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Abstract

Traditional hypergraph partitioning algorithms compute a bisection a graph such that the number of hyperedges
that are cut by the partitioning is minimized and each partition has an equal number of vertices. The task of minimizing
the cut can be considered as theobjective and the requirement that the partitions will be of the same size can be
considered as theconstraint. In this paper we extend the partitioning problem by incorporating an arbitrary number
of balancing constraints. In our formulation, a vector of weights is assigned to each vertex, and the goal is to produce
a bisection such that the partitioning satisfies a balancing constraint associated with each weight, while attempting to
minimize the cut. We present new multi-constraint hypergraph partitioning algorithms that are based on the multilevel
partitioning paradigm. We experimentally evaluate the effectiveness of our multi-constraint partitioners on a variety
of synthetically generated problems.
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1 Introduction
The traditional hypergraph bisection problem divides the vertices into two partitions such that the hyperedge-cut is
minimized and each partition has roughly an equal number of vertices (or in the case of weighted hypergraphs, the sum
of the vertex-weights in each partition is the same). The task of minimizing the cut can be considered as theobjective
and the requirement that the partitions are of the same size can be considered as theconstraint. This single-objective
single-constraint hypergraph partitioning formulation has extensive application to many areas, including VLSI design
[3], efficient storage of large databases on disks [11], and data mining [10]. Unfortunately, this problem formulation
is not sufficient to model the underlying partitioning requirements of most problems arising in VLSI design, as most
of the problems are inherently multi-objective and multi-constraint.

In this paper we present a generalized hypergraph bisection problem in which a vector of weights is assigned to each
vertex. The goal is to produce a bisection of the hypergraph such that it satisfies a balancing constraint associated with
each one of the weights, while attempting to minimize the cut (i.e., the objective function). We refer to it as amulti-
constraint hypergraph partitioning problem. This multi-constraint framework can be used to compute partitionings
for a number of interesting problems. For instance, using this framework we can compute circuit partitionings that
not only minimize the number of nets being cut, but also simultaneously balance the area, power, noise, nets, pins,
etc., of the partitions. Such partitionings have the potential of leading to better, more reliable, predictable, and robust
VLSI design methodologies. This formulation builds upon the recently developed multi-constraint formulations for
the graph partitioning problem [6] that has been shown to have extensive applications in load balancing multi-phase
and multi-physics numerical simulations on parallel computers.

We present new multi-constraint hypergraph partitioning algorithms that are based on the multilevel hypergraph
partitioning paradigm [8, 2, 12]. Our work focuses on developing new types of heuristics for coarsening, and re-
finement that are capable of successfully handling multiple constraints. We experimentally evaluate the effectiveness
of our multi-constraint partitioner on a variety of synthetically generated problems derived from the ISPD98 bench-
mark suite [1]. Our experiments show that our multilevel multi-constraint hypergraph partitioning algorithms are able
to produce high quality partitionings that satisfy the multiple balancing constraints, in a relatively small amount of
time. Comparing the quality of these multi-constraint partitionings to those of the (much easier) single-constraint
partitionings, we see that our algorithms lead to a moderate increase in the number of hyperedges that are cut by the
partitioning.

2 Multi-Constraint Bisection Definition
Consider a hypergraphG = (V, E), such that each vertexv ∈ V has a weight vectorw v of sizem associated with it,
and each hyperedgee ∈ E has a scalar weightw e. Let [li , ui ] for i = 1, 2, . . . , m, bem intervals such thatl i < ui

andli + ui = 1. Let P be a vector of size|V |, such that for each vertexv, P[v] is either one or two, depending on
which partitionv belongs to,i.e., P is the bisection vector.

We place no restrictions on the weights of the hyperedges but we will assume, without loss of generality, that the
weight vectors of the vertices satisfy the property that

∑
∀v∈V wv

i = 1.0 for i = 1, 2, . . . , m. If the vertex weights do
not satisfy the above property, we can divide eachwv

i by
∑

∀v∈V wv
i to ensure that the property is satisfied. Note that

this normalization does not in any way limit our modeling ability.
We define the multi-constraint hypergraph bisection problem as follows: Compute a bisectionP of V that mini-

mizes the hyperedge cut and at the same time, the following set of constraints is satisfied:

li ≤
∑

∀v∈V :P[v]=1

wv
i ≤ ui and li ≤

∑

∀v∈V :P[v]=2

wv
i ≤ ui for i = 1, 2, . . . , m. (1)

Definitions and Notations In this section we introduce some definitions and notations that are used through-out
the paper.

