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Abstract

Over the years, a variety of algorithms for �nding frequent itemsets in very large transaction databases have
been developed. The key feature in most of these algorithms is that they use a constant support constraint
to control the inherently exponential complexity of the problem. In general, itemsets that contain only a few
items will tend to be interesting if they have a high support, whereas long itemsets can still be interesting even
if their support is relatively small. Ideally, we desire to have an algorithm that �nds all the frequent itemsets
whose support decreases as a function of their length. In this paper we present an algorithm called LPMiner,
that �nds all itemsets that satisfy a length-decreasing support constraint. Our experimental evaluation shows
that LPMiner is up to two orders of magnitude faster than the FP-growth algorithm for �nding itemsets at a
constant support constraint, and that its runtime increases gradually as the average length of the transactions
(and the discovered itemsets) increases.

1 Introduction

Data mining research during the last eight years has led to the development of a variety of algorithms for �nding
frequent itemsets in very large transaction databases [1, 2, 4, 9]. These itemsets can be used to �nd association
rules or extract prevalent patterns that exist in the transactions, and have been e�ectively used in many di�erent
domains and applications.

The key feature in most of these algorithms is that they control the inherently exponential complexity of
the problem by �nding only the itemsets that occur in a su�ciently large fraction of the transactions, called the
support. A limitation of this paradigm for generating frequent itemsets is that it uses a constant value of support,
irrespective of the length of the discovered itemsets. In general, itemsets that contain only a few items will tend
to be interesting if they have a high support, whereas long itemsets can still be interesting even if their support
is relatively small. Unfortunately, if constant-support-based frequent itemset discovery algorithms are used to �nd
some of the longer but infrequent itemsets, they will end up generating an exponentially large number of short
itemsets. Maximal frequent itemset discovery algorithms [9] can potentially be used to �nd some of these longer
itemsets, but these algorithms can still generate a very large number of short infrequent itemsets if these itemsets
are maximal. Ideally, we desire to have an algorithm that �nds all the frequent itemsets whose support decreases as
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a function of their length. Developing such an algorithm is particularly challenging because the downward closure
property of the constant support constraint cannot be used to prune short infrequent itemsets.

In this paper we present another property, called smallest valid extension (SVE), that can be used to prune the
search space of potential itemsets in the case where the support decreases as a function of the itemset length. Using
this property, we developed an algorithm called LPMiner, that �nds all itemsets that satisfy a length-decreasing
support constraint. LPMiner uses the recently proposed FP-tree [4] data structure to compactly store the database
transactions in main memory, and the SVE property to prune certain portions of the conditional FP-trees, that are
being generated during itemset discovery. Our experimental evaluation shows that LPMiner is up to two orders of
magnitude faster than the FP-growth algorithm for �nding itemsets at a constant support constraint, and that its
runtime increases gradually as the average length of the transactions (and the discovered itemsets) increases.

The rest of this paper is organized as follows. Section 2 provides some background information and related
research work. Section 3 describes the FP-growth algorithm [4], on which LPMiner is based. In Section 4, we
describe how the length-decreasing support constraint can be exploited to prune the search space of frequent
itemsets. The experimental results of our algorithm are shown in Section 5, followed by the conclusion in Section 6.

2 Background and Related Works

The problem of �nding frequent itemsets is formally de�ned as follows: Given a set of transactions T , each containing
a set of items from the set I , and a support �, we want to �nd all subsets of items that occur in at least �jT j
transactions. These subsets are called frequent itemsets.

Over the years a number of e�cient algorithms have been developed for �nding all frequent itemsets. The
�rst computationally e�cient algorithm for �nding itemsets in large databases was Apriori [1], which �nds frequent
itemsets of length l based on previously generated (l�1)-length frequent itemsets. The key idea of Apriori is to use
the downward closure property of the support constraint to prune the space of frequent itemsets. The FP-growth
algorithm [4] �nds frequent itemsets by using a data structure called FP-tree that can compactly store in memory
the transactions of the original database, thus eliminating the need to access the disks more than twice. Another
e�cient way to represent transaction database is to use vertical tid-list database format. The vertical database
format associates each item with all the transactions that include the item. Eclat in [7] uses this data format to
�nd all frequent itemsets.

