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Abstract

Over the years, a variety of algorithms for finding fre-
quent itemsets in very large transaction databases have
been developed. The key feature in most of these algorithms
is that they use a constant support constraint to control the
inherently exponential complexity of the problem. In gen-
eral, itemsets that contain only a few items will tend to be
interesting if they have a high support, whereas long item-
sets can still be interesting even if their support is relatively
small. Ideally, we desire to have an algorithm that finds
all the frequent itemsets whose support decreases as a func-
tion of their length. In this paper we present an algorithm
called LPMiner, that finds all itemsets that satisfy a length-
decreasing support constraint. QOur experimental evalua-
tion shows that LPMiner is up to two orders of magnitude
faster than the FP-growth algorithm for finding itemsets at
a constant support constraint, and that its runtime increases
gradually as the average length of the transactions (and the
discovered itemsets) increases.

1 Introduction

Data mining research during the last eight years has led
to the development of a variety of algorithms for find-
ing frequent itemsets in very large transaction databases
[2, 1, 4, 8]. These itemsets can be used to find association
rules or extract prevalent patterns that exist in the transac-
tions, and have been effectively used in many different do-
mains and applications.

The key feature in most of these algorithms is that they
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control the inherently exponential complexity of the prob-
lem by finding only the itemsets that occur in a sufficiently
large fraction of the transactions, called the support. A lim-
itation of this paradigm for generating frequent itemsets is
that it uses a constant value of support, irrespective of the
length of the discovered itemsets. In general, itemsets that
contain only a few items will tend to be interesting if they
have a high support, whereas long itemsets can still be in-
teresting even if their support is relatively small. Unfortu-
nately, if constant-support-based frequent itemset discovery
algorithms are used to find some of the longer but infrequent
itemsets, they will end up generating an exponentially large
number of short itemsets. Maximal frequent itemset discov-
ery algorithms [8] can potentially be used to find some of
these longer itemsets, but these algorithms can still gener-
ate a very large number of short infrequent itemsets if these
itemsets are maximal. Ideally, we desire to have an algo-
rithm that finds all the frequent itemsets whose support de-
creases as a function of their length. Developing such an al-
gorithm is particularly challenging because the downward
closure property of the constant support constraint cannot
be used to prune short infrequent itemsets.

In this paper we present another property, called small-
est valid extension (SVE), that can be used to prune the
search space of potential itemsets in the case where the sup-
port decreases as a function of the itemset length. Using
this property, we developed an algorithm called LPMiner,
that finds all itemsets that satisfy a length-decreasing sup-
port constraint. LPMiner uses the recently proposed FP-
tree [4] data structure to compactly store the database trans-
actions in main memory, and the SVE property to prune
certain portions of the conditional FP-trees, that are being
generated during itemset discovery. Our experimental eval-
uation shows that LPMiner is up to two orders of magnitude
faster than the FP-growth algorithm for finding itemsets at
a constant support constraint, and that its runtime increases



gradually as the average length of the transactions (and the
discovered itemsets) increases.

The rest of this paper is organized as follows. Section 2
provides some background information and related research
work. Section 3 describes the FP-growth algorithm [4], on
which LPMiner is based. In Section 4, we describe how
the length-decreasing support constraint can be exploited to
prune the search space of frequent itemsets. The experimen-
tal results of our algorithm are shown in Section 5, followed
by the conclusion in Section 6.

2 Background and related works

The problem of finding frequent itemsets is formally de-
fined as follows: Given a set of transactions T, each con-
taining a set of items from the set I, and a support o, we
want to find all subsets of items that occur in at least o|T'|
transactions. These subsets are called frequent itemsets.

Over the years a number of algorithms have been de-
veloped for finding all frequent itemsets. The first compu-
tationally efficient algorithm for finding itemsets in large
databases was Apriori [2], which finds frequent itemsets of
length [ based on previously generated (I — 1)-length fre-
quent itemsets. The key idea of Apriori is to use the down-
ward closure property of the support constraint to prune the
space of frequent itemsets. The FP-growth algorithm [4]
finds frequent itemsets by using a data structure called FP-
tree that can compactly store in memory the transactions of
the original database, thus eliminating the need to access
the disks more than twice. Another efficient way to repre-
sent transaction database is to use vertical tid-list database
format. The vertical database format associates each item
with all the transactions that include the item. Eclat in [7]
uses this data format to find all frequent itemsets.