1. Given a hypergraphG = (V, E), a vector ofm weights associated with each vertex, a bisection vectorP, and
a set ofm balance-tolerance intervals[l i , ui ], we say thatP is a feasible solution for the bisection problem if
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Equation 1 is satisfied. That is, a bisection is feasible if it satisfies all the balancing constraints.

2. For each vertexv, we definegain to be the reduction in the value of the objective function (e.g., cut) achieved
by movingv from the partition that it belongs to to the other partition.

3. Given a set of objectsA such that each objectx ∈ A has a weight-vectorw x of sizem associated with it, we
definewA

i to be the sum of thei th weights of the objects in the set;i.e., w A
i = ∑

∀x∈A wx
i .

3 Multilevel Algorithm for Multi-Constraint Partitioning

During the last few years, hypergraph partitioning algorithms based on the multilevel paradigm have gained wide-
spread acceptance as they provide extremely high quality partitionings, they are very fast, and they can scale to
hypergraphs containing several hundred thousands of vertices [8, 2, 12].

Multilevel partitioning algorithms consist of three phases: (i) coarsening phase, (ii) initial partitioning phase, and
(iii) uncoarsening (or refinement) phase. During the coarsening phase, a sequence of successively coarser hypergraphs
is constructed from the original hypergraph such that the number of vertices in successive coarser hypergraphs is
smaller. In the initial partitioning phase, a partitioning of the coarsest hypergraph is computed, using a conventional
partitioning algorithm. Finally, during the uncoarsening phase, starting with the coarsest hypergraph, the partitioning
of the hypergraph is successively projected to the next level finer hypergraph, and refined using a local partitioning
refinement heuristic.

In the rest of this section, we present a multilevel recursive bisection algorithm for solving the multi-constraint
partitioning problem. In particular, we present algorithms for the three phases of the multilevel bisection algorithm,
namely coarsening, initial bisection, and bisection refinement during the uncoarsening phase.

3.1 Coarsening Phase

During the coarsening phase, a sequence of successively smaller hypergraphs is constructed by finding groups of
vertices and merging them together to form the vertices of the next level coarser hypergraph. A number of schemes
have been developed for selecting what groups of vertices will be merged together to form single vertices in the next
level coarse hypergraphs [7, 8, 2, 12]. Of these schemes, thefirst-choice (FC) scheme [7], has been experimentally
shown to produce high quality bisections.

The easiest way to understand the FC scheme is to think of the graph representation of the hypergraph, in which
each hyperedgee is replaced by a clique [9] in which each edge has a weight ofw/(|e| − 1), wherew and|e| are the
weight and the size of the original hyperedge, respectively. In the FC scheme [7], the vertices are visited in a random
order, and for each vertexv, the edge incident onv with the highest edge-weight is marked. Once all the vertices
have been visited, the unmarked edges are removed, and each one of the connected components of the resulting graph
becomes a set of vertices to be merged together.

The FC scheme tends to remove a large amount of the exposed hyperedge-weight in successive coarse hypergraphs,
and thus makes it easy to find high quality initial bisections that require little refinement during the uncoarsening phase.
In the context of multi-constraint partitioning, this feature of the FC scheme is equally applicable, and is useful for
constructing successive coarse hypergraphs. However, one can also use the coarsening process to try to reduce the
inherently difficulty of the load balancing problem due to the presence of multiple weights. In general, it is easier
to compute a balanced bisection if the values of the different elements of every weight vector are not significantly
different. In the simplest case, if for every vertexv, wv

1 = wv
2 = · · · = wv

m , then them-weight balancing problem
becomes identical to that of balancing a single weight. So during coarsening, one should try (whenever possible) to
collapse groups of vertices so as to minimize the differences among the weights of the merged vertex.