Even though to our knowledge no work has been published for �nding frequent itemsets in which the support
decreases as a function of the length of the itemset, there has been some work in developing itemset discovery
algorithms that use multiple support constraints. Liu et al. [5] presented an algorithm in which each item has
its minimum item support (or MIS). The minimum support of an itemset is the lowest MIS among those items in
the itemset. By sorting items in ascending order of their MIS values, the minimum support of the itemset never
decreases as the length of itemset grows, making the support of itemsets downward closed. Thus the Apriori-based
algorithm can be applied. Wang et al. [6] allow a set of more general support constraints. In particular, they
associate a support constraint for each one of the itemsets. By introducing a new function called Pminsup that has
\Apriori-like" property, they proposed an Apriori-based algorithm for �nding the frequent itemsets. Finally, Cohen
et al. [3] adopt a di�erent approach in that they do not use any support constraint. Instead, they search for similar
itemsets using probabilistic algorithms, that do not guarantee that all frequent itemsets can be found.

3 FP-growth Algorithm

In this section, we describe how the FP-growth algorithm works because our approach is based on this algorithm.
The description here is based on [4].

The key idea behind FP-growth is to use a data structure called FP-tree to obtain a compact representation
of the original transactions so that they can �t into the main memory. As a result, any subsequent operations
that are required to �nd the frequent itemsets can be performed quickly, without having to access the disks. The
FP-growth algorithm achieves that by performing just two passes over the transactions. Figure 1 shows how the
FP-tree generation algorithm works given an input transaction database that has �ve transactions with a total
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Figure 1: Flow of FP-tree generation

of six di�erent items. First, it scans the transaction database to count how many times each item occurs in the
database to get an \Item Support Table" (step (a)). The \Item Support Table" has a set of (item-name, support)
pairs. For example, item A occurs twice in the database, namely in a transaction with tid 1 and another one with
tid 5; therefore its support is 2=5 = 40%. In step (b), those items in the Item Support Table are sorted according
to their support. The result is stored in item-name �eld of Node-Link header table NL. Notice that item F is not
included in NL because the support of item F is less than the minimum support constraint 40%. In step (c), items
in each transaction in the input transaction database are sorted in the same order as items in the Node-Link header
table NL. While transaction tid 5 is sorted, item F is discarded because the item is infrequent and has no need of
consideration. In step (d), the FP-tree is generated by inserting those sorted transactions one by one. The initial
FP-tree has only its root. When the �rst transaction is inserted, nodes that represent item B, C, E, A, and D
are generated, forming a path from the root in this order. The count of each node is set to 1 because each node
represents only one transaction (tid 1) so far. Next, when the second transaction is inserted, a node representing
item B is not generated. Instead, the node already generated is reused. In this case, because the root node has
a child that represents item B, the count of the node is incremented by 1. As for item E, since there is no child
representing item E under the current node, a new node with item-name E is generated as a child of the current
node. Similar processes are repeated until all the sorted transactions are inserted into the FP-tree.

Once an FP-tree is generated from the input transaction database, the algorithm mines frequent itemsets from
the FP-tree. The algorithm generates itemsets from shorter ones to longer ones adding items one by one to those
itemsets already generated. It divides mining the FP-tree into mining smaller FP-trees, each of which is based on
an item on the Node-Link header table in Figure 1. Let us choose item D as an example. For item D, we generate a
new transaction database called conditional pattern base. Each transaction in the conditional pattern base consists
of items on the paths from parent nodes whose child nodes have item-name D to the root node. The conditional
pattern base for item D is shown in Figure 2. Each transaction in the conditional pattern base also has its count
of occurrence corresponding to the count of the node with item-name D in the original FP-tree. Note that item D
itself is a frequent itemset consisting of one item. Let us call this frequent itemset \D" a conditional pattern. A
conditional pattern base is a set of transactions each of which includes the conditional pattern. What we do next is
to forget the original FP-tree in Figure 1 for a while and then focus on the conditional pattern base we got just now
to generate frequent itemsets that include this conditional pattern \D". For this purpose, we generate a smaller
FP-tree than the original one, based on the conditional pattern \D". This new FP-tree, called conditional FP-tree,
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is generated from the conditional pattern base using the FP-tree generation algorithm again. If the conditional
FP-tree is not a single path tree, we divide mining this conditional FP-tree to mining even smaller conditional
FP-trees recursively. This is repeated until we obtain a conditional FP-tree with only a single path. During those
recursively repeated processes, all selected items are added to the conditional pattern. Once we obtain a single
path conditional FP-tree like the one in Figure 2, we generate all possible combinations of items along the path
and combine each of these sets of items to the conditional pattern. For example, from those three nodes in the
conditional FP-tree in Figure 2, we have 23 = 8 combinations of item B, C, and E: \ " (no item), \B", \C", \E",
\BC", \CE", \EB", and \BCE". Then we obtain frequent itemsets based on conditional pattern base \D": \D",
\DB", \DC", \DE", \DBC", \DCE", \DEB", and \DBCE".

