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Abstract

Motivation Protein remote homology prediction and fold recogni-
tion are central problems in computational biology. Supervised learning
algorithms based on support vector machines are currently one of the
most effective methods for solving these problem. These methods are pri-
marily used to solve binary classification problems and they have not
been extensively used to solve the more general multiclass remote homol-
ogy prediction and fold recognition problems.

Methods We developed a number of methods for building SVM-
based multiclass classification schemes in the context of the SCOP pro-
tein classification. These methods includes schemes that directly build an
SVM-based multiclass model, schemes that employ a second level learn-
ing approach to combine the predictions generated by a set of binary
SVM-based classifiers, and schemes that build and combine binary clas-
sifiers for various levels of the SCOP hierarchy beyond those defining the
target classes.

Results We performed a comprehensivestudy analyzing the different
approaches using four different datasets. Our results show that most of
the proposed multiclass SVM-based classification approaches are quite
effective in solving the remote homology prediction and fold recognition
problems and that the schemes that use predictions from binary models
constructed for ancestral categories within the SCOP hierarchy tend to
qualitatively improve the prediction results.

Website: http://bioinfo.cs.umn.edu/supplements/mc-fold/

Keywords: fold recognition, remote homology, multiclass, hierar-
chical, structured learning, support vector machines.

1 Introduction

Breakthroughs in large-scale sequencing have led to a surge in the
available protein sequence information that has far out-stripped
our ability to experimentally characterize their functions. As a
result, researchers are increasingly relying on computational tech-
niques to classify proteins into functional and structural families
based solely on their primary amino acid sequences. While satis-
factory methods exist to detect homologs with high levels of sim-
ilarity, accurately detecting homologs at low levels of sequence
similarity (remote homology detection) still remains a challeng-
ing problem.

Over the years several methods have been developed to address
the problems of remote homology prediction and fold recogni-
tion. These includes methods based on pairwise sequence com-
parisons [30, 3, 28, 36], on generative models [21, 4], and on dis-
criminative classifiers [18, 25, 23, 24, 15, 16, 35, 22, 31].

Recent advances in string kernels that have been specifically
designed for protein sequences and capture their evolutionary re-
lationships [22, 31] have resulted in the development of support
vector machines-based (SVMs) [41] discriminative classifiers that
show superior performance when compared to the other meth-
ods [31].

These SVM-based approaches were designed to solve one-
versus-rest binary classification problems and to this date, they
are primarily evaluated with respect to how well each binary clas-
sifier can identify the proteins that belong to its own class (e.g.,
superfamily or fold). However, from a biologist’s perspective, the
problem that he or she is facing (and will like to solve) is that
of identifying the most likely superfamily or fold (or a short list
of candidates) that a particular protein belongs to. This is essen-
tially a multiclass classification problem, in which given a set of
K classes, we will like to assign a protein sequence to one of them.

Even though highly accurate SVM-based binary classifiers can
go a long way in addressing some of the biologist’s requirements,
it is still unknown how to best combine the predictions of a set of
SVM-based binary classifiers to solve the multiclass classification
problem and assign a protein sequence to a particular superfamily
or fold. Moreover, it is not clear, if schemes that combine binary
classifiers are inherently better suited for solving the remote ho-
mology prediction and fold recognition problems over schemes
that directly build an SVM-based multiclass classification model.

This problem was recently recognized by Ie et al. [17] and
developed schemes for combining the outputs of a set of binary
SVM-based classifiers for primarily solving the remote homol-
ogy prediction problem. Specifically borrowing ideas from error-
correcting output codes [10, 2, 8], they developed schemes that
use a separate learning step to learn how to best scale the outputs
of the binary classifiers such that when combined with a scheme
that assigns a protein to the class whose corresponding scaled bi-
nary SVM prediction is the highest, it achieves the best multiclass
prediction performance. In addition, for remote homology pre-
diction in the context of the SCOP [27] hierarchical classification
scheme, they also studied the extent to which the use of such hi-
erarchical information can further improve the performance of re-
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mote homology prediction. Their experiments showed that these
approaches lead to better results than the traditional schemes that
use either the maximum functional output [32] or those based on
fitting a sigmoid function [37].

In this paper, motivated by the positive results of Ie et al’s.
work, we further study the problem of building SVM-based mul-
ticlass classification models for remote homology prediction and
fold recognition in the context of the SCOP protein classifica-
tion scheme. We present a comprehensive study of different ap-
proaches for building such classifiers including (i) schemes that
directly build an SVM-based multiclass model, (ii) schemes that
employ a second level learner to combine the predictions gener-
ated by a set of binary SVM-based classifiers, and (iii) schemes
that build and combine binary classifiers for various levels of the
SCOP hierarchy. In addition, we present and study three different
approaches for combining the outputs of the binary classifiers that
lead to hypothesis spaces of different complexity and expressive
power.

