicting their secon-
dary structure using YASSPP (Karypis (2006)). For each position, the
dimensions are the three-state predictions produced by YASSPP which mea-
sure the likelihood of that position to be in those states. For the template
proteins, since their secondary structure is already known, a straightforward
way of defining the SSE is for each position to assign 1 to the dimension
corresponding to its true state and 0 to the other dimensions. However, to
ensure that the secondary structure information utilized by the learner during
training is similar to that used during prediction, the SSE information for
the template proteins were encoded in the following way. First all the tem-
plate proteins were predicted using YASSPP. For the template positions in
a helix state, the average of the three-state YASSPP predictions over the
helices in all the templates was computed and used as the values for the cor-
responding columns of the SSE. Identical steps were taken for strand and
coil template residues.

In Kauffman et al. (2008), which explored homology models of protein-
ligand interaction sites, we found gap open and gap extension costs of 3.0
and 1.5 to work well for modelling the binding site and thus re-used these
alignment parameters.

We investigated three approaches for aligning the target’s profile against
the profiles of the templates, which are global, global end-space free, and
local alignments. We found local alignments to be the best in terms of overall
ROC on cross-validation. This is likely due to local alignments reporting
only the best matching target-template subsequences which can increase the
reliability of prediction.

We used the top-k scoring templates to make predictions on ligand-
binding residues. We investigated k ∈ {5, 10, 20, 30, 40, 50} and found
that k = 20 had the best performance in terms of overall ROC on cross
validation.

2.2.2 Prediction Score Weighting Since we used the top k ali-
gnments rather than all alignments above a threshold, properly weighting
the contribution of alignments becomes important. Templates that match
the target well should influence the prediction more than poor matches.
We accomplished this by weighting the contributions of aligned template
residues. The simplest way to weight sequences for the contribution to the
prediction was equally. We also explored a global weighting based on the
alignment score. Finally, local weighting assigned an individual weight to
each template residue based on the alignment score (with gaps) between tar-
get and template in a window around the target residue of interest. In all
weighting schemes, the weights of template residues associated with a target
residue were normalized to sum to one. If a negative weight occurred, as is
possible for alignment scores, all weights were shifted up so that the lowest
weight was equal to one before normalization was performed. The target
sequence binding predictions were made by summing the aligned positions
in the templates. Positive template residues added their weight to this sum

while negative residues and gaps added nothing. This results in a predic-
tion score between zero and one for each residue for each type of weighting
scheme. These are referred to as homology-based transfer scores (HTS). For
the local scheme, we examined windows of width w ∈ {3, 5, 7} and found
w = 7 to be most effective. Out of the three weighting schemes, the local
weighting scheme produced the best results.

2.3 LIBRUS: Combining SVM and Homology-based
Transfer

Direct prediction by SVMs and prediction by homology-based transfer uti-
lize training information in different ways to make their predictions. SVMs
utilize intrinsic features of the residue represented as PSSMs and SSEs
without any context for the residue within the whole protein nor any relation
of the containing protein to other proteins in the training set. Conversely,
homology-based transfer solely relies on the global context of the residue:
where it is located in alignments of the containing protein against other pro-
teins and how many ligand-binding residues align against it. The different
characteristics of the information utilized by the two approaches suggests
that their combination can lead to a better overall predictor.

To that end, we developed two methods for combining them. The first
computes the overall prediction as the weighted linear combination of the
predictions made by the two methods while the second approach couples the
information that they utilize in a support vector machine.

For the linear combination of methods, we used a grid search to determine
which weights, between 0.1 and 7.5, would optimize ROC on the training
set. We found weighting the SVM by 0.5 and the HTS scores by 5.5 gave the
best overall ROC.

For the SVM-based combination, we trained on the PSSMs and SSEs of
the direct prediction method and the homology-based transfer scores of the
HT method. The resulting hybrid predictor utilized a total of 9× (20 + 3 +

1) = 216 features. As in Section 2.1, we weighted PSSM, SSE, and HTS
features to have a equal average norms. The weights are shown in Table 1.