4 LPMiner Algorithm

LPMiner is an itemset discovery algorithm, based on the FP-growth algorithm, which �nds all the itemsets that
satisfy a particular length-decreasing support constraint f(l); here l is the length of the itemset. More precisely,
f(l) satis�es f(la) � f(lb) for any la; lb such that la < lb. The idea of introducing this kind of support constraint is
that by using a support that decreases with the length of the itemset, we may be able to �nd long itemsets, that
may be of interest, without generating an exponentially large number of shorter itemsets. Figure 3 shows a typical
length-decreasing support constraint. In this example, the support constraint decreases linearly to the minimum
value and then stays the same for itemsets of longer length. Our problem is restated as �nding those itemsets
located above the curve determined by length-decreasing support constraint f(l).

A simple way of �nding such itemsets is to use any of the traditional constant-support frequent itemset discovery
algorithms, in which the support was set to minl>0 f(l), and then discard the itemsets that do not satisfy the length-
decreasing support constraint. This approach, however, does not reduce the number of infrequent itemsets being
discovered, and as our experiments will show, requires a large amount of time.

As discussed in the introduction, �nding the complete set of itemsets that satisfy a length-decreasing support
function is particularly challenging because we cannot use the downward closure property of the constant support
frequent itemsets. This property states that in order for an itemset of length l to be frequent, all of its subsets
have to be frequent as well. As a result, once we �nd that an itemset of length l is infrequent, we know that
any longer itemsets that include this particular itemset cannot be frequent, and thus eliminate such itemsets from
further consideration. However, because in our problem the support of an itemset decreases as its length increases,
an itemset can be frequent even if its subsets are infrequent.

A key property, regarding the itemset whose support decreases as a function of their length, is the following.
Given a particular itemset I with a support of �I , such that �I < f(jI j), then f�1(�I ) = min(fljf(l) = �Ig) is
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the minimum length that an itemset I 0 such that I 0 � I must have before it can potentially become frequent.
Figure 4 illustrates this relation graphically. The length of I 0 is nothing more than the point at which a line
parallel to the x-axis at y = �I intersects the support curve; here, we essentially assume the best case in which
I 0 exists and it is supported by the same set of transactions as its subset I . We will refer to this property as the
smallest valid extension property or SVE for short.

LPMiner uses this property as much as it can to prune the conditional FP-trees, that are generated during the
itemset discovery phase. In particular, it uses three di�erent pruning methods that, when combined, substantially
reduce the search space and the overall runtime. These methods are described in the rest of this section.

4.1 Transaction Pruning, TP

The �rst pruning scheme implemented in LPMiner uses the smallest valid extension property to eliminate entire
candidate transactions of a conditional pattern base. Recall from Section 3 that, during frequent itemset generation,
the FP-growth algorithm builds a separate FP-tree for all the transactions that contain the conditional pattern
currently under consideration. Let CP be that conditional pattern, jCP j be its length, and �(CP ) be its support.
If CP is infrequent, we know from the SVE property that in order for this conditional pattern to grow to something
indeed frequent, it must have a length of at least f�1(�(CP )). Using this requirement, before building the FP-
tree corresponding to this conditional pattern, we can eliminate any transactions whose length is shorter than
f�1(�(CP )) � jCP j, as these transactions cannot contribute to a valid frequent itemset in which CP is part of it.
We will refer to this as the transaction pruning method and denote it by TP.

We evaluated the complexity of this method in comparison with the complexity of inserting a transaction to a
conditional pattern base. There are three parameters we have to know to prune a transaction: the length of each
transaction being inserted, f�1(�(CP )), and jCP j. The length of each transaction is calculated in a constant time
added to the original FP-growth algorithm, because we can count each item when the transaction is actually being
generated. As f�1(�(CP )) and jCP j are common values for all transactions in a conditional pattern base, these
values need to be calculated only once for the conditional pattern base. It takes a constant time added to the original
FP-growth algorithm to calculate jCP j. As for f�1(�(CP )), evaluating f�1 takes O(log(jI j)) to execute binary
search on the support table determined by f(l). Let cpb be the conditional pattern base and m =

P
tran2cpb jtranj.

