
Multi-Objective Hypergraph Partitioning Algorithms for
Cut and Maximum Subdomain Degree Minimization �

Navaratnasothie Selvakkumaran and George Karypis
Department of Computer Science / Army HPC Research Center, University of Minnesota, Minneapolis�

selva,karypis � @cs.umn.edu

ABSTRACT
In this paper we present a family of multi-objective hypergraph
partitioning algorithms based on the multilevel paradigm, which
are capable of producing solutions in which both the cut and the
maximum subdomain degree are simultaneously minimized. This
type of partitionings are critical for existing and emerging appli-
cations in VLSI CAD as they allow to both minimize and evenly
distribute the interconnects across the physical devices. Our ex-
perimental evaluation on the ISPD98 benchmark show that our
algorithms produce solutions that when compared against those
produced by hMETIS have a maximum subdomain degree that is
reduced by up to 35% while achieving comparable quality in terms
of cut.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids

General Terms
Algorithms, Experimentation

Keywords
Partitioning, Maximum Subdomain Degree, Placement, Conges-
tion

1. INTRODUCTION
Hypergraph partitioning is an important problem with extensive
applications to many areas, including VLSI design [5], efficient
storage of large databases on disks [23], information retrieval [28],
and data mining [9, 15]. The problem is to partition the vertices
�
This work was supported by NSF ACI-0133464, CCR-9972519,

EIA-9986042, ACI-9982274, and by Army HPC Research Center
contract number DAAD19-01-2-0014.

of a hypergraph into � equal-size subdomains, such that the num-
ber of the hyperedges connecting vertices in different subdomains
(called the cut) is minimized.

The importance of the problem has attracted a considerable amount
of research interest and over the last thirty years a variety of heuris-
tic algorithms have been developed that offer different cost-quality
trade-offs. The survey by Alpert and Kahng [5] provides a detailed
description and comparison of various such schemes. Recently a
new class of hypergraph partitioning algorithms has been devel-
oped [8, 11, 2, 14, 4], that are based upon the multilevel paradigm.
In these algorithms, a sequence of successively smaller hyper-
graphs is constructed. A partitioning of the smallest hypergraph
is computed. This partitioning is then successively projected to
the next level finer hypergraph, and at each level an iterative re-
finement algorithm (e.g., KL [18] or FM [10]) is used to further
improve its quality. Experiments presented in [2, 14, 4, 26, 3, 6,
17] have shown that multilevel hypergraph partitioning algorithms
can produce substantially better solutions than those produced by
non-multilevel schemes.

However, despite the success of multilevel algorithms in produc-
ing partitionings in which the cut is minimized, this cut is not uni-
formly distributed across the different subdomains. That is, the
number of hyperedges that are being cut by a particular subdo-
main (referred to as the subdomain degree) is significantly higher
than that cut by other subdomains. This illustrated in Table 1 that
shows the ratios of the maximum subdomain degree over the aver-
age subdomain degree of various � -way partitionings obtained for
the ISPD98 benchmark [3] using the state-of-the-art hMETIS [16]
multilevel hypergraph partitioning algorithm. In many cases, the
resulting partitionings contain subdomains whose degree is up to
two times higher than the average degree of the remaining subdo-
mains.

For many existing and emerging applications in VLSI CAD, pro-
ducing partitioning solutions that both minimize the cut and also
minimize the maximum subdomain degree is of great importance.
For example, in order to reduce the congestion and increase the
resource utilization, EDA tools for existing FPGA devices and
emerging deep sub-micron architectures need to both minimize
the number of interconnects (which is achieved by minimizing the
cut) and also evenly distribute these interconnects across the phys-
ical device to eliminate high density interconnect regions (which
is achieved by minimizing the maximum subdomain degree).

4-way 8-way 16-way 32-way 64-way
ibm01 1.27 1.55 1.60 1.70 1.76
ibm02 1.35 1.35 1.43 1.51 1.55
ibm03 1.18 1.43 1.68 1.70 1.84
ibm04 1.28 1.35 1.41 1.72 2.39
ibm05 1.16 1.17 1.24 1.33 1.41
ibm06 1.22 1.46 1.46 1.50 1.63
ibm07 1.29 1.46 1.79 1.94 2.04
ibm08 1.06 1.22 1.45 1.73 2.12
ibm09 1.09 1.23 1.65 1.91 2.31
ibm10 1.23 1.43 1.69 1.78 1.85
ibm11 1.21 1.55 1.54 1.66 2.02
ibm12 1.26 1.47 1.72 2.10 2.15
ibm13 1.31 1.81 1.66 1.91 1.85
ibm14 1.20 1.47 1.46 1.63 1.96
ibm15 1.28 1.51 1.71 1.87 2.09
ibm16 1.22 1.39 1.45 1.70 1.84
ibm17 1.18 1.42 1.52 1.80 2.13
ibm18 1.16 1.61 2.33 2.65 2.78

Table 1: The ratios of the maximum subdomain degree over
the average subdomain degree of various solutions for the
ISPD98 benchmark.

In this paper we present a family of hypergraph partitioning algo-
rithms based on the multilevel paradigm that are capable of pro-
ducing solutions in which both the cut and the maximum subdo-
main degree are simultaneously minimized. Our algorithms treat
the minimization of the maximum subdomain degree as a multi-
objective optimization problem that is solved once a high-quality,
cut based, � -way partitioning has been obtained. Toward this goal,
we present highly effective multi-objective refinement algorithms
that are capable to produce solutions that explicitly minimize the
maximum subdomain degree and ensure that the cut does not sig-
nificantly increase.