We will refer to the method that uses the SVM-based combination as
LIBRUS and as the experiments reported later in Section 4 show, it achieves
the best overall results.

3 MATERIALS

3.1 Data Sets
The methods were evaluated using two different datasets. The first data-
set, referred to as DS1, consists of 885 protein chains (268,699 residues)
that were derived from the RCSB Protein Data Bank in October of 2008
(PDB, Berman et al. (2000)). The set of proteins in DS1 were selected so
that they satisfy the following constraints: (i) every structure has better than
2.5 Å resolution, (ii) is longer than 100 residues, (iii) has an unbroken back-
bone, (iv) has at least five residues in contact with a ligand with each ligand
having at least eight heavy atoms, and (v) no two have above a 30% sequence
identity according to NCBI’s blastclust program.

The second dataset, referred to as DS2, consists of 564 proteins (136,316
residues) that were derived from the set of proteins used in the evaluation of
FINDSITE after eliminating from it any proteins with 35% identity or better
to any sequence in DS1 according to BLAST. These proteins were eliminated
to ensure that we can fairly compare the performance of our methods on DS2
using DS1 as the training set.

Ligands in our datasets were small molecules in contact with proteins
identified by scanning the PDB using the ‘has ligand’ search option. DNA,
RNA, and other large proteins were excluded as candidate ligands as were
ligands with fewer than eight heavy (non-hydrogen) atoms. We required
proteins to have ligand-binding residues with a heavy atom within 5 Å of
a ligand. By this definition, 8.6% of DS1 are the ligand-binding residues
(positive class) and 9.2% of the DS2 are ligand-biding residues. In-house
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software was developed to identify ligands and ligand-binding residues and
is available from the web address mentioned in the abstract.

Protein sequences were derived directly from the structures using in-
house software. When nonstandard amino acids appeared in the sequence,
the three-letter to one-letter conversion table from Astral (Chandonia et al.
(2002)) version 1.55 was used to generate the sequence. When multiple
chains occurred in a PDB file, the chains were treated separately from one
another. Profiles for each sequence were generated using PSI-BLAST ver-
sion 2.2.13 (Altschul et al. (1997)) and the NCBI NR database (version
2.2.12 with 2.87 million sequence, downloaded August 2005). PSI-BLAST
produces a position specific scoring matrix (PSSM) and position specific
frequency matrix (PSFM) for a query protein, both of which are employed
for our sequenced-based prediction and alignment methods. Three iterati-
ons were used in PSI-BLAST with the default 0.002 e-value threshold for
inclusion in the profile and default 10.0 expectation value (options -j 3
-h 2e-3 -e 10).

Secondary structure was predicted for each protein of DS1 and DS2 using
YASSPP (Karypis (2006)). YASSPP produces a vector of three scores, one
for each of the three types of secondary structure, with high positive scores
indicating confidence in that class. These scores were used as the secon-
dary structure prediction features (SSE). On this data, YASSPP predicted
the correct secondary structure for 83% of the residues in our data set.

3.2 Cross-Validation
The targets of DS1 were split into three sets, set one to three, of roughly
equal size and a three-fold cross-validation was performed to assess how
well the learner generalizes. In each step, two sets of the data were used to
learn a model and predictions were made on the remaining set of targets.
This generated a single prediction of binding/non-binding for each residue
which was subsequently used in evaluation.

To generate homology-based transfer scores, all targets in set one used
sets two and three as the template database and similarly for sets two and
three. This amounts to having two thirds of the data as templates for trai-
ning with remaining third as the test set. This allows us to directly compare
the performance achieved by the three methods (direct SVM predictions,
homology-based transfer, and LIBRUS) as all methods use identical training
and testing data.