Even though to our knowledge no work has been pub-
lished for finding frequent itemsets in which the support
decreases as a function of the length of the itemset, there
has been some work in developing itemset discovery algo-
rithms that use multiple support constraints. Liu et al. [5]
presented an algorithm in which each item has its own min-
imum item support (or MIS). The minimum support of an
itemset is the lowest MIS among those items in the item-
set. By sorting items in ascending order of their MIS val-
ues, the minimum support of the itemset never decreases as
the length of itemset grows, making the support of itemsets
downward closed. Thus an Apriori-based algorithm can be
applied. Wang et al. [6] allow a set of more general support
constraints. In particular, they associate a support constraint
for each one of the itemsets. By introducing a new function
called Pminsup that has “Apriori-like” property, they pro-
posed an Apriori-based algorithm for finding the frequent
itemsets. It is possible to represent a length-decreasing sup-
port constraint by using the formulation in [6]. However,
the “pushed” minimum support of each itemset is forced to
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be equal to the support value corresponding to the longest
itemset. Thus, it cannot prune the search space. Finally, Co-
hen et al. [3] adopt a different approach in that they do not
use any support constraint. Instead, they search for similar
itemsets using probabilistic algorithms, that do not guaran-
tee that all frequent itemsets can be found.

3 FP-growth algorithm

In this section, we describe how the FP-growth algorithm
works because our approach is based on this algorithm. The
description here is based on [4].

The key idea behind FP-growth is to use a data struc-
ture called FP-tree to obtain a compact representation of the
original transactions so that they can fit into the main mem-
ory. As aresult, any subsequent operations that are required
to find the frequent itemsets can be performed quickly, with-
out having to access the disks. The FP-growth algorithm
achieves that by performing just two passes over the trans-
actions. Figure 1 shows how the FP-tree generation algo-
rithm works given an input transaction database that has
five transactions with a total of six different items. First,
it scans the transaction database to count how many times
each item occurs in the database to get an “Item Support Ta-
ble” (step (a)). The “Item Support Table” has a set of (item-
name, support) pairs. For example, item A occurs twice in
the database, namely in a transaction with tid 1 and another
one with tid 5; therefore its support is 2/5 = 40%. In step
(b), those items in the Item Support Table are sorted accord-
ing to their support. The result is stored in item-name field
of Node-Link header table NL. Notice that item F is not
included in NL because the support of item F is less than
the minimum support constraint 40%. In step (c), items in
each transaction in the input transaction database are sorted
in the same order as items in the Node-Link header table
NL. While transaction tid 5 is sorted, item F is.disca.rded
because the item is infrequent and has no need of consider-
ation. In step (d), the FP-tree is generated by inserting those
sorted transactions one by one. The initial FP-tree has only
its root. When the first transaction is inserted, nodes that
represent item B, C, E, A, and D are generated, forming a
path from the root in this order. The count of each node is
set to 1 because each node represents only one transaction
(tid 1) so far. Next, when the second transaction is inserted,
a node representing item B is notr generated. Instead, the
node already generated is reused. In this case, because the
root node has a child that represents item B, the count of
the node is incremented by one. As for item E, since there
is no child representing item E under the current node, a
new node with item-name E is generated as a child of the
current node. Similar processes are repeated until all the
sorted transactions are inserted into the FP-tree.