This approach has a number of inherent advantages. First, by
building upon a cut-based � -way partitioning, it leverages the huge
body of existing research on this topic, and it can benefit from
future improvements. Second, because the initial � -way solution
is of extremely high-quality, it allows the algorithm to focus on
minimizing the maximum subdomain degree without being overly
concerned about the cut of the final solution. Finally, it provides
a user-adjustable and predictable framework in which the user can
specify how much (if any) deterioration on the cut he or she is will-
ing to tolerate in order to reduce the maximum subdomain degree.

We experimentally evaluated the performance of these algorithms
on the ISPD98 [3] benchmark and compared them against the so-
lutions produced by hMETIS [16]. Our experimental results show
that our algorithms are capable of producing solutions whose max-
imum subdomain degree is lower by 5% to 35% while producing
comparable solutions in terms of cut. Moreover, the computa-
tional complexity of these algorithms is relatively low, requiring
on the average no more than twice the amount of time required by
hMETIS.

The rest of the paper is organized as follows. Section 2 provides
some definitions and describes the notation that is used throughout
the paper. Section 3 describes the various aspects of our algo-
rithms. Section 4 experimentally evaluates these algorithms and
compares them against hMETIS. Finally, Section 5 provides some
concluding remarks and outlines directions of future research.

2. DEFINITIONS AND NOTATION
A hypergraph �����
	����� is a set of vertices 	 and a set of
hyperedges . Each hyperedge is a subset of the set of vertices 	 .
The size of a hyperedge is the cardinality of this subset. A vertex� is said to be incident on a hyperedge � , if ��� � . Each vertex� and hyperedge � has a weight associated with them and they are
denoted by ��� � � and ������� , respectively.

A decomposition of 	 into � disjoint subsets 	�����	������ ���!�"	$# , such
that %'&(& �)	 is called a � -way partitioning of 	 . We will use
the terms subdomain or partition to refer to each one of these �
sets. A � -way partitioning of 	 is denoted by a vector * such
that *,+ -/. indicates the partition number that vertex - belongs to.
We say that a � -way partitioning of 	 satisfies a balancing con-
straint specified by + 01��23. , where 05462 , if for each subdomain 	 & ,
087:9<;>=@?�AB��� � �,7)2 . The cut of a � -way partitioning of 	 is
equal to the sum of the weights of the hyperedges that contain ver-
tices from different subdomains. The subdomain degree of 	 & is
equal to the sum of the weights of the hyperedges that contain at
least one vertex in 	 & and one vertex in 	DC'	 & . The maximum sub-
domain degree of a � -way partitioning is the highest subdomain
degree over all � partitions. The sum-of-external-degrees (abbre-
viated as SOED) of a � -way partitioning is equal to the sum of the
subdomain degrees of all the partitions.

Given a � -way partitioning of 	 and a vertex �E� 	 that belongs
to partition 	 & , its internal degree denoted by ID & � � � is equal to
the sum of the weights of its incident hyperedges that contain only
vertices from 	 & , and its external degree with respect to partition
	BF denoted by ED FG� � � is equal to the sum of the weights of its in-
cident hyperedges whose all remaining vertices belong to partition
	 F .

The � -way hypergraph partitioning problem is defined as follows.
Given a hypergraph �H�I�
	��J�� and a balancing constraint spec-
ified by + 01��23. , compute a � -way partitioning of 	 such that it
satisfies the balancing constraint and minimizes the cut. The re-
quirement that the size of each partition satisfies the balancing
constraint is referred to as the partitioning constraint, and the re-
quirement that a certain function is optimized is referred to as the
partitioning objective.

3. MINIMIZING THE MAXIMUM SUBDO-
MAIN DEGREE

There are two different approaches for computing a � -way parti-
tioning of a hypergraph. One is based on recursive bisectioning
and the other on direct � -way partitioning [13]. In recursive bisec-
tioning, the overall partitioning is obtained by initially bisecting
the hypergraph to obtain a two-way partitioning. Then, each of
these parts is further bisected to obtain a four-way partitioning, and
so on. Assuming that � is a power of two, then the final � -way par-
titioning can be obtained in KMLGN����B� such steps (or after performing
��CPO bisections). In this approach, each partitioning step usually
takes into account information from only two partitions, and as
such it does not have sufficient information to explicitly minimize
the maximum subdomain degree of the resulting � -way partition-
ing. In principle, additional information can be propagated down
at each bisection level to account for the degrees of the various sub-
domains. For example, during each bisection step, the change in
the degrees of the adjacent subdomains can be taken into account

(either explicitly or via variations of terminal-propagation-based
techniques [12]) to favor solutions that in addition to minimizing
the cut also reduce these subdomain degrees. However, the limita-
tion of such approaches is that they end-up over-constraining the
problem because not only they try to reduce the maximum sub-
domain degree of the final � -way partitioning, but they also try to
reduce the maximum degree of the intermediate lower- � partition-
ing solutions.

For this reason, approaches based on direct � -way partitioning are
better suited for the problem of minimizing the maximum subdo-
main degree, as they provide a concurrent view of the entire � -way
partitioning solution. The ability of direct � -way partitioning to
optimize objective functions that depend on knowing how the hy-
peredges are partitioned across all � partitions has been recognized
by various researchers, and a number of different algorithms have
been developed to minimize objective functions such as the sum-
of-external-degrees, scaled cost, absorption etc. [21, 5, 7, 17, 25]).
Moreover, direct � -way partitioning can potentially produce much
better solutions than a method that computes a � -way partitioning
via recursive bisection. In fact, in the context of a certain classes
of graphs it was shown that recursive bisectioning can be up to anQ �RKMLGNTSU� factor worse than the optimal solution [24].