The same cross-validation approach was also used to compute the pre-
dictions for the method that uses a linear weighted combination of the
predictions made by the direct SVM and the homology-based transfer
approaches (Section 2.3). Specifically, to determine the predictions for set
one, a grid search was performed to learn the combination weights that
optimizes ROC on the training set (sets two and three). The combination
parameters were then used to compute the predictions for set one. The same
was done to predict sets two and three. In each case, the same weights of
0.5 on the direct SVM predictions and 5.5 on the homology-based transfer
predictions were determined.

3.3 SVM Implementation
We chose the SVMlight support vector machine implementation of Joachims
(1999) to do prediction. For the kernel, we selected the radial basis function
which has a parameter γ. In addition, SVMs have a parameter c representing
the trade-off of training error to margin width which must be set. SVMlight
also allows for correction of skewed training data by allowing the cost of
misclassifying positive examples to be different than for negative examples,
accessed through a parameter j. After tuning parameters on a small subset
of the targets, we selected γ = 1 × 10−6, c = 10 and j = 10 as good
candidates for the full model.

3.4 FINDSITE Predictions
We compared our hybrid method, LIBRUS, to FINDSITE, a procedure
developed by Brylinski and Skolnick (2008) to predict ligand-binding sites,
ligand-binding residues, and other aspects of protein-ligand interactions. For

our comparison, we employed predictions made by FINDSITE using enti-
rely predicted structural information for the target as our method does not
assume the true structure is available. These predictions were provided by
the authors and were made according to their work in Brylinski and Skol-
nick (2008). Predictions based on the true structure of the target are superior
to those based on predicted structures but cannot be made when the true
structure is unavailable.

FINDSITE identifies a number of predicted binding sites with associated
binding residues for each target. The prediction values for these correspond
to the fraction of template structure residues that were identified as ligand
binding and aligned against the target residue. We used up to the first five
predicted binding sites in our comparison. Some residues appear as part of
multiple binding sites in the FINDSITE predictions and have different scores
associated with them in the different sites. In those cases, we used the score
from the first binding site a residue occurred in as this was typically the
largest and most well defined predicted binding site.

FINDSITE uses the nonredundant PDB for a template database. Tem-
plates with 35% or better identity to a given target are discarded. This still
encompasses a very large number of potential templates. To compare, we
used all 885 proteins in DS1 as both the training set for the SVM part of
LIBRUS and the template database for the homology-based transfer part of
LIBRUS.

Note that the definition of a binding residue in FINDSITE is produced by
the LPC program of Sobolev et al. (1999). This is a slightly different defi-
nition than ours which was based solely on distance. However, there is 98%
agreement between LPC and our distance definition on the class division
of the DS2 dataset so we used the distanced-based definition for both our
methods and FINDSITE in the comparison.

3.5 Combined LIBRUS and FINDSITE Predictions
We also investigated the performance gains that can be achieved by com-
bining LIBRUS with FINDSITE. We did this by making predictions on the
DS2 dataset using a linear combination of the prediction values of LIBRUS
and FINDSITE. DS2 was split into three folds. To determine the combina-
tion weights for fold one, we used the predictions of LIBRUS and FINDSITE
on folds two and three and performed a grid search to optimize ROC. The
same was done to for folds two (which used one and three for tuning) and
three (which used one and two). In each case, the weights scale the predicti-
ons from the two methods to a similar range and weight them appropriately
for combination. The overall results are reported in Section 4.3.

3.6 Evaluation Metrics
We evaluated the performance of the different methods using the receiver
operating characteristic (ROC) curve (Fawcett (2004)). This is obtained by
varying the threshold at which residues are considered ligand binding or not
according to value provided by the predictor. In the case of the SVM predic-
tions, a continuous prediction value is produced which is the distance from
a hyperplane optimized to separate the positive and negative classes. This
is the threshold which is varied to produce the ROC curve. For homology-
based transfer scores, the threshold to be assigned a ligand binding residue
is varied to produce the ROC curve. The area under the this curve, referred
to as ROC, is summarizes the predictor behaviour: a random predictor has
ROC = 0.5 while a perfect predictor has ROC = 1.0 so that a larger
ROC indicates better predictive power.