These schemes are thoroughly evaluated for both remote
homology prediction and fold recognition using four different
datasets derived from Astral [5]. Our experimental results show
that most of the proposed multiclass SVM-based classification ap-
proaches are quite effective in solving the remote homology pre-
diction and fold recognition problems. Among them, schemes em-
ploying a two-level learning framework are in general superior to
those based on the direct SVM-based multiclass classifiers, even
though the performance achieved by the later schemes is quite re-
spectable. Our results also show that the multiclass classifiers that
use predictions from binary models constructed for ancestral cat-
egories within the SCOP hierarchy tend to qualitatively improve
the prediction results.

2 Methods

2.1 K-way Classification Problem

Given a set of m training examples {(x1, y1), . . . , (xm, ym)},
where example xi is drawn from a domain X ⊆ �n and each
of the label yi is an integer from the set Y = {1, . . . , K}, the goal
of the K-way classification problem is to learn a model that as-
signs the correct label from the set Y to an unseen test example.
This can be thought of as learning a function f : X → Y which
maps each instance x to an element y of Y .

2.2 Direct SVM-based K-way Classifier Solution

One way of solving the K-way classification problem using sup-
port vector machines is to use one of the many multiclass formula-
tions for SVMs that were developed over the years [11, 12, 42, 1,
9]. These algorithms extend the notions of separating hyperplanes
and margins and learn a model that directly separates the different
classes.

In this study we evaluate the effectiveness of one of these for-
mulations that was developed by Crammer and Singer [9], which
leads to reasonably efficient optimization problems.

This formulation aims to learn a matrixW of size K × n such

that the predicted class y∗ for an instance x is given by

y∗ =
K

argmax
i=1

{ 〈Wi, x〉 } , (1)

where Wi is the ith row of W whose dimension is n.
This formulation models each class i by its own hyperplane

(whose normal vector corresponds to the ith row of the matrix
W ) and assigns an example x to the class i that maximizes its
corresponding hyperplane distance.
W itself is learned from the training data following a maxi-

mum margin with soft constraints formulation that gives rise to
the following optimization problem [9]:

min 1
2βW

2 +
∑m

i=1 ξi,
subject to: ∀i, z 〈Wyi , xi〉 + δyi,z − 〈Wz , xi〉 ≥ 1− ξi

(2)
where ξi ≥ 0 are slack variables, β > 0 is a regularization con-
stant, and δyi,z is equal to 1 if z = yi, and 0 otherwise.

As in the binary support vector machines the dual version of
the optimization problem and the resulting classifier depends only
on the inner products, which allows us to use any of the recently
developed protein string kernels.

2.3 Merging K One-vs-Rest Binary Classifiers

An alternate way of solving the K-way classification problem in
the context of SVM is to first build a set of K one-versus-rest
binary classification models {f1, f2, . . . , fK}, use all of them to
predict an instance x, and then based on the predictions of these
base classifiers {f1(x), f2(x), . . . , fK(x)} assign x to one of the
K classes [10, 2, 37].

2.3.1 Max Classifier A common way of combining the pre-
dictions of a set of K one-versus-rest binary classifiers is to as-
sume that the K outputs are directly comparable and assign x
to the class that achieved the highest one-versus-rest prediction
value; that is, the prediction y∗ for an instance x is given by

y∗ =
K

argmax
i=1

{ fi(x) } . (3)

However, the assumption that the output scores of the different
binary classifiers are directly comparable may not be valid, as dif-
ferent classes may be of different sizes and/or less separable from
the rest of the dataset- indirectly affecting the nature of the binary
model that was learned.

2.3.2 Cascaded SVM-Learning Approaches A promis-
ing approach that has been explored in combining the outputs of
K binary classification models is to formulate it as a cascaded
learning problem in which a second level model is trained on the
outputs of the binary classifiers to correctly solve the multiclass
classification problem [17, 10, 2].

A simple model that can be learned is the scaling model in
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which the final prediction for an instance x is given by

y∗ =
K

argmax
i=1

{ wifi(x) } , (4)

where wi is a factor used to scale the functional output of the i th

classifier, and the set of K wi scaling factors make up the model
that is being learned during the second level training phase [17].
We will refer to this scheme as the scaling scheme (S).