However, despite the inherent advantage of direct � -way partition-
ing to naturally model much more complex objectives, and the
theoretical results which suggest that it can lead to superior par-
titioning solutions, a number of studies have shown that existing
direct � -way partitioning algorithms for hypergraphs, produce so-
lutions that are in general inferior to those produced via recursive
bisectioning [21, 7, 17, 25]. The primary reason for that is the fact
that computationally efficient � -way partitioning refinement algo-
rithms are often trapped into local minima, and usually require
much more sophisticated and expensive optimizers to climb out of
them.

To overcome these conflicting requirements and characteristics,
our algorithms for minimizing the maximum subdomain degree
combine the best features of the recursive bisectioning and di-
rect � -way partitioning approaches. We achieve this by treating
the minimization of the maximum subdomain degree as a post-
processing problem to be performed once a high-quality � -way
partitioning has been obtained. Specifically, we use existing state-
of-the-art multilevel-based techniques [14, 16] to obtain an initial
� -way solution via repeated bisectioning, and then refine this so-
lution using various � -way partitioning refinement algorithms that
(i) explicitly minimize the maximum subdomain degree, (ii) en-
sure that the cut does not significantly increase, and (iii) ensure
that the balancing constraints of the resulting � -way partitioning
are satisfied.

This approach has a number of inherent advantages. First, by
building upon a cut-based � -way partitioning, it leverages the huge
body of existing research on this topic, and it can benefit from fu-
ture improvements. Second, in terms of cut, its initial � -way so-
lution is of extremely high-quality, thus allowing us to primarily
focus on minimizing the maximum subdomain degree without be-
ing overly concerned about the cut of the final solution (as long
as the partitioning is not significantly perturbed). Third, it allows
for a user-adjustable and predictable framework in which the user
can specify how much (if any) deterioration on the cut he or she

is willing to tolerate in order to reduce the maximum subdomain
degree.

To actually perform the maximum subdomain-degree focused � -
way refinement we developed two classes of algorithms. Both of
them treat the problem as a multi-objective optimization problem
but they differ on the starting point of that refinement. Details
on the exact multi-objective formulation and the refinement algo-
rithms are provided in the rest of this section.

3.1 Multi-Objective Formulation
In general, the objectives of producing a � -way partitioning that
both minimizes the cut and the maximum subdomain degree are
reasonably well correlated with each other, as partitionings with
low cuts will also tend to have low maximum subdomain degrees.
However, this correlation is not perfect, and these two objectives
can actually be at odds with each other. That is, a reduction in
the maximum subdomain degree may only be achieved if the cut
of the partitioning is increased. This situation arises with vertices
that are adjacent to vertices that belong to more than two subdo-
mains. For example, consider a vertex � that belongs to the max-
imum degree partition 	 & and let 	�V and 	3W be two other parti-
tions such that � is connected to vertices in 	 & �"	�V , and 	�W . Now,
if ED VX� � �YC ID & � � �Z4\[and ED W]� � �YC ID & � � �D4^[, then the
move of � to either partitions 	$V or 	3W will increase the cut but if
ED VX� � �`_ ED W]� � �TC ID & � � �bac[, then moving � to either 	$V or
	 W will actually decrease 	 & ’s subdomain degree. Thus, in order
to develop effective algorithms that explicitly minimize the maxi-
mum subdomain degree and the cut, these two objectives need to
be coupled together into a multi-objective framework that allows
the optimization algorithm to intelligently select the preferred so-
lution.

The problem of multi-objective optimization within the context of
graph and hypergraph partitioning has been extensively studied in
the literature [22, 1, 27, 20, 19] and two general approaches have
been developed for combining multiple objectives. The first ap-
proach keeps the different objectives separate and couples them by
assigning to them different priorities. Essentially in this scheme,
a solution that optimizes the highest priority objective the most is
always preferred and the lower priority objectives are used as tie-
breakers (i.e., used to select among equivalent solutions in terms
of the higher priority objectives). The second approach creates an
explicit multi-objective function that numerically combines the in-
dividual functions. For example, a multi-objective function can
be obtained as the weighted sum of the individual objective func-
tions. In this scheme, the choice of the weight values is used to
determine the relative importance of the various objectives. One
of the advantages of such an approach is that it tends to produce
somewhat more natural and predictable solutions as it will pre-
fer solutions that to certain extent, optimize all different objective
functions.

In our algorithms we used both of these methods to combine the
two different objectives. Specifically, our priority-based scheme
produces a multi-objective solution in which the maximum sub-
domain degree is the highest priority objective and the cut is the
second highest. This choice of priorities was motivated by the fact
that within our framework, the solution is already at a local min-
ima in terms of cut; thus, focusing on the maximum subdomain
degree is a natural choice. Our combining multi-objective func-

tion couples the different objectives using the following formula

Cost �<d5� MaximumDegree) _fe5� Cut �"� (1)

where MaximumDegree is the maximum subdomain degree, Cut
is the hyperedge cut, and d and e are two user-specified weights
indicating the relative importance of these objectives. Selecting
the proper values of these parameters is, in general, problem de-
pendent. As discussed earlier, in many cases the maximum sub-
domain degree can be only reduced by increasing the overall cut
of the partitioning. As a result, in order for Equation 1 to pro-
vide meaningful maximum subdomain degree reduction, d should
be greater than e . Moreover, since the cut worsening moves that
lead to improvements in the maximum subdomain degree are those
in which the moved vertices are connected to vertices of different
partitions (i.e., corner vertices), then the ratio d`g�e should be an
increasing function on the number of partitions � ; thus, allowing
for the movement of vertices that are adjacent to many subdomains
(as long as such moves reduce the maximum subdomain degree).
The sensitivity on these parameters is further studied in the exper-
iments shown in Section 4.