For any binary predictor, the number of true positives (TP), false positi-
ves (FP), true negatives (TN), and false negatives (FN) determines standard
classification statistics which we use later for comparison. These are

Precision =
TP

TP + FP
, and (2)

Recall = Sensitivity =
TP

TP + FN
. (3)
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Fig. 1. Comparison of some of the sequence-only predictors developed in
this work on the DS1 dataset. (a) ROC curves and (b) Precision vs. Recall.

Fischer et al. (2008) noted in their study of functional residue predictions
that analyzing only an ROC curve can be misleading in terms of the perfor-
mance of the predictor. As an alternative, they present precision vs. recall
plots (called precision-sensitivity plots in their work, referred to as PR cur-
ves here) as a means to compare performance. We provide this measure as
well both graphically and summarized by the area under the PR curve (PR).

Welch’s t-test is used to assess the statistical significance of performance.
This test assumes the two populations are normally distributed with potenti-
ally unequal variance and calculates a p-value that the mean of one is higher
than the other. In our case, this corresponds to one method outperforming
another. Welch’s t-test was used in favor of Student’s t-test as the latter
assumes equal variance of the populations which may not be the case for
the methods under consideration.

4 RESULTS
4.1 Cross-Validation Results on the DS1 Dataset
We compared the three methods described in Section 2 on the
DS1 dataset. Section 3.2 describes how the data was split to deter-
mine training and testing sets for cross-validation. The performance
achieved by the methods is shown in Table 2. The ROC and PR
curves of some of these methods are shown in Figure 1.

Comparing the best performance achieved by each of the three
classes of methods, we see that the methods that combine sequence-
derived features along with homology-based transfer information
achieve the best overall results. Among the two methods that fall in
that category, we see that LIBRUS, which uses SVM to combine this
information, achieves the best overall results. Specifically, it achie-
ves an overall ROC = 0.8334, which is better than the ROCs of
0.7737 and 0.7849 that were obtained by the SVM and homology-
based transfer methods, respectively. Its performance in terms of the
overall PR is also better, achieving a PR = 0.4807 compared to
the PRs of 0.2942 and 0.4516 achieved by the other two classes of
methods. These relative performance gains also hold when the expe-
riments are evaluated in terms of the average per-protein ROC and
PR. Also, the performance of the other method within this class,
which combines the individual predictions using a linear weighted
combination also performs quite well, further re-enforcing the fact
that coupling the two sources of information lead to a better overall
predictor.

Comparing the other two classes of methods, we see that
homology-based transfer outperforms the direct SVM-based
approach that utilizes PSSM- and SSE-based features. The perfor-
mance difference between these two schemes is more pronounced
when the methods are evaluated in terms of their PR (both over-
all and per-protein). Finally, the results of Table 2 show that when
predicted secondary structure information is used to augment the
PSSM-based features, the performance of the SVM-based method
improves. This fact is in agreement with a number of studies that
have shown that the inclusion of this type of information helps
the performance of supervised learning methods (Chen and Kurgan
(2007); Ginalski et al. (2003)).

4.2 Comparison to FINDSITE
We compared FINDSITE and LIBRUS predictions on the proteins
in dataset DS2. FINDSITE predictions were provided by its authors
(Section 3.4) while LIBRUS was trained on all proteins in dataset
DS1 which is sequence independent from DS2 (Section 3.1). Table 3
summarizes their performance while Figure 2 plots the ROC and
PR curves obtained. Note that Tables 3–4 and Figure 2 also contain
results for the scheme that combines the LIBRUS and FINDSITE
predictions, which are discussed later in Section 4.3. Table 4 shows
the results of a paired Welch’s t-test comparing the methods. Com-
parisons on both ROC and PR are done in parts (a) and (b) of
Table 4 respectively.