The complexity per inserting a transaction is O(log(jI j)=m). Under an assumption that all items in I are contained
in cpb, this value is nothing more than O(1). Thus, the complexity of this method is just a constant time per
inserting a transaction.
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4.2 Node Pruning, NP

The second pruning method focuses on pruning certain nodes of a conditional FP-tree, on which the next conditional
pattern base is about to be generated. Let us consider a node v of the FP-tree. Let I(v) be the item stored at this
node, �(I(v)) be the support of the item in the conditional pattern base, and h(v) be the height of the longest path
from the root through v to a leaf node. From the SVE property we know that the node v will contribute to a valid
frequent itemset if and only if

h(v) + jCP j � f�1(�(I(v))) (1)

where jCP j is the length of conditional pattern of the current conditional FP-tree. The reason that equation (1) is
correct is because, among the transactions that go through node v, the longest itemset that I(v) can participate in
has a length of h(v). Now, if the support of I(v) is small such that it requires an itemset whose length f�1(�(I(v)))
is greater than h(v) + jCP j, then that itemset cannot be supported by any of the transactions that go through
node v. Thus, if equation (1) does not hold, node v can be pruned from the FP-tree. Once node v is pruned, then
�(I(v)) will decrease as well as the height of the nodes through v, possibly allowing further pruning. We will refer
to this as the node pruning method, or NP for short.

A key observation to make is that both the TP and NP methods can be used together as each one of them
prunes portions of the FP-tree that the other one does not. In particular, the NP methods can prune a node in a
path that is longer than f�1(�(CP )) � jCP j, because the item of that node has lower support than CP . On the
other hand, TP reduces the frequency of some itemsets in the FP-tree by removing entire short transactions. For
example, consider two transactions; (A, B, C, D) and (A, B). Let's assume that f�1(�(CP ))� jCP j = 4, and each
one of the items A,B,C,D has a support equal to that of CP . In that case, the NP will not remove any nodes,
whereas TP will eliminate the second transaction.

In order to perform the node pruning, we need to compute the height of each node and then traverse each
node v to see if it violates equation (1). If it does, then the node v can be pruned, the height of all the nodes whose
longest path goes through v must be decremented by 1, and the support of I(v) needs to be decremented to take
account of the removal of v. Every time we make such changes in the tree, nodes that could not have been pruned
before may now become eligible for pruning. In particular, all the rest of the nodes that have the same item I(v)
needs to be rechecked, as well as all the nodes whose height was decremented upon the removal of v. Our initial
experiments with such an implementation showed that the cost of performing the pruning was quite often higher
than the saving we achieved when used in conjunction with the TP scheme. For this reason we implemented an
approximate but fast version of this scheme that achieves a comparable degree of pruning.
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Our approximate NP algorithm initially sorts the transactions of the conditional pattern base in decreasing
transaction length, then traverses each transaction in that order, and tries to insert them in the FP-tree. Let t be
one such transaction and l(t) be its length. When t is inserted into the FP-tree, it may share a pre�x with some
transactions already in the FP-tree. However, as soon as the insertion of t results in a new node being created, we
check to see if we can prune it using equation (1). In particular, if v is that newly created node, then h(v) = l(t),
because the transactions are inserted into the FP-tree in decreasing length. Thus v can be pruned if

l(t) + jCP j < f�1(�(I(v))) : (2)

If that can be done, the new node is eliminated and the insertion of t continues to the next item. Now if one of
the next items inserts a new node u, then that one may be pruned using equation (2). In equation (2), we use the
original length of the transaction l(t), not the length after the removal of the item previously pruned. The reason
is that l(t) is the correct upper bound of h(u), because one of the transactions inserted later may have a length of
at most l(t), the same as the length of the current transaction, and can modify its height.

The above approach is approximate because (I) the elimination of a node a�ects only the nodes that can be
eliminated in the subsequent transactions, not the nodes already in the tree; (II) we use pessimistic bounds on the
height of a node (as discussed in the previous paragraph). This approximate approach, however, does not increase
the complexity of generating the conditional FP-tree, beyond the sorting of the transactions in the conditional
pattern base. Since the length of the transaction falls within a small range, they can be sorted using bucket sort in
linear time.