We modified the FC scheme to use such abalancing principle in the following way. Again, we visit the vertices in
a random order, but now instead of marking the edges with the heaviest weight, we first select a set of edges whose
weight is no more than 10% lower than the weight of the heaviest-weight edge, and then among them we mark the
one that will lead to the most balanced merged vertex, as defined by the ratio of the maximum weight over the average
weight of the resulting weight vector. We will refer to this scheme as thebalanced first choice scheme (BFC).
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3.2 Initial Partitioning Phase

The goal of the initial partitioning phase of a multilevel algorithm is to compute a bisection of the coarsest hypergraph
such that the balancing constraint is satisfied and the partitioning objective is optimized. In our multi-constraint par-
titioning algorithm, the bisection of the coarsest hypergraph is computed by performing multiple random bisections
followed by a multi-constraint FM refinement step (described in the next section) to improve the quality of the bisec-
tions. In particular, we perform ten different random bisections, and select the one with the smallest hyperedge cut as
the final solution. This approach is similar to that used in single-constraint multilevel hypergraph partitioning [8, 2].

3.3 Uncoarsening Phase

During the uncoarsening phase, a partitioning of the coarser hypergraph is successively projected to the next level finer
hypergraph, and a partitioning refinement algorithm is used to optimize the objective function without violating the
balancing constraints.

A class of local refinement algorithms that tend to produce very good results when the vertices have a single weight
[8], are those that are based on the FM algorithm [4]. The FM algorithm starts by inserting all the vertices into two
max-priority queues, one for each partition, according to their gains. Initially all vertices areunlocked, i.e., they are
free to move to the other partition. The algorithm iteratively selects an unlocked vertexv from the top of the priority
queue from one of the partitions (source partition) and moves it to the other partition (target partition). The source
partition is determined based on whether the current bisection is a feasible solution or not. If it is feasible, then the
partition that contains the highest gain vertex becomes the source. On the other hand, if it is not feasible (i.e., the
balancing constraint is violated), the partition that contains the largest number of vertices, becomes the source. When
a vertexv is moved, it islocked and the gain of the vertices adjacent tov are updated. After each vertex movement,
the algorithm records the value of the objective function achieved at this point and whether or not the current bisection
if feasible or not. A single pass of the algorithm ends when there are no more unlocked vertices. Then, the recorded
values of the objective function are checked, and the point where the minimum value was achieved while achieving a
feasible solution, is selected, and all vertices that were moved after that point are moved back to their original partition.
Now, this becomes the initial partitioning for the next pass of the algorithm.

This single constraint FM refinement algorithm can be directly extended when the vertices have multiple weights by
modifying the source-partition selection scheme. In this modified algorithm, the source partition is selected as follows.
If the current bisection is feasible, then similarly to the single-weight FM algorithm, the partition that contains the
highest gain vertex is selected to be the source. On the other hand, if the current bisection is infeasible, then the source
partition is determined based on which partition is the largest. However, unlike the single-weight bisection problem, in
the case of multiple weights, we may have both partitions being “overweight”, for different weights. For example for
a two-weight problem, we may have that the first partition contains more than the required total weight with respect
to the first weight, whereas the second partition contains more with respect to the second weight. In our algorithm the
source partition is the one that contains the most weight with respect to any single weight. For example, in the case of
a two-weight problem and a 45-55 balancing constraint for each one of the weights, if(.56, .40) and(.44, .60) are the
fractions of the two weights for partitionsA andB, respectively, then our algorithm will selectB to be the source, as
.60 is greater than.56 (thatA contains with respect to the first weight). We will refer to this algorithm as FM1.

One of the problems of FM1 is that it may make a large number of moves before it can reach to a feasible solution,
or in the worst case fail to reach it all together. This is because it selects the highest gain vertex, irrespective of the
relative weights of this vertex. For instance, in the previous example, we selected to move a vertex fromB, so that we
can reducewB

2 . However, the highest gain vertexv from B, may have a weight vector such thatw v
2 is much smaller

thanwv
1. As a result, in the process of trying to correct the imbalance with respect to the second weight, we may end

up worsening the imbalance with respect to the first weight. In fact, in [6] it has been shown that a scheme is not
guaranteed to reach to a feasible solution.