Examining the predictions of the various versions of FINDSITE
and LIBRUS, in Table 3 we see that their overall prediction perfor-
mance is quite close. The FINDSITE results using one site achieve
the best PR (0.4955), whereas the FINDSITE results using three
sites achieve the best ROC (0.8216). However, compared to the for-
mer method, LIBRUS achieves a better ROC (0.8169 vs 0.8088),
whereas compared to the latter method, LIBRUS achieves a bet-
ter PR (0.4565 vs 0.3760). The difference between FINDSITE and
LIBRUS is somewhat more consistent when the per-protein results
are considered, in which case the FINDSITE results using two sites
lead to average ROC and PR (0.8043 and 0.4360) that are better
than those produced by LIBRUS (0.7982 and 0.4165).

Table 4 (a) shows that there is no statistical difference between
LIBRUS and FINDSITE in terms of ROC performance. This is
seen in the LIB row and column of the table in which no small
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Table 2. Cross validation results on the DS1 dataset.

Overall Per Protein
Method ROC PR µROC σROC µPR σPR

SVM with PSSM 0.7545 0.2637 0.7487 0.1492 0.2930 0.1722
SVM with PSSM, SSE 0.7737 0.2942 0.7648 0.1532 0.3177 0.1886

Homology Transfer 0.7845 0.4516 0.7581 0.1811 0.4024 0.2971

Linearly Combined SVM and HTS 0.8259 0.4792 0.8030 0.1666 0.4342 0.2838
SVM with PSSM, SSE, HTS (LIBRUS) 0.8334 0.4807 0.8066 0.1686 0.4374 0.2809

Three-way cross validation was used on the set of 885 proteins of the DS1 dataset. The overall area under curve is given for ROC and
precision/recall (PR) curves in the first two columns. The per protein averages, µ, and standard deviation, σ, for these two statistics are
also given.

Table 3. Results on the DS2 dataset.

Overall Per Protein
Method ROC PR µROC σROC µPR σPR

FINDSITE 1 Site 0.8088 0.4955 0.7981 0.2040 0.4841 0.2978
FINDSITE 2 Sites 0.8187 0.4258 0.8043 0.1935 0.4360 0.2697
FINDSITE 3 Sites 0.8216 0.3760 0.8034 0.1852 0.3957 0.2436
FINDSITE 4 Sites 0.8182 0.3370 0.7970 0.1808 0.3620 0.2228
FINDSITE 5 Sites 0.8155 0.3074 0.7918 0.1716 0.3340 0.2055

SVM with PSSM, SSE, HTS (LIBRUS) 0.8169 0.4565 0.7982 0.1600 0.4165 0.2550

Combined FINDSITE/LIBRUS prediction 0.8617 0.5618 0.8410 0.1741 0.5324 0.2991

The performance of FINDSITE considering the first 5 binding sites and the best SVM method, LIBRUS, are shown. The dataset comprised 564
proteins from the FINDSITE benchmark that were sequence independent from the DS1 dataset that was used to train LIBRUS. The last row shows
the results obtained by linearly combining the predictions produced by LIBRUS and FINDSITE 1 Site. For column descriptions, see Table 2.

p-values occur. This lack of significance is interesting as it shows
sequence and structure carry approximately equal amounts of infor-
mation that may be used to identify ligand-binding residues. In
terms of PR (Table 4 (b)), examining a single FINDSITE site out-
performs LIBRUS at a statistically significant level (p = 0.002)
while examining two FINDSITE sites is not significantly better than
LIBRUS (p = 0.106). LIBRUS is nearly better than FINDSITE
with three sites at a significant level (p = 0.081), and better than
four and five sites (p = 0.000 for both).

Figure 2 shows the ROC and PR plots graphically. According
to part (a), the strength of LIBRUS is at higher false positive
rates where it exceeds the TPR of FINDSITE. At low FPR, FIND-
SITE dominates LIBRUS with the crossing point at FPR=0.35 and
FPR=0.40 for one and two sites respectively. In part (b), LIBRUS
is seen to have better precision at very low recall, but falls below
FINDSITE at 11% recall for one site and at 34% recall for two sites.
At 50% recall, LIBRUS achieves 40% precision while FINDSITE
achieves 55% and 49% precision for one and two sites respectively.