Once an FP-tree is generated from the input transaction
database, the algorithm mines frequent itemsets from the
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FP-tree. The algorithm generates itemsets from shorter to
longer ones adding items one-by-one to those itemsets al-
ready generated. It divides mining the FP-tree into mining
smaller FP-trees, each of which is based on an item on the
Node-Link header table in Figure 1. Let us choose item
D as an example. For item D, we generate a new transac-
tion database called conditional pattern base. Each trans-
action in the conditional pattern base consists of items on
the paths from parent nodes whose child nodes have item-
name D to the root node. The conditional pattern base for
item D is shown in Figure 2. Each transaction in the con-
ditional pattern base also has its count of occurrence corre-
sponding to the count of the node with item-name D in the
original FP-tree. Note that item D itself is a frequent item-
set consisting of one item. Let us call this frequent itemset
“D” a conditional pattern. A conditional pattern base is a
set of transactions each of which includes the conditional
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pattern. What we do next is to forget the original FP-tree
in Figure 1 for a while and then focus on the conditional
pattern base we got just now to generate frequent itemsets
that include this conditional pattern “D”. For this purpose,
we generate a smaller FP-tree than the original one, based
on the conditional pattern “D”. This new FP-tree, called
conditional FP-tree, is generated from the conditional pat-
tern base using the FP-tree generation algorithm again. If
the conditional FP-tree is not a single path tree, we divide
mining this conditional FP-tree to mining even smaller con-
ditional FP-trees recursively. This is repeated until we ob-
tain a conditional FP-tree with only a single path. During
those recursively repeated processes, all selected items are
added to the conditional pattern. Once we obtain a single
path conditional FP-tree like the one in Figure 2, we gen-
erate all possible combinations of items along the path and
combine each of these sets of items to the conditional pat-
tern. For example, from those three nodes in the conditional
FP-tree in Figure 2, we have 23 = 8 combinations of item
B, C, and E: “ ” (no item), “B”, “C”, “E”, “BC”, “CE”,
“EB”, and “BCE”. Then we obtain frequent itemsets based
on conditional pattern base “D”: “D”, “DB”, “DC”, “DE”,
“DBC”, “DCE”, “DEB”, and “DBCE”.

4 LPMiner algorithm

LPMiner is an itemset discovery algorithm, based on the
FP-growth algorithm, which finds all the itemsets that sat-
isfy a particular length-decreasing support constraint f(l);
where [ is the length of the itemset. More precisely, f(l)
satisfies f(lg) > f(ly) for any l,,1, such that l, < .
The idea of introducing this kind of support constraint is



that by using a support that decreases with the length of the
itemset, we may be able to find long itemsets, that may be
of interest, without generating an exponentially large num-
ber of shorter itemsets. Figure 3 shows a typical length-
decreasing support constraint. In this example, the support
constraint decreases linearly to the minimum value and then
stays the same for itemsets of longer length. Our problem
is restated as finding those itemsets located above the curve
determined by length-decreasing support constraint f(l).

support(%)
0.5

0.01

1 10
length of itemset

Figure 3. An example of typical length-decreasing
support constraint.

A simple way of finding such itemsets is to use any of
the traditional constant-support frequent itemset discovery
algorithms, in which the support was set to minso f(1),
and then discard the itemsets that do not satisfy the length-
decreasing support constraint. This approach, however,
does not reduce the number of infrequent itemsets being
discovered, and as our experiments will show, requires a
large amount of time.

As discussed in the introduction, finding the complete
set of itemsets that satisfy a length-decreasing support func-
tion is particularly challenging because we cannot use the
downward closure property of the constant support frequent
itemsets. This property states that in order for an itemset of
length [ to be frequent, all of its subsets have to be frequent
as well. As aresult, once we find that an itemset of length [
is infrequent, we know that any longer itemsets that include
this particular itemset cannot be frequent, and thus elim-
inate such itemsets from further consideration. However,
because in our problem the support of an itemset decreases
as its length increases, an itemset can be frequent even if its
subsets are infrequent.

A key property, regarding the itemset whose support
decreases as a function of their length, is the following.
Given a particular itemset I with a support of oy, such that
or < f(|I]), then f~Y(oy) = min({l|f(l) = o1}) is the
minimum length that an itemset I' such that I’ D I must
have before it can potentially become frequent. Figure 4
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illustrates this relation graphically. The length of I' is noth-
ing more than the point at which a line parallel to the z-axis
at y = oy intersects the support curve; here, we essentially
assume the best case in which I’ exists and it is supported
by the same set of transactions as its subset I. We will refer
to this property as the smallest valid extension property or
SVE for short.