4.3 Path Pruning, PP

Once the tree becomes a single path, the original FP-growth algorithm generates all possible combinations of items
along the path and concatenates each of those combinations with its conditional pattern. If the path contains k
items, there exist a total of 2k such combinations. However, using the SVE property we can limit the number of
combinations that we may need to consider.

Let fi1; i2; : : : ; ikg be the k items such that �(ij) � �(ij+1). One way of generating all possible 2
k combinations

is to grow them incrementally as follows. First, we create two sets, one that contains i1, and the other that does
not. Next, for each of these sets, we generate two new sets such that, in each pair of them, one contains i2 and
the other does not, leading to four di�erent sets. By continuing this process a total of k times, we will obtain all
possible 2k combinations of items. This approach essentially builds a binary tree with k levels of edges, in which
the nodes correspond to the possible combinations. One such binary tree for k = 4 is shown in Figure 5.

To see how the SVE property can be used to prune certain subgraphs of this tree (and hence combinations to
be explored), consider a particular internal node v of that tree. Let h(v) be the height of the node (root has a height
of zero), and let �(v) be the number of edges that were one on the path from the root to v. In other words, �(v) is
the number of items that have been included so far in the set. Using the SVE property we can stop expanding the
tree under node v if and only if

�(v) + (k � h(v)) + jCP j < f�1(�(Ih(v))) :

Essentially, the above formula states that, based on the frequency of the current item, the set must have a su�ciently
large number of items before it can be frequent. If the number of items that were already inserted in the set (�(v))
is small plus the number of items that are left for possible insertion (k � h(v)) is not su�ciently large, then no
frequent itemsets can be generated from this branch of the tree, and hence it can be pruned. We will refer to this
method as path pruning or PP for short.

The complexity of PP per one binary tree is k log jI j because we need to evaluate f�1 for k items. On the
other hand, the original FP-growth algorithm has the complexity of O(2k) for one binary tree. The former is much
smaller for large k. For small k, this analysis tells that PP may cost more than the saving. Our experimental result,
however, suggests that the e�ect of pruning pays the price.
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Figure 5: Binary tree when k = 4

5 Experimental Results

We experimentally evaluated the various search space pruning methods of LPMiner using a variety of datasets
generated by the synthetic transaction generator that is provided by the IBM Quest group and was used in evaluating
the Apriori algorithm [1]. All of our experiments were performed on Intel-based Linux workstations with Pentium
III at 600MHz and 1GB of main memory. All the reported runtimes are in seconds.

We used two classes of datasets DS1 and DS2. Both of two classes of datasets contained 100K transactions.
For each of the two classes we generated di�erent problem instances, in which we varied the average size of the
transactions from 3 items to 35 items for DS1, obtaining a total of 33 di�erent datasets, DS1.3, : : :, DS1.35, and
from 3 items to 30 items for DS2, obtaining DS2.3, : : :, DS2.30. For each problem instance in both of DS1.x
and DS2.x, we set the average size of the maximal long itemset to be x=2, so as x increases, the dataset contains
longer frequent itemsets. The di�erence between DS1.x and DS2.x is that each problem instance DS1.x consists
of 1K items, whereas each problem instance DS2.x consists of 5K items. The characteristics of these datasets are
summarized in Table 1.

parameter DS1 DS2
jDj Number of transactions 100K 100K
jT j Average size of the transactions 3 to 35 3 to 30
jI j Average size of the maximal potentially long itemsets jT j=2 jT j=2
jLj Number of maximal potentially large itemsets 10000 10000
N Number of items 1000 5000