For this reason, we have developed a different extension of the FM algorithm called FM2, that is better suited
for refining a bisection in the presence of multiple vertex weights. This algorithm was originally proposed for the
multi-constraint graph partitioning problem [6]. In FM2, instead of maintaining one priority queue we maintainm
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queues for each one of the two partitions, wherem is the number of weights. A vertex belongs to only a single priority
queue depending on the relative order of the weights in its weight vector. In particular, a vertexv with weight vector
(wv

1, wv
2, . . . , wv

m), belongs to thej th queue ifwv
j = maxi (w

v
i ). Given these 2m queues, the algorithm starts by

initially inserting all the vertices to the appropriate queues according to their gains. Then, the algorithm proceeds by
selecting one of these 2m queues, picking the highest gain vertex from this queue, and moving it to the other partition.
The queue is selected as follows. If the current bisection represents a feasible solution, then the queue that contains
the highest gain vertex among the 2m vertices at the top of the priority queues is selected. On the other hand, if
the current bisection is infeasible, then the queue is selected depending on the relative weights of the two partitions.
Specifically, if A and B are the two partitions, then the algorithm selects the queue corresponding to the largestw x

i
with x ∈ {A, B} andi = 1, 2, . . . , m. If it happens that the selected queue is empty, then the algorithm selects a vertex
from the non-empty queue corresponding to the next heaviest weightof the same partition. For example, ifm = 3 and

(wA
1 , wA

2 , wA
3 ) = (.43, .60, .52) and (w B

1 , wB
2 , wB

3 ) = (.57, .4, .48),

the algorithm will select the second queue of partitionA. If this queue is empty, it will then try the third queue ofA,
followed by the first queue ofA. Note that we give preference to the third queue ofA as opposed to the first queue
of B, even thoughB has more of the first weight thanA does of the third. This is because our goal is to reduce the
second weight ofA. If the second queue ofA is non-empty, we will select the highest gain vertex from that queue and
move it toB. However, if this queue is empty, we still will like to decrease the second weight ofA, and the only way
to do that is to move a node fromA to B. This is why when our first-choice queue is empty, we then select the most
promising node from the same partition that this first-queue belongs to.

4 Experimental Results

We experimentally evaluated the quality of the partitionings produced by our multilevel multi-constraint hypergraph
bisection algorithm on a set of two- and three-weight problems synthetically derived from the 18 hypergraphs that are
part of the ISPD98 circuit partitioning benchmark suite [1]. The characteristics of these hypergraphs are shown in
Table 1.

Benchmark No. of vertices No. of hyperedges
ibm01 12506 14111
ibm02 19342 19584
ibm03 22853 27401
ibm04 27220 31970
ibm05 28146 28446
ibm06 32332 34826
ibm07 45639 48117
ibm08 51023 50513
ibm09 53110 60902
ibm10 68685 75196
ibm11 70152 81454
ibm12 70439 77240
ibm13 83709 99666
ibm14 147088 152772
ibm15 161187 186608
ibm16 182980 190048
ibm17 184752 189581
ibm18 210341 201920

Table 1: The characteristics of the various hypergraphs used to evaluate the multilevel hypergraph partitioning algorithms.

Our starting point for deriving the synthetic multi-weight hypergraphs was the single-weight ISPD98 circuits that
contain the actual areas for each one of the cell. For both our two- and three-weight problems, the first weight is always
equal to the actual area of the cell. The second weight for each cell was set to be equal to the number of nets that each
cell belongs to (i.e., the incident degree of each cell). In the case of the three-weight problem, the third weight was set
to be equal to the fan-out of each cell. We obtained that by assuming that the starting cell for each net in the ISPD98
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circuits, is the driving cell for this net.
In all of our experiments, we set balance tolerances to be 45-55 for each of the different vertex weights, that is

[li , ui ] = [.45, .55] for i = 1, 2, 3. We performed all of our experiments on a 450MHz Pentium III–based Linux
workstation.

4.1 Comparison of Refinement Schemes

In our first set of experiments, we compare the performance of the two different multi-constraint refinement algorithms
FM1 and FM2 described in Section 3.3. In order to isolate the effects of the multilevel paradigm, we performed these
comparisons by using these algorithms to compute a bisection of the original hypergraph, without performing any
coarsening.