In addition, in both of these schemes, we break ties in favor of so-
lutions that lead to lower sum-of-external-degrees. This was mo-
tivated by the fact that lower SOED solutions may lead to subse-
quent improvements in either one of the main objective functions.
Also, if a gain of the move is tied even after considering SOED,
the ability of the move to improve area balancing is considered for
tie breaking.

3.2 Direct Multi-Phase Refinement
Our first � -way refinement algorithm for the multi-objective prob-
lem formulations described in Section 3.1 is based on the multi-
phase refinement approach implemented by hMETIS and was ini-
tially described in [14]. The idea behind multi-phase refinement
is quite simple. It consists of two phases, namely a coarsening
and an uncoarsening phase. The uncoarsening phase is identical to
the uncoarsening phase of the multilevel hypergraph partitioning
algorithm [14]. The coarsening phase, called restricted coarsen-
ing [14], however is somewhat different, as it preserves the ini-
tial partitioning that is input to the algorithm. Given a hypergraph
� and a partitioning * , during the coarsening phase a sequence
of successively coarser hypergraphs and their partitionings is con-
structed. Let ��� & �J* & � for -h�iOG�kj(� ��� �!�ml , be the sequence of
hypergraphs and partitionings. Given a hypergraph � & and its par-
titioning * & , restricted coarsening will collapse vertices together
that belong to only one of the two partitions. The partitioning * &on �
of the next level coarser hypergraph � &pn � is computed by simply
inheriting the partition from � & . By constructing � &on � and * &on �
in this way we ensure that the number of hyperedges cut by the
partitioning is identical to the number of hyperedges cut by * & in
� & . The set of vertices to be collapsed together in this restricted
coarsening scheme can be selected by using any of the coarsening
schemes that have been previously developed [14]. In our algo-
rithm, we use the first-choice scheme described in [17], as it leads
to the best overall solutions [16].

Due to the randomization in the coarsening phase, successive runs
of the multi-phase refinement algorithm can lead to additional im-
provements of the partitioning solution. For this reason, in our
algorithm we perform multiple such iterations and the entire pro-
cess is stopped when the solution quality does not improve in suc-

cessive iterations. Such an approach is identical to the 	 -cycle
refinement algorithm used by hMETIS [16].

The actual � -way partitioning refinement at a given level during
the uncoarsening phase is performed using a greedy algorithm that
is motivated by a similar algorithm using in the direct � -way par-
titioning algorithm of hMETIS. More precisely, the greedy � -way
refinement algorithm works as follows. Consider a hypergraph
�6�H�
	����� , and its partitioning vector * . The vertices are visited
in a random order. Let � be such a vertex, let *,+ � .q�sr be the
partition that � belongs to. If � is a node internal to partition r
then � is not moved. If � is at the boundary of the partition, then� can potentially be moved to one of the partitions tu� � � that ver-
tices adjacent to � belong to (the set tu� � � is often refer to as the
neighborhood of �). Let twv�� � � be the subset of tf� � � that contains
all partitions x such that movement of vertex � to partition x does
not violate the balancing constraint. Now the partition x � t v � � �
that leads to the greatest positive reduction in the multi-objective
function is selected and � is moved to that partition.

3.3 Aggressive Multi-Phase Refinement
One of the potential problems with the multi-objective refinement
algorithm described in Section 3.2 is that it is limited in the extent
to which it can make large-scale perturbations on the initial � -way
partitioning produced by the cut-focused recursive-bisectioning al-
gorithm. This is due to the combination of two factors. First, the
greedy, non-hill climbing nature of its refinement algorithm limits
the perturbations that are explored, and second, since it is based
on an FM-derived framework, it is constrained to make moves that
do not violate the balancing constraints of the resulting solution.
As a result (shown later in our experiments (Section 4)), it tends
to produce solutions that retain the low-cut characteristics of the
initial � -way solution, but it does not significantly reduce the max-
imum subdomain degree. Ideally, we will like a multi-objective
refinement algorithm that is capable of effectively exploring the
entire space of possible solutions in order to select the one that
best optimizes the particular multi-objective function.

Toward this goal, we developed a multi-objective refinement al-
gorithm that allows large-scale perturbations of the partitioning
produced by the recursive bisectioning algorithm. This algorithm
consists of five major steps as follows. Given the initial � -way par-
titioning, in the first step, the algorithm proceeds to further subdi-
vide each of these partitions into j]y parts (where 0 is a user speci-
fied parameter). During the second step, this j y � -way partitioning
is refined using the direct multi-phase refinement algorithm de-
scribed in Section 3.2 to optimize the particular multi-objective
function. Each of the resulting j y � partitions are then collapsed
into single nodes, that we will refer to them as macro nodes. Now,
during the third step, a � -way partitioning of these macro nodes is
computed, such that each partition has exactly j@y macro nodes. In
the fourth step, the quality in terms of the particular multi-objective
function of the resulting macro-node level partitioning is improved
using a randomized pair-wise node swapping algorithm. In this al-
gorithm, two nodes belonging to different partitions are randomly
selected and the quality of the partitioning resulting by their swap
is evaluated in terms of the particular multi-objective function. If
that swap leads to a better solution, the swap is performed, oth-
erwise it is not. Finally, in the fifth step, the macro-node based
partitioning is used to induce a partitioning of the original hyper-
graph, which is then further improved using the direct multi-phase

refinement algorithm described in Section 3.2.

The key idea in the above algorithm is the macro-node-level swapping-
based refinement algorithm. This algorithm allows us to move
large portions of the hypergraph between partitions without having
to either violate the balancing constraints or rely on a sequence of
small vertex-moves inorder to achieve the same effect. Moreover,
because by construction, each macro-node corresponds to a good
cluster (as opposed to a random collection of nodes) of roughly the
same size, such swaps can indeed lead to improved quality. Note
that the choice of the randomized swapping-based refinement ap-
proach was primarily done because of its low computational com-
plexity, and in principle, Kernighan-Lin-based direct � -way refine-
ment algorithms can be used instead.