An extension to the above scheme is to also incorporate a shift
parameter si with each of the classes and learn a model whose
prediction is given by

y∗ =
K

argmax
i=1

{ wifi(x) + si } . (5)

The motivation behind this model is to emulate the expressive
power of the z-score approach (i.e., wi = 1/σi, si = −μi/σi) but
learn these parameters using a maximum margin framework. We
will refer to this as the scale & shift (SS) model.

Finally, a significantly more complex model can be learned by
directly applying the Crammer-Singer multiclass formulation on
the outputs of the binary classifiers. Specifically, the model cor-
responds to a K × K matrix W and the final prediction is given
by

y∗ =
K

argmax
i=1

{ 〈 Wi, f(x)〉 } , (6)

where f(x) = (f1(x), f2(x), . . . , fK(x)) is the vector containing
the K outputs of the one-versus-rest binary classifiers. We will
refer to this as the Crammer-Singer (CS) model.

Comparing the scaling approach to the Crammer-Singer ap-
proach we can see that the Crammer-Singer methodology is a
more general version and should be able to learn a similar weight
vector as the scaling approach. In the scaling approach, there is
a single weight value associated with each of the classes. How-
ever, the Crammer-Singer approach has a whole weight vector of
dimensions equal to the number of features per class. During the
training stage, for the Crammer-Singer approach if all the weight
values wi,j = 0, ∀i 	= j the weight vector will be equivalent to the
scaling weight vector. Thus we would expect the Crammer-Singer
setting to fit the dataset much better during the training stage.

2.4 Use of Hierarchical Information

One of the key characteristics of remote homology prediction and
fold recognition is that the target classes are naturally organized
in a hierarchical fashion. This hierarchical organization is evident
in the tree-structured organization of the various known protein
structures that is produced by the widely used protein structure
classification schemes of SCOP [27], CATH [29] and FSSP [14].

In our study we use the SCOP classification database to define
the remote homology prediction and fold recognition problems.
SCOP organizes the proteins into four primary levels (class, fold,
superfamily, and family) based on structure and sequence similar-
ity. Within the SCOP classification, the problem of remote ho-
mology prediction corresponds to that of predicting the superfam-
ily of a particular protein under the constraint that the protein is
not similar to any of its descendant families, whereas the problem

of fold recognition corresponds to that of predicting the fold (i.e.,
second level of hierarchy) under the constraint that the protein is
not similar to any of its descendant superfamilies.1

The questions that arise are whether or not and how we can take
advantage of the fact that the target classes (either superfamilies or
folds) correspond to a level in a hierarchical classification scheme,
so as to improve the overall classification performance?

The approach investigated in this study is primarily motivated
by the different schemes presented in Section 2.3.2 to combine the
functional outputs of multiple one-versus-rest binary classifiers.
A general way of doing this is to learn a binary one-versus-rest
model for each or a subset of the nodes of the hierarchical classifi-
cation scheme, and then combine these models using an approach
similar to the CS-scheme described in Section 2.2.

For example, assume that we are trying to learn a fold-level
multiclass model with Kf folds where Ks is the number of su-
perfamilies that are descendants of these Kf folds, and Kc is the
number of classes that are ancestors in the SCOP hierarchy. Then,
we will buildKf +Ks +Kc one-versus-rest binary classifiers for
each one of the folds, superfamilies, and classes and use them to
obtain a vector ofKf +Ks +Kc predictions for a test sequence x.
Then, using the CS approach, we can learn a second level model
W of size Kf × (Kf + Ks +Kc) and use it to predict the class
of x as

y∗ =
K

argmax
i=1

{〈Wi, f(x)〉}, (7)

where f(x) is a vector of sizeKf+Ks+Kc containing the outputs
of the binary classifiers.

Note that the output space of this model is still the K f pos-
sible folds, but the model combines information both from the
fold-level binary classifiers as well as the binary classifiers for
superfamily- and class-level models.

In addition to CS-type models, the hierarchical information can
also be used to build simpler models by combining selective sub-
sets of binary classifiers. In our study we experimented with such
models by focusing only on the subsets of nodes that are char-
acteristic for each target class and are uniquely determined by it.
Specifically, given a target class (i.e., superfamily or fold), the
path starting from that node and moving upwards towards the root
of the classification hierarchy uniquely identifies a set of nodes
corresponding to higher level classes containing the target class.
For example, if the target class is a superfamily, this path will
identify the superfamily itself, its corresponding fold, and its cor-
responding class in the SCOP hierarchy.