LPMiner uses this property as much as it can to prune the
conditional FP-trees, that are generated during the itemset
discovery phase. In particular, it uses three different prun-
ing methods that, when combined, substantially reduce the
search space and the overall runtime. These methods are
described in the rest of this section.

4.1 Transaction pruning, TP

The first pruning scheme implemented in LPMiner uses the
smallest valid extension property to eliminate entire candi-

date transactions of a conditional pattern base. Recall from
Section 3 that, during frequent itemset generation, the FP-

growth algorithm builds a separate FP-tree for all the trans-
actions that contain the conditional pattern currently under
consideration. Let C'P be that conditional pattern, |CP|
be its length, and o(CP) be its support. If CP is infre-
quent, we know from the SVE property that in order for this
conditional pattern to grow to something indeed frequent,
it must have a length of at least f~!(c(CP)). Using this
requirement, before building the FP-tree corresponding to
this conditional pattern, we can eliminate any transactions
whose length is shorter than f~!(a(CP)) — |CP|, as these
transactions cannot contribute to a valid frequent itemset in
which CP is part of it. We will refer to this as the transac-
tion pruning method and denote it by TP.

We evaluated the complexity of this method in compari-
son with the complexity of inserting a transaction to a con-
ditional pattern base. There are three parameters we have
to know to prune a transaction: the length of each transac-
tion being inserted, f ~!(o(CP)), and |CP|. The length of
each transaction is calculated in a constant time because we
can count each item when the transaction is actually being
generated. As f~!(o(CP)) and |C P| are common values



for all transactions in a conditional pattern base, these val-
ues need to be calculated only once for the conditional pat-
tern base. It takes a constant time added to the original FP-
growth algorithm to calculate |CP|. As for f~(a(CP)),
evaluating £~ takes O(log(|I|)) to execute binary search
on the support table determined by f(I). Let cpb be the con-
ditional pattern base and m = 3_, . ., |tran|. The com-
plexity per inserting a transaction is O(log(]Z|)/m). Under
an assumption that all items in I are contained in cpb, this
value is nothing more than O(1). Thus, the complexity of
this method is just a constant time per inserting a transac-
tion.

4.2 Node pruning, NP

The second pruning method focuses on pruning certain
nodes of a conditional FP-tree, on which the next condi-
tional pattern base is about to be generated. Let us consider
anode v of the FP-tree. Let I(v) be the item stored at this
node, o(I(v)) be the support of the item in the conditional
pattern base, and h(v) be the height of the longest path from
the root through v to a leaf node. From the SVE property
we know that the node v will contribute to a valid frequent
itemset only if

h(v) +|CP| 2 {7 (o (1(v))) M

where [C P| is the length of conditional pattern of the cur-
rent conditional FP-tree. The reason that equation (1) is
correct is because, among the transactions that go through
node v, the longest itemset that /(v) can participate in has a
length of h(v). Now, if the support of I(v) is small such that
it requires an itemset whose length f~1(o(I(v))) is greater
than h(v) + |CP|, then that itemset cannot be supported
by any of the transactions that go through node v. Thus,
if equation (1) does not hold, node v can be pruned from
the FP-tree. Once node v is pruned, then o(I(v)) will de-
crease as well as the height of the nodes through v, possibly
allowing further pruning. We will refer to this as the node
pruning method, or NP for short.

A key observation to make is that both the TP and NP
methods can be used together as each one of them prunes
portions of the FP-tree that the other one does not. In par-
ticular, the NP methods can prune a node in a path that is
longer than f~1(a(CP)) — |CP|, because the item of that
node has lower support than CP. On the other hand, TP
reduces the frequency of some itemsets in the FP-tree by
removing entire short transactions. For example, consider
two transactions; (A, B, C, D) and (A, B). Let’s assume
that f~1(¢(CP)) — |CP| = 4, and each one of the items
A,B,C,D has a support equal to that of C P. In that case, the
NP will not remove any nodes, whereas TP will eliminate
the second transaction.