One of the key elements of this aggressive refinement algorithm
is the method used to obtain the initial � -way partitioning of the
macro-nodes. In our study we implemented two different approaches
for computing that partitioning. The first approach focuses on
computing an initial partitioning that has low cut, by inheriting the
original � -way partitioning of the hypergraph. We will refer to this
as the Cut-Focused Macro-Node Partitioning approach. On the
other hand, the second approach focuses on computing an initial
partitioning that has low maximum subdomain degree by greedily
combining macro-nodes that lead to the smallest maximum sub-
domain degree. For 0z�sO , this combining is done by sorting all
possible pairings of macro-nodes in increasing order of their re-
sulting subdomain degree, and then traversing the list in that order
to identify the pairs of unmatched macro-nodes to form the initial
partitioning. When 0`a6O , such an approach is not computationally
feasible and for this reason we repeatedly apply the above scheme
0 times. We will refer to this as the Max-Degree-Focused Macro-
Node Partitioning approach.

Finally, the key parameter of this scheme is the value of 0 , which
controls the granularity of the macro-nodes that are used. In par-
ticular, the effectiveness of the randomized swapping-based refine-
ment can be affected both for small as well as large values of 0 .
Small values may lead to large macro-nodes whose swaps do not
improve the quality, whereas large values may lead to small macro-
nodes that require a coordinated sequence of swaps (which are not
performed by our greedy algorithm) to achieve the desired pertur-
bations. Moreover, large values of 0 have the additional drawback
of increasing the overall runtime of the algorithm as it requires
more time to obtain the initial clusters and more refinement time.
Fortunately, the fact that the resulting solution is refined at the end
using the direct multi-phase refinement algorithm allows this ap-
proach to use reasonably small values of 0 and still achieve good
results (as the experiments in Section 4 show) because the final
multi-phase refinement step is capable of performing the type of
perturbations that will be performed for large values of 0 . In par-
ticular, our experiments show that 0{�|j leads to the best overall
results.

4. EXPERIMENTAL RESULTS
We experimentally evaluated our multi-objective partitioning al-
gorithms on the 18 hypergraphs that are part of the ISPD98 circuit
partitioning benchmark suite [3]. The characteristics of these hy-
pergraphs are shown in Table 2. For each of these circuits, we com-
puted a 4-, 8-, 16-, 32-, and 64-way partitioning solution using the
recursive bisection-based partitioning routine of hMETIS 1.5.3 [16]

and the various algorithms that we developed for minimizing the
maximum subdomain degree. The hMETIS solutions were obtained
by using a 49–51 bisection balance constraint and hMETIS’s default
set of parameters. Since these balance constraints are specified at
each bisection level, the final � -way partitioning may have a some-
what higher load imbalance. To ensure that the results produced
by our algorithm can be easily compared against those produced
by hMETIS, we used the resulting minimum and maximum parti-
tion sizes obtained by hMETIS as the balancing constraints for our
multi-objective � -way refinement algorithm.

Benchmark No. of vertices No. of hyperedges
ibm01 12506 14111
ibm02 19342 19584
ibm03 22853 27401
ibm04 27220 31970
ibm05 28146 28446
ibm06 32332 34826
ibm07 45639 48117
ibm08 51023 50513
ibm09 53110 60902
ibm10 68685 75196
ibm11 70152 81454
ibm12 70439 77240
ibm13 83709 99666
ibm14 147088 152772
ibm15 161187 186608
ibm16 182980 190048
ibm17 184752 189581
ibm18 210341 201920

Table 2: The characteristics of the hypergraphs used to evalu-
ate our algorithm.

The quality of the solutions produced by our algorithm and those
produced by hMETIS were evaluated by looking at three different
quality measures, which are the maximum subdomain degree, the
cut, and the average subdomain degree. To ensure the statistical
significance of our experimental results, these measures were aver-
aged over ten different runs for each particular set of experiments.

Furthermore, due to space constraints, our comparisons against
hMETIS are presented in a summary form, which shows the rela-
tive maximum subdomain degree (RMax), relative cut (RCut), and
relative average degree (RDeg) achieved by our algorithms over
those achieved by hMETIS averaged over the entire set of 18 bench-
marks. To ensure the meaningful averaging of these ratios, we first
took their KMLGN � -values, calculated their mean } , and then used j]~
as their average. This method ensures that ratios corresponding to
comparable degradations or improvements (i.e., ratios that are less
than or greater than one) are given equal importance.

4.1 Direct Multi-Phase Refinement
Our first set of experiments was focused on evaluating the effec-
tiveness of the direct multi-phase refinement algorithm described
in Section 3.2. Toward this goal we performed a series of ex-
periments using both formulations of the multi-objective problem
definition described in Section 3.1. The performance achieved in
these experiments relative to those obtained by hMETIS’s recursive
bisectioning algorithm is shown in Table 3. Specifically, this ta-
ble shows four sets of results. The first set uses the priority-based
multi-objective formulation whereas the remaining three sets use
Equation 1 to combine the two different objectives. The objectives

were combined using three different values of d , namely OG�kj , and
� (where � is the number of partitions that is computed), and e
was kept fixed at one.

The results of Table 3 show that irrespective of the number of
partitions or the particular multi-objective formulation, the direct
multi-phase refinement algorithm produces solutions whose aver-
age quality along each one of the three different quality measures
is better than the corresponding solutions produced by hMETIS.
As expected, the relative improvements are higher for the maxi-
mum subdomain degree. In particular, depending on the number
of partitions, the direct multi-phase refinement algorithm reduces
the maximum subdomain degree by 5% to 15%. The relative im-
provements increase as the number of partitions increase, because
as the results in Table 1 showed, these are the partitioning solutions
in which the maximum subdomain degree is significantly higher
than the average and thus there is significantly more room for im-
provement.