Table 2 shows a variety of statistics for the two refinement algorithms for all the circuits of the ISPD98 benchmark
for two- and three-constraint problems. For each circuit we performed 50 different runs using both the FM1 and FM2
refinement algorithms. The columns labeled “Min-Cut” show the minimum cut achieved whereas the columns labeled
“Avg-Cut” show the average cut achieved over all these 50 different runs. To compare the relative performance of FM2
over FM1, we computed the statistics shown in the last two columns of Table 2. These columns where computed by
dividing the min-cut (average-cut) achieved by FM2 with the min-cut (average-cut) achieved by FM1. Any numbers
lower than 1.0, indicate that FM2 performs better than FM1. Finally, the row labeled “ARQ” shows the Average
Relative Quality of FM2 relative to FM1, and was obtained by averaging the values on the respective columns.

As we can see from this table, FM2 produces results that are better than those produced by FM1. In particular, on
the average, FM2 performs 2% better with respect to the minimum cut, and 9% better with respect to the average cut.
Looking at the individual problem instances we can see that with respect to the minimum cut, FM1 does at least 10%
worse than FM2 in 9 out of the 36 instances, whereas FM2 does at least 10% worse in 7 instances. Similarly, with
respect to the average cut, FM1 does at least 10% worse than FM2 in 19 instances, whereas FM2 does at least 10%
worse in 0 instances.

4.2 Comparison of Coarsening Schemes

In our second set of experiments, we compare the performance of the two different coarsening schemes FC and
BFC described in Section 3.1. In these experiments we used FM2 as the multi-constraint refinement algorithm in
the multilevel framework. Table 3 shows a variety of statistics for the two coarsening schemes. For each circuit we
performed 10 different runs using both the FC and BFC refinement algorithms.

As we can see from this table, there is little difference between the two coarsening schemes. BFC tends to produce
bisections that are somewhat better than those produced by FC, but the difference is quite small. In particular, on
the average BFC performs 2% better with respect to the minimum cut, and 0% better with respect to the average cut.
Looking at the individual problem instances we can see that with respect to the minimum cut, FC does at least 10%
worse than BFC in 3 out of the 36 instances, whereas BFC does at least 10% worse in 1 instances. Similarly, with
respect to the average cut, FC does at least 10% worse than BFC in 3 instances, whereas BFC does at least 10% worse
in 4 instances.

4.3 Comparison of Multilevel vs Single-level Partitioners

In our third set of experiments, we compare the performance of the FM2-based single-level multi-constraint partition-
ing algorithm against the multilevel multi-constraint partitioning algorithm that uses BFC for coarsening and FM2 for
refinement. Table 4 shows a variety of statistics for the two partitioning algorithms. For each circuit we performed 50
different runs of the single-level partitioning algorithm and 10 different runs of the multilevel partitioning algorithm.
Note that the columns labeled “Time” shows the total amount of time in seconds, required to compute all the different
bisections.