We can construct a second level classification model by com-
bining for each target class the predictions computed by the binary
classifiers corresponding to the nodes along these paths. Specif-
ically, for the remote homology recognition problem, let K s be
the number of target superfamilies, fi(x) the prediction computed
by the ith superfamily classifier, fVf

i
(x) the prediction of the fold

classifier corresponding to the ith superfamily, and fV
c
i
(x) the

1These two constraints are important because if they are violated, then we
are actually solving either the family or remote homology prediction problems,
respectively
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prediction of the class level classifier corresponding to the ith su-
perfamily, then we can express the prediction for instance x as

y∗ =
Kf

argmax
i=1

{wifi(x) + wVf
i
fVf

i
(x) + wVc

i
fVc

i
(x)}, (8)

where wi, wVf
i

and wVc
i

are scaling factors learned during train-
ing of the second level model.

Note that the underlying model in Equation 8 is essentially
an extension of the scaling model of Equation 4 as it linearly
combines the predictions of the binary classifiers of the ancestor
nodes.

In a similar fashion, we can use the scale and shift type ap-
proach for every node in the hierarchical tree. This allows for
an extra shift parameter to be associated with each of the nodes
being modeled. Note that similar approaches can be used to de-
fine models for fold recognition, where a weight vector is learned
to combine the target fold level node along with its specific class
level node. A model can also be learned by not considering all the
levels along the paths to the root of the tree.

The generic problem of classifying within the context of a hier-
archical classification system has recently been studied by the ma-
chine learning community and a number of alternative approaches
have been developed [40, 38, 34].

2.5 Structured Output Spaces

The various models introduced in Sections 2.3.2 and 2.4 can be
expressed using a unified framework that was recently introduced
for learning in structured output spaces [40, 6, 7, 39].

This framework [40] learns a discriminant function F : X ×
Y → R over input/output pairs from which it derives predictions
by maximizing F over the response variable for a specific given
input x. Hence, the general form of the hypothesis h is

h(x; θ) = argmax
y∈Y

{F (x, y; θ)} , (9)

where θ denotes a parameter vector. Function F is a θ-
parameterized family of functions that is designed such that
F (x, y; θ) achieves the maximum value for the correct output y.
Among the various choices for F , if we focus on those that are
linear in a combined feature representation of inputs and outputs,
ψ(x, y), then Equation 9 can be rewritten as [40]:

h(x; θ) = argmax
y∈Y

{〈θ, Ψ(x, y)〉} . (10)

The specific form of Ψ depends on the nature of the problem
and it is this flexibility that allows us to represent the hypothe-
sis spaces introduced in Sections 2.3.2 and 2.4 in terms of Equa-
tion 10.

For example, consider the simple scaling scheme for the prob-
lem of fold recognition (Equation 4). The input space consists of
the f(x) vectors of the binary predictions and the output space Y
consists of the set of Kf folds (labeled from 1 . . .Kf ). Given an
example x belonging to fold i (i.e., y = i), the function Ψ(x, y)
maps the (x, y) pair onto a Kf -size vector whose ith entry (i.e.,
the entry corresponding to x’s fold) is set to f i(x) and the remain-

ing entries are set to zero. Then, from Equation 10 we have that

h(x; θ) =
Kf

argmax
i=1

{〈θ, Ψ(x, i)〉} =
Kf

argmax
i=1

{θifi(x)} , (11)

which is similar to Equation 4 with θ representing the scaling vec-
tor w.

Similarly, for the scale & shift approach (Equation 5), the
Ψ(x, y) function maps the (x, y) pair onto a feature space of size
2Kf , where the first Kf dimensions are used to encode the scal-
ing factors and the second Kf dimensions are used to encode the
shift factors. Specifically, given an example x belonging to fold
i, Ψ(x, y) maps (x, y) onto the vector whose ith entry is fi(x),
it’s (2i)th entry is one, and the remaining entries are set to zero.
Then, from Equation 10 we have that

h(x; θ) =
Kf

argmax
i=1

{〈θ,Ψ(x, i)〉}

=
Kf

argmax
i=1

{θifi(x) + θ2i} ,
(12)

which is equivalent to Equation 5, with the first half of θ corre-
sponding the scale vector w, and the second half corresponding to
the shift vector s.

Finally, in the case of the Cramer-Singer approach, the Ψ(x, y)
function maps (x, y) onto a feature space of sizeKf×Kf . Specif-
ically, given a sequence x belonging to fold i, Ψ(x, y) maps
(x, y) onto the vector whose Kf entries starting at (i− 1)Kf are
set to f(x) (i.e., the fold prediction outputs) and the remaining
(Kf − 1)Kf entries are set to zero. Then, by rewriting Equa-
tion 10 in terms of the above combined input-output representa-
tion, we get

h(x; θ) =
Kf

argmax
i=1

{〈θ,Ψ(x, i)〉}

=
Kf

argmax
i=1

{∑Kf

j=1 θ(i−1)Kf+jfj(x)
}
.