Furthermore, the direct multi-phase refinement algorithm also leads
to partitionings that on the average have lower cut and average
subdomain degree. Specifically, the cut tends to improve by 1%
to 4%, whereas the average subdomain degree improves by 5%
to 13%. Finally, comparing the different multi-objective formu-
lations we can see that in general, there are very few differences
between them, with both of them leading to comparable solutions.

4.2 Aggressive Multi-Phase Refinement
Our second set of experiments was focused on evaluating the ef-
fectiveness of the aggressive multi-phase refinement algorithm de-
scribed in Section 3.3. Toward this goal we performed a series
of experiments in which we used both formulations of the multi-
objective problem definition, different values of 0 , and both meth-
ods for computing the initial macro-node level-based partitioning.
The performance achieved in these experiments relative to those
obtained by hMETIS’s recursive bisectioning algorithm is shown in
Table 4. Specifically, for each value of 0 , this table shows four sets
of results. The first two sets were obtained using the priority-based
multi-objective formulation whereas the remaining two sets used
the combining scheme. Due to space constraints, we only present
results in which the two objectives were combined using d��|� ,
and eZ��O . Finally, for each set of experiments, Table 4 shows the
results obtained for the cases in which the initial macro-node par-
titioning was computed using the cut- and the max-degree-focused
approaches.

From these results, we can observe a number of general trends
about the performance of the aggressive multi-phase refinement
algorithm and its sensitivity to the various parameters. In partic-
ular, as 0 increases from one to two (i.e., each partition is further
subdivided into two or four parts), the effectiveness of the multi-
objective partitioning algorithm to produce solutions that have lower
maximum subdomain degree compared to the solutions obtained
by hMETIS, improves. In general, for 0���O , the multi-objective al-
gorithm reduces the maximum subdomain degree by 7% to 28%,
whereas for 08��j , the corresponding improvements range from
6% to 35%. However, these improvements lead to solutions in
which the cut and the average subdomain degree obtained for 0!�6j
are somewhat higher than those obtained for 0��IO . For example,
for 0q�^O , the multi-objective algorithm is capable of improving
the cut over hMETIS by 0% to 3%, whereas for 0Y��j , the multi-

objective algorithm leads to solutions whose cut is up to 5% worse
than those obtained by hMETIS. Note that these observations are
to a large extent independent of the particular multi-objective for-
mulation or the method used to obtain the initial macro-node-level
partitioning.

For 0E��� , the trend of continuing improvements in the maxi-
mum subdomain degree does not hold, and in general, the multi-
objective algorithm leads to solutions that are worse than those
obtained for 0T�Ij . We believe that the reason for that is the fact
that, as discussed in Section 3.3, at this level of granularity, the
macro-node level swapping scheme is not very effective because it
operates on relatively small macro-nodes and requires coordinated
exchange of nodes in order to be effective. Moreover, in analyz-
ing the intermediate results we observed that as 0 becomes greater
than 2, the average degree of the intermediate solutions tends to
get much worse, which limits the ability to reduce the maximum
subdomain degree of the final solution. For example, �@� partitions
of 0q��� (induced from �]� partitions) have much worse average
degree compared to �@� partitions of 0b��j . This worse average
degree of �@� partitions (for 0����) resulted in worse maximum
subdomain degree when � partitions are formed subsequently.

Also, these results show that the aggressive multi-phase refine-
ment algorithm is to a large extent insensitive on the particular
multi-objective function and scheme used to compute the initial
macro-node partitioning. The only exception occurs for the cut-
focused initial partitioning scheme, for which the priority-based
scheme leads to consistently better solutions that those obtained
by the combined scheme. The cause of this performance differ-
ence is currently under investigation.

Finally, comparing the results obtained by the aggressive multi-
phase refinement with the corresponding results obtained by the
direct multi-phase refinement algorithm (Tables 4 and 3), we can
see that in terms of the maximum subdomain degree, the aggres-
sive scheme leads to substantially better solutions than those ob-
tained by the direct scheme, whereas in terms of the cut and the
average subdomain degree, the direct scheme is superior. These
results are in agreement with the design principles behind these
two multi-phase refinement schemes for the multi-objective opti-
mization problem at hand, and illustrate that the former is capable
of making relatively large perturbations on the initial partitioning
obtained by recursive bisectioning, as long as these perturbations
improve the multi-objective function. In general, the aggressive
multi-phase refinement scheme with 0q�^O , dominates the direct
scheme, as it leads to better improvements in terms of maximum
subdomain degree and still improves over hMETIS in terms of cut
and average degree. However, if the goal is to achieve the high-
est reduction in the maximum average degree, then the aggressive
scheme with 08��j should be the preferred choice, as it does so
with relatively little degradation on the cut.