In order to perform the node pruning, we need to com-
pute the height of each node and then traverse each node v
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to see if it violates equation (1). If it does, then the node v
can be pruned. The height of all the nodes whose longest
path goes through v must be decremented by one, and the
support of I(v) needs to be decremented to take account
of the removal of v. Every time we make such changes
in the tree, nodes that could not have been pruned before
may now become eligible for pruning. In particular, all the
rest of the nodes that have the same item I(v) needs to be
rechecked, as well as all the nodes whose height was decre-
mented upon the removal of v. Our initial experiments with
such an implementation showed that the cost of perform-
ing the pruning was often quite higher than the saving we
achieved when used in conjunction with the TP scheme. For
this reason we implemented an approximate but fast version
of this scheme that achieves a comparable degree of prun-
ing.

Our approximate NP algorithm initially sorts the trans-
actions of the conditional pattern base in decreasing trans-
action length, then traverses each transaction in that order,
and tries to insert them in the FP-tree. Let ¢t be one such
transaction and I(t) be its length. When ¢ is inserted into
the FP-tree it may share a prefix with some transactions al-
ready in the FP-tree. However, as soon as the insertion of ¢
results in a new node being created, we check to see if we
can prune it using equation (1). In particular, if v is that
newly created node, then h(v) = [(t), because the trans-
actions are inserted into the FP-tree in decreasing length.
Thus v can be pruned if

I(t)+|CP| < fHo(I(v))) . )

If that can be done, the new node is eliminated and the inser-
tion of ¢ continues to the next item. Now if one of the next
items inserts a new node u, then that one may be pruned us-
ing equation (2). In equation (2), we use the original length
of the transaction [(t), not the length after the removal of the
item previously pruned. The reason is that [(¢) is the cor-
rect upper bound of h(u), because one of the transactions
inserted later may have a length of at most I(¢), the same
as the length of the current transaction, and can modify its
height.

The above approach is approximate because (i) the elim-
ination of a node affects only the nodes that can be elimi-
nated in the subsequent transactions, not the nodes already
in the tree; (ii) we use pessimistic bounds on the height of a
node (as discussed in the previous paragraph). This approx-
imate approach, however, does not increase the complexity
of generating the conditional FP-tree, beyond the sorting of
the transactions in the conditional pattern base. Since the
length of the transaction falls within a small range, they can
be sorted in linear time using bucket sort.



4.3 Path pruning, PP

Once the tree becomes a single path, the original FP-
growth algorithm generates all possible combinations of
items along the path and concatenates each of those com-
binations with its conditional pattern. If the path contains
k items, there exist a total of 2% such combinations. How-
ever, using the SVE property we can limit the number of
combinations that we may need to consider.

Let {i1,12,...,%x} be the k items such that o(i;) >
o(ij+1). One way of generating all possible 2¥ combina-
tions is to grow them incrementally as follows. First, we
create two sets, one that contains i, and the other that does
not. Next, for each of these sets, we generate two new sets
such that, in each pair of them, one contains ¢> and the other
does not, leading to four different sets. By continuing this
process a total of k times, we will obtain all possible 2¥
combinations of items. This approach essentially builds a
binary tree with k levels of edges, in which the nodes cor-
respond to the possible combinations. One such binary tree
for k = 4 is shown in Figure 5.

To see how the SVE property can be used to prune cer-
tain subgraphs of this tree (and hence combinations to be
explored), consider a particular internal node v of that tree.
Let h(v) be the height of the node (root has a height of
zero), and let B(v) be the number of edges that were one
on the path from the root to v. In other words, S(v) is the
number of items that have been included so far in the set.
Using the SVE property we can stop expanding the tree un-
der node v if and only if

B) + (k ~ h(v)) + |CP| < fH(o(In(w)))

Essentially, the above formula states that, based on the fre-
quency of the current item, the set must have a sufficiently
large number of items before it can be frequent. If the num-
ber of items that were already inserted in the set (8(v))
plus the number of items that are left for possibie insertion
(k- h(v)) is not sufficiently large, then no frequent itemsets
can be generated from this branch of the tree, and hence it
can be pruned. We will refer to this method as path pruning
or PP for short.