(13)

This is equivalent to Equation 6, as θ can be viewed as the matrix
W withKf rows and Kf columns.

2.5.1 Ranking Perceptron. One way of learning θ in
Equation 10, is to use the recently developed extension to Rosen-
blatt’s linear perceptron classifier [33], called ranking percep-
tron [6]. This is an online learning algorithm that iteratively up-
dates θ for each training example that is misclassified according
to Equation 10. For each misclassified example xi, θ is updated
by adding to it a multiple of (Ψ(x i, yi)− Ψ(xi, y

∗
i )), where y∗i is

given from Equation 10 (i.e., the erroneously predicted class for
xi). This online learning framework is identical to that used in
standard perceptron learning and is known to converge when the
examples are linearly separable. However this convergence prop-
erty does not hold when the examples are not linearly separable.

For our study, we have extended the ranking perceptron algo-
rithm to follow a large margin classification principle whose goal
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Algorithm 1 Learning Weight Vectors with the ranking percep-
tron algorithm

Input: m: Number of Training Samples.
(x, y): Training Samples.
β: User constant to control separation constraints.
α: Learning rate.

Output: θ: Weight Vector.
1: θ ← 0
2: while STOPPING CRITERION = false do
3: for i = 1 to m do
4: y∗i = argmaxy∈Y〈θ,Ψ(xi, y)〉
5: if y∗i = yi then
6: y∗i = argmaxy∈Y/yi

〈θ,Ψ(xi, y)〉
7: end if
8: if 〈θ,Ψ(xi, yi)〉 − 〈θ,Ψ(xi, y

∗
i )〉 ≤ β‖θ‖2 then

9: θ ← θ + αΨ(xi, yi)
10: θ ← θ − αΨ(xi, y

∗
i )

11: end if
12: end for
13: end while
14: Return θ

is to learn θ that tries to satisfy the followingm constraints:

∀i 〈θ, Ψ(xi, yi)〉 − 〈θ, Ψ(xi, y
∗
i )〉 ≥ β‖θ‖2, (14)

where yi is xi’s true class and y∗i =
argmaxy∈Y/yi

{〈θ,Ψ(xi, y)〉〉}. The idea behind these con-
straints is to force the algorithm to learn a model in which the
correct predictions are well-separated from the highest scoring
incorrect predictions (i.e., those corresponding to y∗i ). The degree
of acceptable separation, which corresponds to the required
margin, is given by β‖θ‖2, where β is a user-specified constant.
Note, the margin is expressed in terms of θ’s length to ensure
that the separation constraints are invariant to simple scaling
transformations.

Algorithm 1 shows our extended ranking perceptron algorithm
that uses the constraints of Equation 14 to guide its online learn-
ing. The key steps in this algorithm are lines 8–10 that update θ
based on the satisfaction/violation of the constraints for each one
of the m training instances. Since the ranking perceptron algo-
rithm is not guaranteed to converge when the examples are not
linearly separable, Algorithm 1 incorporates an explicit stopping
criterion that after each iteration it computes the training error-rate
of θ, and terminates when θ’s error rate has not improved in 100
consecutive iterations. The algorithm returns the θ that achieved
the lowest training error rate over all iterations.

2.5.2 SVM-Struct. Recently, an efficient way of learning the
vector θ of Equation 10 has been formulated as a convex opti-
mization problem [40]. In this approach θ is learned subject to the
followingm nonlinear constraints

∀i : max
y∈Y/yi

{〈θ,Ψ(xi, y)〉} < 〈θ,Ψ(xi, yi)〉. (15)

Note, that these constraints are similar in nature to those used in
the ranking perceptron algorithm (Equation 14).

The SVM-Struct [40] algorithm, is an efficient way of solv-
ing the above optimization problem in which the m nonlinear in-
equalities are replaced by |Y| − 1 linear inequalities resulting in
a total of m(|Y| − 1) linear constraints and θ is learned using the
maximum-margin principle leading to the following hard-margin
problem [40]:

min
θ

1
2‖θ‖22

subject to 〈θ, Ψ(xi, yi) −Ψ(xi, y)〉 ≥ 1

∀i, ∀y ∈ {Y/yi}.

(16)

This hard-margin problem can be converted to a soft-margin
equivalent to allow errors in the training set. This is done by intro-
ducing a slack variable, ξ, for every nonlinear constraint of Equa-
tion 15. The soft-margin problem is expressed as [40]:

min
θ,ξ

1
2
‖θ‖22 + C

n

∑n
i=1 ξi,

subject to 〈θ, Ψ(xi, yi)−Ψ(xi, y)〉 ≥ 1− ξi
∀i, ξi ≥ 0, ∀i, ∀y ∈ {Y/yi}.