4.3 Runtime Complexity
Table 5 shows the amount of time required by the various multi-
objective partitioning algorithms using either direct or aggressive
multi-phase refinement. For each value of � and particular multi-
objective algorithm, this table shows the total amount of time that
was required to partition all 18 benchmarks relative to the amount
of time required by hMETIS to compute the corresponding parti-
tionings. From these results we can see that the multi-objective

Prioritized Combined, �������
�h��� Combined, ���f�>�
�h��� Combined, ���f�(���h�P�
� RMax RCut RDeg RMax RCut RDeg RMax RCut RDeg RMax RCut RDeg
4 0.955 0.981 0.948 0.940 0.967 0.934 0.928 0.964 0.931 0.929 0.967 0.934
8 0.890 0.967 0.913 0.877 0.947 0.892 0.886 0.952 0.897 0.881 0.959 0.906
16 0.884 0.969 0.898 0.876 0.958 0.886 0.886 0.965 0.894 0.886 0.966 0.894
32 0.865 0.967 0.886 0.874 0.959 0.874 0.871 0.963 0.877 0.870 0.964 0.878
64 0.851 0.970 0.880 0.864 0.966 0.872 0.876 0.970 0.875 0.859 0.969 0.875

Table 3: Direct Multi-Phase Refinement Results. RMax, RCut, and RDeg are the average maximum subdomain degree, cut, and
average subdomain degree, respectively of the multi-objective solution relative to hMETIS. Numbers less than one indicate that the
multi-objective algorithm produces solutions that have lower maximum subdomain degree, cut, or average subdomain degree than
those produced by hMETIS.

� �P�
Prioritized Combined, ���f�(���h�P�

Cut-Focused Max-Degree-Focused Cut-Focused Max-Degree-Focused
� RMax RCut RDeg RMax RCut RDeg RMax RCut RDeg RMax RCut RDeg
4 0.923 0.989 0.955 0.927 0.990 0.958 0.910 0.970 0.939 0.904 0.972 0.941
8 0.842 0.984 0.934 0.838 0.995 0.945 0.832 0.974 0.923 0.834 0.992 0.943
16 0.799 0.994 0.932 0.787 1.005 0.942 0.813 0.994 0.929 0.795 1.000 0.935
32 0.757 0.991 0.919 0.754 0.993 0.923 0.797 0.992 0.919 0.758 0.991 0.917
64 0.722 0.993 0.911 0.724 0.996 0.916 0.758 0.992 0.903 0.721 0.993 0.905

� �u�
Prioritized Combined, ���f�(���h�P�

Cut-Focused Max-Degree-Focused Cut-Focused Max-Degree-Focused
� RMax RCut RDeg RMax RCut RDeg RMax RCut RDeg RMax RCut RDeg
4 0.932 0.999 0.966 0.938 1.021 0.991 0.902 0.974 0.943 0.905 0.992 0.963
8 0.824 1.011 0.963 0.825 1.046 1.004 0.821 0.994 0.945 0.814 1.041 1.001
16 0.760 1.020 0.971 0.749 1.049 1.008 0.786 1.014 0.962 0.751 1.048 1.003
32 0.702 1.021 0.969 0.693 1.041 0.991 0.741 1.019 0.958 0.689 1.033 0.976
64 0.663 1.028 0.971 0.654 1.040 0.983 0.718 1.032 0.963 0.652 1.041 0.974

� �f�
Prioritized Combined, ���f�(���h�P�

Cut-Focused Max-Degree-Focused Cut-Focused Max-Degree-Focused
� RMax RCut RDeg RMax RCut RDeg RMax RCut RDeg RMax RCut RDeg
4 0.958 1.011 0.977 1.007 1.121 1.091 0.911 0.976 0.943 0.950 1.058 1.029
8 0.847 1.006 0.957 0.848 1.119 1.088 0.834 0.988 0.937 0.842 1.109 1.073
16 0.768 1.018 0.964 0.759 1.101 1.070 0.791 1.012 0.952 0.754 1.077 1.034
32 0.720 1.020 0.968 0.697 1.095 1.059 0.759 1.023 0.964 0.700 1.064 1.010
64 0.727 1.035 0.977 0.701 1.100 1.052 0.788 1.050 0.980 0.663 1.066 1.006

Table 4: Aggressive Multi-Phase Refinement Results. RMax, RCut, and RDeg are the average maximum subdomain degree, cut,
and average subdomain degree, respectively of the multi-objective solution relative to hMETIS. Numbers less than one indicate that
the multi-objective algorithm produces solutions that have lower maximum subdomain degree, cut, or average subdomain degree
than those produced by hMETIS.

� Direct Aggres.,
� �P� Aggres.,

� �u� Aggres.,
� ���

4 1.431 2.081 2.794 3.809
8 1.399 2.151 2.990 3.924
16 1.397 2.029 3.018 3.584
32 1.450 2.018 2.763 3.599
64 1.535 2.060 3.067 4.522

Table 5: The amount of time required by the multi-objective
algorithms relative to that required by hMETIS.

algorithm that uses the direct multi-phase refinement is the least
computationally expensive and requires around 50% more time
than hMETIS does. On the other hand, the time required by the ag-
gressive multi-phase refinement schemes is somewhat higher and
increases with the value of 0 . However, even for this algorithm,
its overall computational requirements are relatively small. For in-
stance, for 0���O and 0���j (the cases in which the aggressive
multi-phase refinement scheme led to the best results) it only re-
quires two and three times more time than hMETIS, respectively.

5. CONCLUSIONS AND FUTURE WORK
In this paper we presented a family of multi-objective hypergraph
partitioning algorithms for computing � -way partitionings that si-
multaneously minimize the cut and the maximum subdomain de-
gree of the resulting partitions. Our experimental evaluation showed
that these algorithms are quite effective in optimizing these two ob-
jectives with relatively low computational requirements. The key
factor contributing to the success of these algorithms was the idea
of focusing on the maximum subdomain degree objective once a
good solution with respect to the cut has been identified. We be-
lieve that such a framework can be applied to a number of other
multi-objective problems involving objectives that are reasonably
well-correlated with each other.

This partitioning framework can easily be extended for placement.
We are currently extending this methodology for placement as well
as investigating the possibility of arbitrarily subdividing partitions
instead of j]y used here.