One aspect that we have not touched on empirically so far is the
time required to make predictions. According to communications
with the FINDSITE authors, running their program for a protein

takes from 30 minutes to several hours. This is not surprising as
FINDSITE needs to initially predict the structure of the protein
and also identify good templates from their database. The amount
of time required by LIBRUS to predict the ligand-binding resi-
dues of a protein is much lower. Based on the average performance
over many proteins, LIBRUS predictions can be made in under 10
minutes which encompasses profile generation, secondary structure
prediction, alignment to the database, and final SVM prediction. A
larger template database will lengthen this process somewhat, but
we expect it to remain faster.

4.3 Combined LIBRUS and FINDSITE Results
While analyzing the nature of the predictions produced by FIND-
SITE and LIBRUS, we noticed that, though there is agreement on
many of the residues they identified as being ligand-binding, there
are enough differences to merit further inquiry. Figure 3 illustra-
tes these differences by plotting the prediction scores produced by
LIBRUS and FINDSITE (using one site) for the positive instances
(ligand-binding residues) and the negative instances (non-binding
residues). In Figure 3(a) (positive class) we see that there are two
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Table 4. Statistical comparison of methods on the DS2 dataset.

(a) Per Protein ROC p-values

FS 1 FS 2 FS 3 FS 4 FS 5 LIB. Comb.

FS 1 0.500 0.701 0.675 0.464 0.289 0.503 1.000
FS 2 0.299 0.500 0.466 0.257 0.126 0.281 1.000
FS 3 0.325 0.534 0.500 0.281 0.140 0.308 1.000
FS 4 0.536 0.743 0.719 0.500 0.310 0.545 1.000
FS 5 0.711 0.874 0.861 0.690 0.500 0.740 1.000
LIB. 0.496 0.719 0.692 0.455 0.260 0.500 1.000
Comb. 0.000 0.000 0.000 0.000 0.000 0.000 0.500

(b) Per Protein PR p-values

FS 1 FS 2 FS 3 FS 4 FS 5 LIB. Comb.

FS 1 0.500 0.002 0.000 0.000 0.000 0.000 0.997
FS 2 0.998 0.500 0.004 0.000 0.000 0.106 1.000
FS 3 1.000 0.996 0.500 0.008 0.000 0.919 1.000
FS 4 1.000 1.000 0.992 0.500 0.014 1.000 1.000
FS 5 1.000 1.000 1.000 0.986 0.500 1.000 1.000
LIB. 1.000 0.893 0.081 0.000 0.000 0.500 1.000
Comb. 0.003 0.000 0.000 0.000 0.000 0.000 0.500

Performance of the methods is compared via p-values on Welch’s t-test. For the
entry at row i, column j of the table, the alternate hypothesis that Method i has a
higher mean than method j is tested as an alternative to the methods having equal
means. A low p-value indicates that method i has better performance than method j.
Part (a) of the table shows performance comparisons in terms of per protein ROC

while part (b) shows per protein PR comparisons. FINDSITE for various number
of sites are reported in the FS row/columns, LIBRUS in LIB, and the combined
FINDSITE/LIBRUS predictor in Comb.

clusters, one on the right and one on the left of the plot. The clu-
ster on the right contains residues that FINDSITE predicts correctly,
whereas the cluster on the left contains residues that FINDSITE
mispredicts. The predictions produced by LIBRUS are, to a large
extent, in agreement for the right cluster (even though LIBRUS
mispredicts some of these residues) but are split for the left cluster.
LIBRUS predicts correctly (i.e., positive SVM score) a noticea-
ble fraction of the residues that are falsely predicted as negative
by FINDSITE. Overall, the Pearson correlation coefficient between
FINDSITE predictions and LIBRUS predictions is 0.48.