(17)

The results of classification depend on the value C which is the
misclassification cost that determines the trade-off between the
generalization capability of the model being learned and maximiz-
ing the margin. It needs to be optimized to prevent under-fitting
and over-fitting the data during the training phase.

2.6 Loss Functions

The loss function plays a key role while learning θ both the SVM-
struct and ranking perceptron optimizations. Till now, our discus-
sion focused on zero-one loss that assigns a penalty of one for a
misclassification and zero for a correct prediction.

However, in cases where the class sizes vary significantly
across the different folds, such a zero-one loss function may not
be the most appropriate as it may lead to models where the rare
class instances are often mispredicted. For this reason, an alter-
nate loss function is used, in which penalty for a misclassification
is inversely proportional to the class size. This implies that the
misclassification of examples belonging to smaller classes weigh
higher in terms of the loss. This loss function is referred to as the
balanced loss [17]. For the ranking perceptron algorithm (Algo-
rithm 1) the update rules (statements 7 and 8) need to be scaled
by the loss function. In case of the SVM-Struct formulation, the
balanced loss can be optimized by reweighting the definition of
separation which can be done indirectly by rescaling the slack
variables ξi in the constraint inequalities (Equation 17).

While using the hierarchical information in the cascaded learn-
ing approaches (Section 2.4) we experimented with a weighted
loss function where a larger penalty was assigned when the pre-
dicted label did not share the same ancestor compared to the case
when the predicted and true class labels shared the same ances-
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Table 1: Dataset Statistics.
Statistic DS1 DS2 DS3 DS4

ASTRAL filtering 90% 40% 25% 40%
Number of Sequences 2115 1119 1294 1651
Number of Folds 25 25 25 27
Number of Superfamilies 47 37 137 158
Avg. Pairwise Similarity 12.8% 11.5% 11.6% 11.4
Avg. Max. Similarity 63.5% 33.9% 32.2% 34.3
Avg. Pairwise Similarity (within folds) 25.6% 17.9% 16.7% 17.4
Avg. Pairwise Similarity (outside folds) 10.4%11.03%11.2% 11.0

The percent similarity between two sequences is computed by aligning the pair of sequences
using SW-GSM with a gap openingof 5.0 and gap extensionof 1.0. “Avg. Pairwise Similarity”
is the average of all the pairwise percent identities, “Avg. Max. Similarity” is the average of
the maximum pairwise percent identity for each sequence i.e, it measures the similarity to its
most similar sequence. The “Avg. Pairwise Similarity (within folds)” and “Avg. Pairwise
Similarity (outside folds)” is the average of the average pairwise percent sequence similarity
within the same fold and outside the fold for a given sequence.

tors. This variation did not result in an improvement compared to
the zero-one and balanced loss. Hence, we do not report results of
using such hierarchical loss functions here.

3 Materials
3.1 Dataset Description

We evaluated the performance of the various schemes on four
datasets. The first dataset, referred to as DS1, was created by
Ie et al. [17] to evaluate the performance of the multiclass classi-
fication algorithms that they developed2, whereas the other three
datasets, referred to as DS2, DS3, and DS4, were created for this
study3. The DS1 dataset was derived from SCOP 1.65, whereas
DS2–DS4 were derived from SCOP 1.67. Table 1 summarizes
the characteristics of these datasets and presents various sequence
similarity statistics.

DS1 and DS2 are designed to evaluate the performance of re-
mote homology prediction and were derived by taking only the
domains with less than 95% and 40% pairwise sequence identity
according to Astral [5], respectively. This set of domains was fur-
ther reduced by keeping only the domains belonging to folds that
(i) contained at least three superfamilies and (ii) one of these su-
perfamilies contained multiple families. For DS1, the resulting
dataset contained 2115 domains organized in 25 folds and 47 su-
perfamilies, whereas for DS2, the resulting dataset contained 1119
domains organized in 25 folds and 37 superfamilies.

DS3 and DS4 were designed to evaluate the performance of
fold recognition and were derived by taking only the domains with
less than 25% and 40% pairwise sequence identity, respectively.
This set of domains was further reduced by keeping only the do-
mains belonging to folds that (i) contained at least three superfam-
ilies and (ii) at least three of these superfamilies contained more
than three domains. For DS3, the resulting dataset contained 1294
domains organized in 25 folds and 137 superfamilies, whereas for
DS4, the resulting dataset contained 1651 domains organized in
27 folds and 158 superfamilies.