The multi-objective algorithms presented here can be improved
further in a number of directions. In particular, our results showed
that the aggressive multi-phase refinement approach, though promis-
ing, can lead to worse solutions for relatively large values of 0 .
Using and developing better and more powerful refinement algo-
rithms at the macro-node level can potentially address some of
these shortcomings. Also, our work so far was focused on pro-
ducing multi-objective solutions, which satisfy the same balanc-
ing constraints as those resulting from the initial recursive bisec-
tioning based solution. However, additional improvements can be
obtained by relaxing the lower-bound constraint. Our preliminary
results with such an approach appears promising.

6. REFERENCES
[1] C. Ababei, N. Selvakkumaran, K. Bazargan, and G. Karypis.

Multi-objectivecircuit partitioning for cutsize and path-based
delay minimization. In Proceedings of ICCAD, 2002. Also
available on WWW at URL http://www.cs.umn.edu/˜karypis.

[2] C. Alpert and A. Kahng. A hybrid multilevel/genetic ap-
proach for circuit partitioning. In Proceedings of the Fifth
ACM/SIGDA Physical Design Workshop, pages 100–105,
1996.

[3] C. J. Alpert. The ISPD98 circuit benchmark suite. In Proc. of
the Intl. Symposium of Physical Design, pages 80–85, 1998.

[4] C. J. Alpert, J. H. Huang, and A. B. Kahng. Multilevel circuit
partitioning. In Proc. of the 34th ACM/IEEE Design Automa-
tion Conference, 1997.

[5] C. J. Alpert and A. B. Kahng. Recent directions in netlist par-
titioning. Integration, the VLSI Journal, 19(1-2):1–81, 1995.

[6] A. E. Caldwell, A. B. Kahng, and I. L. Markov. Im-
proved algorithms for hypergraph bipartitioning. In Asia and
South Pacific Design Automation Conference, pages 661–
666, 2000.

[7] J. Cong and S. K. Lim. Multiway partitioning with pairwise
movement. In Proceedings of ICCAD, pages 512–516, 1998.

[8] J. Cong and M. L. Smith. A parallel bottom-up clustering
algorithm with applications to circuit partitioning in vlsi de-
sign. In Proc. ACM/IEEE Design Automation Conference,
pages 755–760, 1993.

[9] R. Cooley, B. Mobasher, and J. Srivastava. Web mining:
Information and pattern discovery on the world wide web.
In International Conference on Tools with Artificial Intelli-
gence, pages 558–567, Newport Beach, 1997. IEEE.

[10] C. M. Fiduccia and R. M. Mattheyses. A linear time heuris-
tic for improving network partitions. In In Proc. 19th IEEE
Design Automation Conference, pages 175–181, 1982.

[11] S. Hauck and G. Borriello. An evaluation of bipartitioning
technique. In Proc. Chapel Hill Conference on Advanced
Research in VLSI, 1995.

[12] B. Hendrickson, R. Leland, and R. V. Driessche. Enhancing
data locality by using terminal propagation. In Proceedings
of the 29th Hawaii International Conference on System Sci-
ence, 1996.

[13] G. Karypis. Multilevel hypergraph partitioning. In J. Cong
and J. Shinnerl, editors, Multilevel Optimization Methods for
VLSI, chapter 6. Kluwer Academic Publishers, Boston, MA,
2002.

[14] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Mul-
tilevel hypergraph partitioning: Application in vlsi domain.
IEEE Transactions on VLSI Systems, 20(1), 1999. A short
version appears in the proceedings of DAC 1997.

[15] G. Karypis, E. Han, and V. Kumar. Chameleon: A hierar-
chical clustering algorithm using dynamic modeling. IEEE
Computer, 32(8):68–75, 1999.

[16] G. Karypis and V. Kumar. hMETIS 1.5: A hypergraph parti-
tioning package. Technical report, Department of Computer
Science, University of Minnesota, 1998. Available on the
WWW at URL http://www.cs.umn.edu/˜metis.

[17] G. Karypis and V. Kumar. Multilevel k-way hypergraph par-
titioning. VLSI Design, 2000.

[18] B. W. Kernighan and S. Lin. An efficient heuristic procedure
for partitioning graphs. The Bell System Technical Journal,
49(2):291–307, 1970.

[19] P.Fishburn. Decision and Value Theory. J.Wiley & Sons,
New York, 1964.

[20] R.Keeney and H. Raiffa. Decisions with Multiple Objectives:
Preferences and Value Tradeoffs. J.Wiley & Sons, New York,
1976.

[21] L. Sanchis. Multiple-way network partitioning. IEEE Trans.
On Computers, 38(1):62–81, 1989.

[22] K. Schloegel, G. Karypis, and V. Kumar. A new algorithm
for multi-objective graph partitioning. In Proceedings of Eu-
roPar ’99, pages 322–331, 1999.

[23] S. Shekhar and D. R. Liu. Partitioning similarity graphs: A
framework for declustering problmes. Information Systems
Journal, 21(4), 1996.

[24] H. D. Simon and S.-H. Teng. How good is recursive bisec-
tion? Technical Report RNR-93-012, NAS Systems Divi-
sion, NASA, Moffet Field, CA, 1993.

[25] M. Wang, S. K. Lim, J. Cong, and M. Sarrafzadeh. Multi-
way partitioning using bi-partition heuristics. In Proceedings
of ASPDAC, pages 441–446. IEEE, January 2000.

[26] S. Wichlund and E. J. Aas. On Multilevel Circuit Partition-
ing. In Intl. Conference on Computer Aided Design, 1998.

[27] P. Yu. Multiple-Criteria Decision Making: Concepts, Tech-
niques, and Extensions. Plenum Press, New York, 1985.

[28] H. Zha, X. He, C. Ding, H. Simon, and M. Gu. Bipartite
graph partitioning and data clustering. In CIKM, 2001.