Table 1: Parameters for datasets used in our tests

In all of our experiments, we used minimum support constraint that decreases linearly with the length of the
frequent itemsets. In particular, for each of the DS1.x datasets, the initial value of support was set to 0.5 and it was
decreased linearly down to 0.01 for itemsets up to length x. For the rest of the itemsets, the support was kept �xed
at 0.01. The left graph of Figure 6 shows the shape of the support curve for DS1.20. In the case of the DS2 class
of datasets, we used a similar approach to generate the constraint, however instead of using 0.01 as the minimum
support, we used 0.005. The right graph of Figure 6 shows the shape of the support curve for DS2.20.
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LPMiner
Dataset FP-growth NP TP PP NP+TP NP+PP TP+PP NP+TP+PP
DS1.3 3.664 3.559 3.695 3.672 3.614 3.598 3.706 3.572
DS1.4 4.837 3.816 4.423 4.828 3.764 3.871 4.407 3.775
DS1.5 7.454 5.035 6.361 7.467 4.904 4.993 6.369 4.865
DS1.6 11.164 6.813 8.810 11.149 6.324 6.829 8.813 6.421
DS1.7 15.316 8.778 11.827 15.329 8.065 8.798 11.842 8.051
DS1.8 22.079 12.153 15.666 22.065 10.701 12.155 15.630 10.667
DS1.9 28.122 15.260 19.676 28.025 13.519 15.245 19.695 13.559
DS1.10 40.427 21.369 25.035 40.387 18.322 21.291 25.038 18.342
DS1.11 49.420 25.276 29.291 49.583 22.320 25.767 29.805 22.178
DS1.12 71.091 32.806 35.726 70.920 27.886 32.648 35.595 27.874
DS1.13 86.639 38.489 41.226 86.282 32.921 38.271 41.203 32.805
DS1.14 130.604 47.867 48.314 125.701 40.552 47.590 48.261 40.389
DS1.15 155.171 54.868 54.903 154.612 46.734 54.727 54.839 47.934
DS1.16 255.528 67.794 68.522 253.890 56.468 67.161 64.066 60.442
DS1.17 289.600 73.841 70.428 285.373 63.333 77.307 70.126 61.611
DS1.18 409.961 85.851 80.079 404.513 71.296 84.641 79.170 71.043
DS1.19 488.898 95.666 89.101 483.596 79.276 94.794 88.480 78.827
DS1.20 730.399 113.983 105.252 711.947 93.823 110.499 101.096 89.358
DS1.21 856.614 125.378 117.470 837.304 102.944 122.580 114.886 100.077
DS1.22 1224.417 145.259 141.530 1180.976 117.607 137.180 133.186 109.376
DS1.23 1430.478 153.676 156.277 1385.205 124.548 150.661 151.419 121.270
DS1.24 1840.375 183.516 191.363 1739.318 142.728 174.060 184.608 134.174
DS1.25 2147.452 199.894 219.430 2038.823 155.002 193.338 210.911 148.172
DS1.26 3465.201 287.813 306.509 3134.160 212.427 226.667 259.939 166.956
DS1.27 3811.978 296.645 336.420 3479.318 217.086 253.775 302.121 185.205
DS1.28 7512.347 2142.169 1911.442 4646.935 1733.971 300.822 362.577 210.955
DS1.29 8150.431 1748.402 1552.467 5271.311 1288.414 337.896 412.495 233.016
DS1.30 8884.682 431.021 534.117 7370.503 338.811 397.331 489.129 266.111
DS1.31 9744.785 489.858 604.189 8073.919 347.581 447.265 568.864 302.462
DS1.32 31063.532 11001.177 8289.842 12143.147 7943.063 547.121 676.441 361.113
DS1.33 29965.612 4750.367 1789.832 14037.153 1423.910 615.470 760.411 408.505
DS1.34 51420.519 16214.516 10990.934 18027.933 10446.444 751.236 905.894 487.831
DS1.35 64473.916 11282.476 6828.611 21458.692 6426.131 856.127 1024.330 561.449