2DS1 is available at http://www1.cs.columbia.edu/compbio/code-learning/
3DS2, DS3, and DS4 are available at

http://bioinfo.cs.umn.edu/supplements/mc-fold/

3.2 Binary Classifiers

The various one-versus-rest binary classifiers were constructed
using SVMs. These classifiers used the recently developed [31]
Smith-Waterman based profile kernel function (SW-PSSM), that
has been shown to achieve the best reported results for remote ho-
mology prediction and fold recognition.

The SW-PSSM kernel computes a local alignment between
two protein sequences, in which the similarity between two se-
quence positions is determined using a PICASSO like scoring
function [13, 26], and a position independent affine gap model-
ing scheme. We use the optimized parameters for the affine gap
model (i.e gap-opening (go) and gap-extension (ge) costs), and
zero-shift (zs) for our base classifiers.

For our performance studies, we use the optimal parameter
settings of go = 3.0, ge = 0.75 and zs = 1.5 four our kernel
function to build our binary base classifiers using the widely used
SVMlight [20] program.

3.3 Direct K-way Classifier

The direct K-way classification models were built using the pub-
licly available implementation of the algorithm described in Sec-
tion 2.2 from the authors [9].

To ensure that the schemes are compared fairly, we use the
same SW-PSSM kernel function used by the binary SVM clas-
sifiers (Section 3.2). We tested the direct K-way classifiers us-
ing linear kernel functions as well, but the performance of the
SW-PSSM kernels were substantially better.

3.4 Performance Assessment Measures

We assessed the performance of final classification using zero-one
error rates (ZE), where every misclassification was penalized by
one. We also evaluated our results using a balanced error rate
(BE), which took into account the varying class size distributions.
This class-sensitive error rate had a lower penalty for misclassi-
fying a test instance belonging to a larger class. In particular the
error on each mistake is inversely proportional to the true class
size.

3.5 Training Methodology

For each dataset we separated the proteins into test and training
sets, ensuring that the test set is never used during any parts of the
learning phase.

For DS1 and DS2 (DS3 and DS4), the test set is constructed
by selecting from each superfamily (fold) all the sequences that
are part of one family (superfamily). Thus during training, the
dataset does not contain any sequences that are homologous (re-
mote homologous) to the sequences in the test set and thus allows
us to evaluate/assess remote homology prediction (fold recogni-
tion) performance.

This is a standard protocol for evaluating remote homology de-
tection and fold recognition and has been used in a number of
earlier studies [31, 35, 22, 19].

The cascaded models are trained as follows. We split the train-
ing data into 10 cross-validation sets, where we learn the binary
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models from the partitioned dataset and perform classification on
the held out set to get prediction outputs. These prediction out-
puts serve as training samples for the second level learning using
the ranking perceptron or the structured SVM algorithm. At the
final stage, we compute the prediction for our untouched dataset
evaluating the accuracies using zero-error and class size sensitive
balanced error rates.

3.6 Model Selection

The performance of SVM depends on the parameter that controls
the trade-off between the margin and the misclassification cost
(“C” parameter in SVM-Struct), whereas the performance of rank-
ing perceptron depends on the parameter β in Algorithm 1.

We perform a model selection or parameter selection step. To
perform this exercise fairly, we split our test set into two equal
halves of similar distributions, namely sets A and B. Using set A,
we vary the controlling parameters and select the best perform-
ing model for set A. We use this selected model and compute the
accuracy for set B. We repeat the above steps by switching the
roles of A and B. The final accuracy results are the average of the
two runs. While using the SVM-Struct program we let C take val-
ues from the set {0.0001, 0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2,
0.5, 1.0, 2.0, 4.0, 8.0, 10.0, 16.0, 32.0, 64.0, 128.0}. While using
the perceptron algorithm we let the margin β take values in the
set {0.0001, 0.005, 0.001, 0.05, 0.01, 0.02, 0.5, 0.1, 1.0, 2.0, 5.0,
10.0}.

4 Results

4.1 Zero-One and Balanced Error Performance

The performance of various schemes in terms of zero-one and bal-
anced error is summarized in Tables 2 and 3 for remote homology
prediction and fold recognition, respectively. The schemes that are
included in these tables are the following: (i) the MaxClassifier
(Section 2.3.1), (ii) the direct K-way classifier (Section 2.2), (iii)
the two-level learning approaches based on either the superfamily-
or fold-level binary classifiers (Section 2.3.2), and (iv) the two-
level learning approaches that also incorporate hierarchical infor-
mation (Section 2.4).

For the direct K-way and two-level learning approaches these
tables show the results obtained by optimizing both zero-one loss
(ZL) and balanced loss (BL). Note that since the MaxClassifier
relies solely on the outputs of the individual one-vs-rest binary
classifiers, it does not explicitly optimize any particular loss func-
tion.