Figure 4(a) illustrates how the above trend carries over to the
whole protein. It plots the per protein ROCs of LIBRUS and
FINDSITE with one site on DS2 against one another. The greatest
density lies in the upper right corner where both methods achieve
high ROCs. Points below the main diagonal indicate LIBRUS
outperforms FINDSITE while points above indicate the opposite.
The large number of off-diagonal points shows that if information
from both predictors can be exploited, overall predictions may be
improved.

Motivated by the above differences, we developed a method that
linearly combines the prediction scores of LIBRUS and FINDSITE.
The results of this combined predictor are reported at the bottom of
Table 3, and in Figure 2. The combined predictor achieves higher
overall ROC and PR than either approach on its own. Also notable
is the superior per protein prediction rate of both ROC and PR
for the combined method which is statistically significant (Table 4,
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Fig. 2. Overall comparison of FINDSITE to the sequence-only SVM learner
developed in this work on the 564 independent proteins from the FINDSITE
benchmark. (a) ROC curves of FINDSITE based on the top binding sites, the
SVM approach, and the combined predictor. (b) Precision vs. Recall of the
methods.

row/column Comb). This improvement is apparent in Figure 4 (b)
in which the combined method achieves performance close to the
maximum of both LIBRUS and FINDSITE.

4.4 Comparison to Other Methods
Fischer et al. (2008) noted that all methods they tested were below
30% precision at 50% recall. It can be seen from Figure 1(b) that this
is the case for our SVM predictions using PSSM and SSE. Howe-
ver, at 50% recall, homology-based transfer on its own achieves
38% precision, whereas LIBRUS achieves a precision of 45% at
50% recall. We obtained evaluation data from Fischer et al. (2008)
and calculated that their FRcons method achieved ROC = 0.85
and PR = 0.32 on their CSA-ligand dataset, the closest evalua-
ted dataset to our own, whereas the corresponding values achieved
by LIBRUS where ROC = 0.83 and PR = 0.48. Assuming
the trend holds across the different data sets, the use of sequence-
derived features and features based on homology-based transfer
scores significantly boosts the precision/recall trade off at nearly the
same ROC performance.
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Fig. 3. Heatmap illustrating FINDSITE and LIBRUS values on the posi-
tive class (a) and the negative class (b). The positive LIBRUS predictions
on some mispredicted FINDSITE residues indicates LIBRUS may provide
additional information in some cases. The correlations between FINDSITE
and LIBRUS are 0.52 on the positive class, 0.27 on the negative class, and
0.48 overall. Note that residues which had FINDSITE predictions of zero
were eliminated as they dominate the nonzero predictions.

5 CONCLUSION
In this work we have shown that the combination of machine
learning on protein sequence features (PSSMs and SSEs) and
homology-based transfer scores results in a powerful binding-
residue predictor. Previous efforts have explored these two approa-
ches separately but here we find they provide complementary signals
which we exploit in our sequence-only prediction method LIBRUS.

We compared LIBRUS to FINDSITE, a current method for bin-
ding residue identification which employs a large database of known
structures in order to make predictions. LIBRUS predictions are
quite competitive with FINDSITE despite using only sequence fea-
tures. Additionally, LIBRUS has a comparatively short run time in
part due to the focused nature of its prediction.
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Fig. 4. (a): LIBRUS vs. FINDSITE. The abundance of off-diagonal entries
indicate LIBRUS and FINDSITE outperform on another on certain proteins
and must be exploiting different signals for those proteins. (b) The ROC

of the combined method is plotted against the maximum of LIBRUS and
FINDSITE and achieves nearly the same performance.

Combining LIBRUS and FINDSITE predictions achieved better
predictive power than either method on its own. This superior per-
formance indicates that the sequence- and structure-based methods
are exploiting different types of signal and suggests future methods
should focus on combining intrinsic sequence features, sequence
homology information, and structural relationships. It is an open
question whether this can be accomplished without incurring the
computational cost present in FINDSITE. For the present, LIBRUS
provides a good alternative to structure-based methods as it achieves
comparable accuracy for a very modest runtime.
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