Table 2: Comparison of pruning methods using DS1

LPMiner
Dataset FP-growth NP TP PP NP+TP NP+PP TP+PP NP+TP+PP
DS2.3 11.698 11.436 12.708 12.680 13.392 11.579 11.354 11.277
DS2.4 16.238 15.178 15.060 16.558 15.768 14.762 15.219 14.243
DS2.5 20.230 16.781 17.701 20.406 16.627 16.712 17.516 17.004
DS2.6 33.859 21.293 22.972 33.719 20.705 21.411 23.700 20.691
DS2.7 42.712 23.419 27.253 43.554 22.864 23.583 26.654 23.009
DS2.8 71.215 29.089 33.553 70.947 26.878 28.848 33.619 26.846
DS2.9 90.909 30.675 38.187 89.857 29.446 30.496 38.669 29.732
DS2.10 146.919 37.372 47.848 147.161 34.559 37.153 47.757 35.100
DS2.11 181.040 40.243 54.862 182.041 38.316 39.713 55.119 37.986
DS2.12 275.834 47.299 66.480 274.819 43.653 46.978 66.040 43.281
DS2.13 329.967 49.697 75.979 329.018 47.775 49.714 76.343 47.594
DS2.14 475.752 58.445 90.502 471.671 53.758 56.396 88.981 52.975
DS2.15 542.815 62.627 104.307 539.249 60.567 61.607 103.873 60.503
DS2.16 812.486 80.111 125.099 798.523 72.078 77.162 122.502 70.391
DS2.17 936.694 85.838 142.994 926.153 80.798 84.775 140.097 78.362
DS2.18 1280.641 100.254 165.018 1252.841 93.058 91.616 160.608 86.791
DS2.19 1437.460 106.910 183.748 1409.567 99.812 101.294 181.314 97.464
DS2.20 2359.507 143.242 223.244 2282.950 125.456 116.602 207.559 112.240
DS2.21 2563.249 154.079 249.584 2483.045 135.950 130.427 234.743 125.072
DS2.22 3592.047 229.332 315.034 3388.120 186.411 150.000 267.465 139.401
DS2.23 3935.333 236.802 336.882 3725.836 191.559 166.241 300.465 156.602
DS2.24 5137.134 313.264 373.711 4676.638 208.681 186.624 336.514 173.389
DS2.25 5898.104 293.610 392.530 5424.018 208.909 208.689 375.901 194.778
DS2.26 12974.804 2297.732 2094.524 10022.341 1884.838 241.356 426.627 221.592
DS2.27 13411.080 2351.364 2053.704 10314.877 1823.076 263.164 466.550 241.366
DS2.28 - 8431.519 7149.525 - 6977.563 328.289 551.046 296.884
DS2.29 - 7980.772 6288.037 - 6050.794 334.178 581.189 299.912
DS2.30 - 4564.717 2243.066 - 1905.217 367.330 639.672 322.922

Table 3: Comparison of pruning methods using DS2
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Figure 6: Support curve for DS1.20 and DS2.20

5.1 Results

Tables 2 and 3 show the experimental results that we obtained for the DS1 and DS2 datasets, respectively. Each
row of the tables shows the results obtained for a di�erent DS1.x or DS2.x dataset, speci�ed on the �rst column.
The remaining columns show the amount of time required by di�erent itemset discovery algorithms. The column
labeled \FP-growth" shows the amount of time taken by the original FP-growth algorithm using a constant support
constraint that corresponds to the smallest support of the support curve, 0.01 for DS1, and 0.005 for DS2. The
columns under the heading \LPMiner" show the amount of time required by the proposed itemset discovery algo-
rithm that uses the decreasing support curve to prune the search space. A total of seven di�erent varieties of the
LPMiner algorithm are presented, that are di�erent combinations of the pruning methods described in Section 4.
For example, the column label \NP" corresponds to the scheme that uses only node pruning (Section 4.2), whereas
the column labeled \NP+TP+PP" corresponds to the scheme that uses all the three di�erent schemes described in
Section 4. Note that values with a \-" correspond to experiments that were aborted because they were taking too
long time.

A number of interesting observations can be made from the results in these tables. First, either one of the
LPMiner methods performs better than the FP-growth algorithm. In particular, the LPMiner that uses all three
pruning methods does the best, requiring substantially smaller time than the FP-growth algorithm. For DS1, it is
about 2.2 times faster for DS1.10, 8.2 times faster for DS1.20, 33.4 times faster for DS1.30, and 115 times faster
for DS1.35. Similar trends can be observed for DS2, in which the performance of LPMiner is 4.2 times faster for
DS2.10, 21.0 times faster for DS2.20, and 55.6 times faster for DS2.27.

Second, the performance gap between FP-growth and LPMiner increases as the length of the discovered
frequent itemset increases (recall that, for both DS1.x and DS2.x, the length of the frequent itemsets increases
with x). This is due to the fact that the overall itemset space that LPMiner can prune becomes larger, leading to
improved relative performance.

Third, comparing the di�erent pruning methods in isolation, we can see that NP and TP lead to the largest
runtime reduction and PP achieves the smallest reduction. This is not surprising as PP can only prune itemsets
during the late stages of itemset generation.

Finally, the runtime with three pruning methods increases gradually as the average length of the transac-
tions (and the discovered itemsets) increases, whereas the runtime of the original FP-growth algorithm increases
exponentially.
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6 Conclusion

In this paper we presented an algorithm that can e�ciently �nd all frequent itemsets that satisfy a length-decreasing
support constraint. The key insight that enabled us to achieve high performance was the smallest valid extension
property of the length decreasing support curve.
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