The complexity of PP per one binary tree is & log [I] be-
cause we need to evaluate f~! for k items. On the other
hand, the original FP-growth algorithm has the complexity
of O(2*) for one binary tree. The former is much smaller
for large k. For small k, this analysis tells that PP may cost
more than the saving. Our experimental result, however,
suggests that the effect of pruning is bigger than the cost.

5 Experimental results

We experimentally evaluated the various search space prun-
ing methods of LPMiner using a variety of datasets gener-
ated by the synthetic transaction generator that is provided
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Figure 5. Binary tree when k = 4.

by the IBM Quest group and was used in evaluating the
Apriori algorithm [2]. All of our experiments were per-
formed on Intel-based Linux workstations with Pentium III
at 600MHz and 1GB of main memory. All the reported run-
times are in seconds.

We used two classes of datasets DS1 and DS2. Both
of them contained 100K transactions. For each of the
two classes we generated different problem instances in
which we varied the average size of the transactions from
3 items to 35 items for DS1, obtaining a total of 33 dif-
ferent datasets, DS1.3, ..., DS1.35, and from 3 items to
30 items for DS2, obtaining DS2.3, ..., DS2.30. For each
problem instance in both of DS1.z and DS2.z, we set the
average size of the maximal long itemset to be £/2, so as =
increases, the dataset contains longer frequent itemsets. The
difference between DS1.z and DS2.z is that each problem
instance DS1.z consists of 1K items, whereas each problem
instance DS2.x consists of 5K items. The characteristics of
these datasets are summarized in Table 1.

Table 1. Parameters for datasets used in our tests
(]D|: Number of transactions, |T'|: Average size of
the transactions, |I|: Average size of the maximal po-
tentially long itemsets, |L|: Number of maximal po-
tentially large itemsets, IV: Number of items).

parameter | DS1 DS2

D] 100K 100K
T| 31035 | 3t030
T] [T172 | 17172
L 10000 | 10000
N 1000 5000

In all of our experiments, we used minimum support con-
straint that decreases linearly with the length of the frequent
itemsets. In particular, for each of the DS1.x datasets, the
initial value of support was set to 0.5 and it was decreased
linearly down to 0.01 for itemsets up to length z. For the
rest of the itemsets, the support was kept fixed at 0.01. The
left graph of Figure 6 shows the shape of the support curve
for DS1.20. In the case of the DS2 class of datasets, we used
a similar approach to generate the constraint, however in-
stead of using 0.01 as the minimum support, we used 0.005.



The right graph of Figure 6 shows the shape of the support
curve for DS2.20.

Support curve for DS1.20 Support curve for DS2.20
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Figure 6. Support curve for DS1.20 and DS2.20.

5.1 Results

Tables 2 and 3 show the experimental results that we ob-
tained for the DS1 and DS2 datasets, respectively. Each
row of the tables shows the results obtained for a differ-
ent DS1.z or DS2.z dataset, specified on the first column.
The remaining columns show the amount of time required
by different itemset discovery algorithms. The column la-
beled “FP-growth” shows the amount of time taken by the
original FP-growth algorithm using a constant support con-
straint that corresponds to the smallest support of the sup-
port curve, 0.01 for DS1, and 0.005 for DS2. The columns
under the heading “LPMiner” show the amount of time
required by the proposed itemset discovery algorithm that
uses the decreasing support curve to prune the search space.
A total of seven different variations of the LPMiner algo-
rithm are presented that use different combinations of the
pruning methods described in Section 4. For example, the
column label “NP” corresponds to the scheme that uses
only node pruning (Section 4.2), whereas the column la-
beled “NP+TP+PP” corresponds to the scheme that uses all
the three different schemes described in Section 4. Note
that values with a “-” correspond to experiments that were
aborted because they were taking too long time.