As we can see from this table, the multilevel multi-constraint partitioning algorithm performs substantially better
than the single-level partitioning algorithm. In particular, on the average the multilevel algorithm performs 29%
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FM1 FM2 FM2 relative to FM1
Circuit NCon Min-Cut Avg-Cut Min-Cut Avg-Cut Min-Cut Avg-Cut
ibm01 2 353 585.00 318 534.60 0.90 0.91
ibm01 3 515 795.20 421 659.20 0.82 0.83
ibm02 2 342 730.90 344 565.60 1.01 0.77
ibm02 3 423 827.70 314 634.30 0.74 0.77
ibm03 2 1051 1799.00 1072 1761.60 1.02 0.98
ibm03 3 1176 2165.50 1091 1837.50 0.93 0.85
ibm04 2 962 1714.50 871 1409.40 0.91 0.82
ibm04 3 1008 1842.70 945 1608.20 0.94 0.87
ibm05 2 2185 3572.70 2763 3541.20 1.26 0.99
ibm05 3 2099 3367.90 2333 3356.70 1.11 1.00
ibm06 2 972 1297.20 999 1370.30 1.03 1.06
ibm06 3 1025 1413.60 1045 1515.10 1.02 1.07
ibm07 2 1319 2212.30 1237 2139.40 0.94 0.97
ibm07 3 1241 2432.70 1317 2545.70 1.06 1.05
ibm08 2 1815 4394.20 1734 3214.10 0.96 0.73
ibm08 3 1832 3854.30 1890 2849.50 1.03 0.74
ibm09 2 1039 2711.70 1170 2248.10 1.13 0.83
ibm09 3 1627 3609.00 1663 3122.30 1.02 0.87
ibm10 2 1486 2534.90 1767 2581.00 1.19 1.02
ibm10 3 1975 3339.70 1691 2920.90 0.86 0.87
ibm11 2 1426 3657.80 1157 3196.10 0.81 0.87
ibm11 3 2089 4971.70 2039 4545.20 0.98 0.91
ibm12 2 2566 3656.60 2535 3664.70 0.99 1.00
ibm12 3 2725 5085.50 2713 3954.60 1.00 0.78
ibm13 2 1331 2261.80 1352 2422.10 1.02 1.07
ibm13 3 1330 3552.20 1451 3452.30 1.09 0.97
ibm14 2 5244 10534.90 3833 9471.40 0.73 0.90
ibm14 3 3224 7080.90 3592 6457.90 1.11 0.91
ibm15 2 4955 7994.90 4583 7690.50 0.92 0.96
ibm15 3 6511 9631.00 4842 9470.00 0.74 0.98
ibm16 2 2676 6779.40 3171 6091.50 1.18 0.90
ibm16 3 5441 9103.60 4309 7811.50 0.79 0.86
ibm17 2 3596 9066.10 3604 8467.80 1.00 0.93
ibm17 3 3921 10818.50 4873 9013.60 1.24 0.83
ibm18 2 3362 8221.50 3475 7701.50 1.03 0.94
ibm18 3 5420 8252.60 4056 8394.30 0.75 1.02
ARQ 0.98 0.91

Table 2: The performance of the FM1 and FM2 multi-constraint refinement algorithms for computing a bisection for hypergraphs
with two and three constraints. For each scheme we show the minimum and average hyperedge cut achieved in 50 different runs.
The columns labeled “FM2 relative to FM1” computes the relative minimum and average cut achieved by FM2 relative to that
achieved by FM1. The row labeled ’ARQ’ shows the Average Relative Quality of FM2 relative to FM1. For example, the ARQ value
of 0.91 for the average cut, indicates that FM2 produces partitionings that on the average they cut 9% fewer hyperedges than those
produced by FM1. The column labeled “NCon” indicates the number of balancing constraints.

better with respect to the minimum cut, and 52% better with respect to the average cut. Looking at the individual
problem instances we can see that with respect to the minimum cut, the single-level algorithm does at least 10%
worse than the multilevel algorithm in 31 out of the 36 instances, whereas the multilevel algorithm is never worse.
Similarly, with respect to the average cut, the single-level algorithm does at least 10% worse than multilevel in all 36
instances. Note that these results are consistent with similar experiments comparing the multilevel and single-level
partitioning algorithms for single constraint problems [1]. Finally, comparing the computational requirements of the
two algorithms, we can see that the multilevel algorithm is significantly faster than the single-level FM2 algorithm.
In fact comparing the total time required to partition all 36 problem instances, the single level algorithm is about 10
times slower.

4.4 Comparison of Multilevel Single- and Multi-Constraint Partitioners

In our last set of experiments, we compare the performance of our multilevel multi-constraint partitioning algorithm
against the performance ofhMETIS [5], which is a fast and high-quality single-constraint multilevel partitioning al-
gorithm. Of course,hMETIS cannot compute multi-constraint partitionings, but when applied to the original single-
constraint problem, it can provide us with some indications about the penalty associated when trying to balance
multiple constraints.
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FC+FM2 BFC+FM2 BFC relative to FC
Circuit NCon Min-Cut Avg-Cut Min-Cut Avg-Cut Min-Cut Avg-Cut
ibm01 2 305 329.7 304 332.9 1.00 1.01
ibm01 3 311 343.9 297 325.4 0.95 0.95
ibm02 2 298 330.8 299 332.3 1.00 1.00
ibm02 3 310 362.7 297 355 0.96 0.98
ibm03 2 956 961.5 957 984 1.00 1.02
ibm03 3 956 963 963 1019.9 1.01 1.06
ibm04 2 680 725.9 686 818.6 1.01 1.13
ibm04 3 690 765 716 843 1.04 1.10
ibm05 2 1710 1762.2 1747 1776.6 1.02 1.01
ibm05 3 1710 1758.6 1751 1785.3 1.02 1.02
ibm06 2 937 980.6 967 1008 1.03 1.03
ibm06 3 943 1016.8 929 1009.6 0.99 0.99
ibm07 2 1032 1044.8 1000 1044.5 0.97 1.00
ibm07 3 1026 1050.4 1013 1049.3 0.99 1.00
ibm08 2 1332 1439.6 1324 1495.5 0.99 1.04
ibm08 3 1337 1475.5 1336 1431.1 1.00 0.97
ibm09 2 687 757.7 679 813.5 0.99 1.07
ibm09 3 684 736.6 684 795.7 1.00 1.08
ibm10 2 1496 1635.5 1418 1563.6 0.95 0.96
ibm10 3 1423 1589.3 1438 2013.1 1.01 1.27
ibm11 2 975 1189.7 974 1110.2 1.00 0.93
ibm11 3 966 1067.7 963 1039.4 1.00 0.97
ibm12 2 3180 3702.9 2522 3698.1 0.79 1.00
ibm12 3 2807 3550.5 2517 3115.5 0.90 0.88
ibm13 2 882 1074 855 1009.2 0.97 0.94
ibm13 3 876 1044.3 842 877.6 0.96 0.84
ibm14 2 2007 2156.9 1970 2214.5 0.98 1.03
ibm14 3 1945 2190 1961 2168.3 1.01 0.99
ibm15 2 3948 5645.1 2712 4372.2 0.69 0.77
ibm15 3 2712 4232.2 2771 3748.7 1.02 0.89
ibm16 2 1829 2723.7 2212 2902.2 1.21 1.07
ibm16 3 2113 2356.9 2100 2611.7 0.99 1.11
ibm17 2 2436 2499.2 2305 2538.1 0.95 1.02
ibm17 3 2390 2594 2337 2613 0.98 1.01
ibm18 2 1865 2036.8 1748 1932.9 0.94 0.95
ibm18 3 1875 2085.6 1818 2043.2 0.97 0.98
ARQ 0.98 1.00

Table 3: The performance of the multi-constraint bisection algorithm using the FC and BFC coarsening schemes.

Table 5 shows a variety of statistics for the two partitioning algorithms for all the circuits of the ISPD98 benchmark
for one-, two-, and three-constraint problems. For each circuit we performed 10 different runs of the multilevel
partitioning algorithms. ForhMETIS we used the latest available version (version 1.5.3), and we used FC for coarsening,
FM for refinement, and we did not perform any V-cycle refinement. For our multi-constraint algorithm, we used
BFC for coarsening and FM2 for refinement. To compare the relative performance of multi- over single-constraint
algorithms, we computed the statistics shown in the columns labeled “Rel-Min” and “Rel-Avg”, in a fashion similar
to that we did in Section 4.1.

As we can see from this table, the bisections that satisfy multiple balancing constraints tend to cut a larger number
of hyperedges compared to the bisections that need to satisfy a single balancing constraint. In particular, for both
the two and three constraint problems, the multi-constraint bisections cut about 30% more hyperedges. This should
not be surprising, as computing a bisection that satisfies multiple balancing constraints is substantially harder than
computing a single-constraint bisection. This is because as we increase the number of constraints, the feasible solution
space becomes smaller as well as fragmented. Thus, there may be fewer high-quality bisections, and also due to the
fragmentation, it may be harder to find them. Also, the quality of the multi-constraint relative to the single-constraint
solution depends on how unbalanced the single-constraint solution is. For example, if the single-constraint bisections
produced byhMETIS for ibm04, ibm06, ibm13, and ibm16 are used to induce a bisection for the two-constraint problem,
then the balance with respect to the second weight is [.40, .60], [.01, .99], [.50, .50], and [.43, .57], respectively. As
we can see, ibm06 is the most unbalanced, which is related to the large cut obtained by the multi-constraint algorithm.
On the other hand, ibm13 happens to be balanced with respect to the second constraint, so the cut obtained by the
multi-constraint algorithm is similar to that obtained byhMETIS.