A number of interesting observations can be made from
the results in these tables. First, either one of the LPMiner
methods performs better than the FP-growth algorithm. In
particular, the LPMiner that uses all three pruning methods
does the best, requiring substantially smaller time than the
FP-growth algorithm. For DS1, it is about 2.2 times faster
for DS1.10, 8.2 times faster for DS1.20, 33.4 times faster
for DS1.30, and 115 times faster for DS1.35. Similar trends
can be observed for DS2, in which the performance of LP-
Miner is 4.2 times faster for DS2.10, 21.0 times faster for
DS2.20, and 55.6 times faster for DS2.27.

Second, the performance gap between FP-growth and
LPMiner increases as the length of the discovered frequent
itemset increases (recall that, for both DS1.z and DS2.z,
the length of the frequent itemsets increases with ). This is
due to the fact that the overall itemset space that LPMiner
can prune becomes larger, leading to improved relative per-
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formance.

Third, comparing the different pruning methods in isola-
tion, we can see that NP and TP lead to the largest runtime
reduction and PP achieves the smallest reduction. This is
not surprising as PP can only prune itemsets during the late
stages of itemset generation.

Finally, the runtime with three pruning methods in-
creases gradually as the average length of the transactions
(and the discovered itemsets) increases, whereas the run-
time of the original FP-growth algorithm increases expo-
nentially.

6 Conclusion

In this paper we presented an algorithm that can efficiently
find all frequent itemsets that satisfy a length-decreasing
support constraint. The key insight that enabled us to
achieve high performance was the smallest valid extension
property of the length decreasing support curve.

So far, we have dealt with a common length-decreasing
support for all the items. However, the proposed algorithm
can be easily extended to allow different length-decreasing
support constraint to be specified for each item or itemset.
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Table 2. Comparison of pruning methods using DS1.