Finally, comparing the computational requirements of the two algorithms, we can see that as the number of con-
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FM2 Multilevel BFC+FM2 Multilevel relative to FM2
Circuit NCon Min-Cut Avg-Cut Time Min-Cut Avg-Cut Time Min-Cut Avg-Cut
ibm01 2 318 534.60 70.32 304 332.90 14.08 0.96 0.62
ibm01 3 421 659.20 78.40 297 325.40 15.46 0.71 0.49
ibm02 2 344 565.60 132.84 299 332.30 30.70 0.87 0.59
ibm02 3 314 634.30 150.40 297 355.00 30.99 0.95 0.56
ibm03 2 1072 1761.60 200.96 957 984.00 29.99 0.89 0.56
ibm03 3 1091 1837.50 236.74 963 1019.90 34.89 0.88 0.56
ibm04 2 871 1409.40 218.65 686 818.60 35.94 0.79 0.58
ibm04 3 945 1608.20 257.76 716 843.00 36.85 0.76 0.52
ibm05 2 2763 3541.20 299.29 1747 1776.60 50.59 0.63 0.50
ibm05 3 2333 3356.70 341.99 1751 1785.30 52.98 0.75 0.53
ibm06 2 999 1370.30 306.71 967 1008.00 52.70 0.97 0.74
ibm06 3 1045 1515.10 345.39 929 1009.60 57.76 0.89 0.67
ibm07 2 1237 2139.40 442.58 1000 1044.50 70.84 0.81 0.49
ibm07 3 1317 2545.70 483.86 1013 1049.30 70.53 0.77 0.41
ibm08 2 1734 3214.10 976.96 1324 1495.50 89.31 0.76 0.47
ibm08 3 1890 2849.50 962.48 1336 1431.10 105.98 0.71 0.50
ibm09 2 1170 2248.10 514.98 679 813.50 81.45 0.58 0.36
ibm09 3 1663 3122.30 581.44 684 795.70 85.70 0.41 0.25
ibm10 2 1767 2581.00 801.56 1418 1563.60 116.79 0.80 0.61
ibm10 3 1691 2920.90 898.22 1438 2013.10 131.27 0.85 0.69
ibm11 2 1157 3196.10 873.34 974 1110.20 107.09 0.84 0.35
ibm11 3 2039 4545.20 953.51 963 1039.40 107.42 0.47 0.23
ibm12 2 2535 3664.70 785.46 2522 3698.10 107.60 0.99 1.01
ibm12 3 2713 3954.60 832.42 2517 3115.50 122.82 0.93 0.79
ibm13 2 1352 2422.10 1006.28 855 1009.20 132.88 0.63 0.42
ibm13 3 1451 3452.30 1131.50 842 877.60 129.88 0.58 0.25
ibm14 2 3833 9471.40 2592.91 1970 2214.50 273.04 0.51 0.23
ibm14 3 3592 6457.90 2444.16 1961 2168.30 324.99 0.55 0.34
ibm15 2 4583 7690.50 2857.68 2712 4372.20 293.24 0.59 0.57
ibm15 3 4842 9470.00 3049.41 2771 3748.70 330.78 0.57 0.40
ibm16 2 3171 6091.50 2966.12 2212 2902.20 363.68 0.70 0.48
ibm16 3 4309 7811.50 3279.86 2100 2611.70 409.37 0.49 0.33
ibm17 2 3604 8467.80 3640.84 2305 2538.10 502.02 0.64 0.30
ibm17 3 4873 9013.60 3733.47 2337 2613.00 567.93 0.48 0.29
ibm18 2 3475 7701.50 6261.56 1748 1932.90 473.90 0.50 0.25
ibm18 3 4056 8394.30 6327.64 1818 2043.20 523.32 0.45 0.24
ARQ 0.71 0.48
Tot. Time 51037.69 5964.76

Table 4: The performance of the single-level and multi-level multi-constraint bisection algorithms.

straints increases, the overall amount of time required to compute the bisections also increases. However, this increase
is quite small. Comparing the total amount of time to bisect all 18 circuits, the two- and three-constraint partitioners
require 17% and 30% more time than the single-constraint algorithm, respectively.
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