LPMiner
Dataset | FP-growth NP~ T! PP NP+TP | NP+PP ~ TP+PP | NP+TP+PP
DS1.3 3.664 3.559 3.695 3.672 3.614 3.598 3.706 3.572
DS1.4 4.837 3.816 4.423 4.828 3.764 3.871 4.407 3.775
DS1.5 7.454 5.035 6.361 7.467 4.904 4.993 6.369 4.865
DS1.6 11.164 6.813 8.810 11.149 6.324 6.829 8.813 6.421
DS1.7 15.316 8.778 11.827 15.329 8.065 8.798 11.842 8.051
DS1.8 22.079 12.153 15.666 22.065 10.701 12.155 15.630 10.667
DS1.9 28.122 15.260 19.676 28.025 13.519 15.245 19.695 13.559
DSI1.10 40.427 21.369 25.035 40.387 18.322 21.291 25.038 18.342
DS1.11 49.420 25.276 29.291 49.583 22.320 25.767 29.805 22.178
DS1.12 71.091 32.806 35.726 70.920 27.886 32.648 35.595 27.874
DS1.13 86.639 38.489 41.226 86.282 32.921 38.271 41.203 32.805
DS1.14 130.604 47.867 48.314 125.701 40.552 47.590 48.261 40.389
DS1.15 155.171 54.868 54.903 154.612 46.734 54.727 54.839 47.934
DSI1.16 255.528 67.794 68.522 253.890 56.468 67.161 64.066 60.442
DS1.17 289.600 73.841 70.428 285.373 63.333 77.307 70.126 61.611
DS1.18 409.961 85.851 80.079 404.513 71.296 84.641 79.170 71.043
DS1.19 438.898 95.666 89.101 483.596 79.276 94.794 88.480 78.827
DS1.20 730.399 113.983 105.252 711.947 93.823 110.499 101.096 89.358
DS1.21 856.614 125.378 117.470 837.304 102.944 | 122.580 114.886 100.077
DS1.22 1224.417 145.259 141.530 1180.976 117.607 | 137.180 133.186 109.376
DS1.23 1430.478 153.676 156.277 1385.205 124.548 | 150.661 151.419 121.270
DS1.24 1840.375 183.516 191.363 1739.318 142.728 | 174.060 184.608 134.174
DS1.25 2147.452 199.894 219.430 2038.823 155.002 | 193.338 210.911 148.172
DS1.26 3465.201 287.813 306.509 3134.160 212.427 | 226.667 259.939 166.956
DS1.27 3811.978 296.645 336.420 3479.318 217.086 | 253.775 302.121 185.205
DS1.28 7512.347 2142.169 1911.442 4646.935 1733.971 | 300.822 362.577 210.955
DS1.29 8150.431 1748.402 1552.467 5271.311 1288.414 | 337.896 412:495 233.016
DS1.30 8884.682 431.021 534.117 7370.503 338.811 | 397.331 489.129 266.111
DS1.31 9744.785 489.858 604.189 8073.919 347.581 447.265 568.864 302.462
DS1.32 | 31063.532 | 11001.177 8289.842 | 12143.147 7943.063 | 547.121 676.441 361.113
DS1.33 29965.612 4750.367 1789.832 14037.153 1423910 | 615.470 760.411 408.505
DS1.34 | 51420.519 | 16214.516 | 10990.934 | 18027.933 | 10446.444 [ 751.236 905.894 487.831
DS1.35 | 64473916 | 11282.476 6828.611 | 21458.692 6426.131 | 856.127 | 1024.330 561.449
Table 3. Comparison of pruning methods using DS2.
LPMiner
Dataset FP-growth NP TP PP NP+TP NP+PP TP+PP NP+TP+PP
DS2.3 11.698 11.436 12.708 12.680 13.392 11.579 11.354 11.277
DS2.4 16.238 15.178 15.060 16.558 15.768 14.762 15.219 14.243
DS2.5 20.230 16.781 17.701 20.406 16.627 16.712 17.516 17.004
DS2.6 33.859 21.293 22972 33.719 20.705 21.411 23.700 20.691
DS§2.7 42.712 23.419 27.253 43.554 22.864 23.583 26.654 23.009
DS2.8 71.215 29.089 33.553 70.947 26.878 28.848 33.619 26.846
DS2.9 90.909 30.675 38.187 89.857 29.446 30.496 38.669 29.732
DS2.10 146.919 37.372 47.848 147.161 34.559 37.153 47.757 35.100
DS2.11 181.040 40.243 54.862 182.041 38.316 39.713 55.119 37.986
DS2.12 275.834 47.299 66.480 274.819 43.653 46.978 66.040 43.281
DS2.13 329.967 49.697 75.979 329.018 41.775 49.714 76.343 47.594
DS2.14 475.752 58.445 90.502 471.671 53.758 56.396 88.981 52975
DS2.15 542.815 62.627 104.307 539.249 60.567 61.607 | 103.873 60.503
DS2.16 812.486 80.111 125.099 798.523 72.078 77.162 | 122.502 70.391
DS2.17 936.694 85.838 142.994 926.153 80.798 84.775 140.097 78.362
DS2.18 1280.641 100.254 165.018 1252.841 93.058 91.616 | 160.608 86.791
DS2.19 1437.460 106.910 183.748 1409.567 99.812 | 101.294 | 181.314 97.464
DS2.20 2359.507 143.242 223.244 2282.950 125.456 116.602 207.559 112.240
DS2.21 2563.249 154.079 249.584 2483.045 135.950 [ 130.427 | 234.743 125.072
DS2.22 3592.047 229.332 315.034 3388.120 186.411 | 150.000 | 267.465 139.401
DS2.23 3935.333 236.802 336.882 3725.836 191.559 166.241 300.465 156.602
DS2.24 5137.134 313.264 373.711 4676.638 208.68) 186.624 | 336.514 173.389
DS§2.25 5898.104 293.610 392.530 5424.018 208.909 208.689 375.901 194.778
DS2.26 | 12974.804 [ 2297732 | 2094.524 | 10022.341 | 1884.838 | 241.356 | 426.627 221.592
DS2.27 | 13411.080 | 2351.364 [ 2053.704 | 10314.877 | 1823.076 | 263.164 | 466.550 241.366
DS2.28 - 8431.519 7149.525 - 6977.563 328.289 551.046 296.884
DS2.29 - | 7980.772 | 6288.037 - | 6050.794 | 334.178 | 581.189 299.912
DS2.30 - 1 4564717 | 2243.066 - ] 1905.217 [ 367.330 | 639.672 322.922
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