For all two-level learning approaches (with and without hierar-
chical information) these tables show the results obtained by us-
ing the scaling (S), scale & shift (SS), and Crammer-Singer (CS)
schemes to construct the second-level classifiers.

4.1.1 Performance of Direct K-way Classifier. Com-
paring the direct K-way classifiers against the MaxClassifier ap-
proach we see that, in general, the error rates achieved by the di-
rect approach are smaller for both the remote homology prediction
and fold recognition problems. In many cases these improvements

Table 2: Percentage Error for the remote homology detection
problem.

DS1 DS2
ZE BE ZE BE

Simple Combination of Binary Outputs
MaxClassifier 14.7 30.0 21.0 29.7

Direct K-way Classifiers
ZL 13.5 24.8 20.5 26.5
BL 11.5 23.1 10.9 13.0

Two-Level Approaches
Without Hierarchy Information

Ranking Perceptron
ZL, S 10.6 18.0 11.7 16.5
ZL, SS 13.2 24.5 10.9 13.4
ZL, CS 17.0 34.3 14.2 19.4
BL, S 9.3 16.1 10.9 13.9
BL, SS 10.1 19.5 12.1 15.8
BL, CS 14.7 28.9 17.6 24.1

SVM-Struct
ZL, S 10.7 18.1 13.4 17.3
ZL, SS 12.4 23.7 13.4 17.3
ZL, CS 12.7 25.2 15.5 19.8
BL, S 9.0 15.9 11.8 15.7
BL, SS 10.7 19.9 12.1 15.1
BL, CS 11.6 19.4 13.0 16.3

With Hierarchy Information
With Fold-level Nodes

SVM-Struct
ZL, S 10.4 18.7 14.7 20.0
ZL, SS 12.4 23.7 14.7 21.4
ZL, CS 13.8 25.0 14.7 19.6
BL, S 11.2 19.6 14.7 21.4
BL, SS 10.1 19.3 12.1 16.9
BL, CS 14.7 26.0 13.0 18.2

With Fold-level and Class-level Nodes
SVM-Struct

ZL, S 10.9 19.1 12.6 17.7
ZL, SS 11.2 20.9 13.4 17.8
ZL, CS 14.1 27.6 12.6 17.1
BL, S 11.2 20.2 13.0 18.8
BL, SS 13.5 24.7 12.1 16.8
BL, CS 14.7 26.1 13.0 17.5

ZE and BE denote the zero-one error and balanced error percent rates respectively. ZL and BL
are the zero-one and balanced loss functions respectively. S, SS and CS denote the scaling,
scale & shift and Crammer-Singer schemes respectively.
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Table 3: Percentage Error for the fold recognition problem.

DS3 DS4
ZE BE ZE BE

Simple Combination of Binary Outputs
MaxClassifier 42.0 60.3 44.4 64.6

Direct K-way Classifiers
ZL 42.8 59.4 43.0 62.7
BL 38.4 52.3 40.4 56.9

Two-Level Approaches
Without Hierarchy Information

Ranking Perceptron
ZL, S 39.9 52.9 32.2 50.6
ZL, SS 38.4 51.3 27.3 44.8
ZL, CS 34.8 48.9 37.7 56.6
BL, S 39.5 48.7 32.5 48.0
BL, SS 38.8 51.0 29.0 43.0
BL, CS 37.7 49.6 36.0 49.6

SVM-Struct
ZL, S 41.3 55.2 33.7 50.0
ZL, SS 41.0 54.3 29.0 46.2
ZL, CS 36.6 49.4 32.5 49.6
BL, S 39.9 52.7 30.8 46.6
BL, SS 39.9 52.5 28.1 42.8
BL, CS 41.3 50.5 31.1 43.3

With Hierarchy Information
With Class-level Nodes

SVM-Struct
ZL, S 39.9 52.2 31.9 50.2
ZL, SS 38.4 52.9 29.3 44.6
ZL, CS 39.2 51.8 32.8 52.9
BL, S 39.2 52.4 29.9 45.0
BL, SS 38.1 51.6 29.0 41.7
BL, CS 41.7 50.9 29.9 41.7

With Superfamily-level Nodes
SVM-Struct

ZL, S 39.5 53.9 31.3 48.8
ZL, SS 39.9 53.4 31.3 48.4
ZL, CS 37.7 52.1 33.4 51.0
BL, S 40.2 52.6 30.5 44.5
BL, SS 40.6 52.7 29.3 42.8
BL, CS 38.8 48.8 31.0 44.9

With Superfamily-level and Class-level Nodes
SVM-Struct

ZL, S 39.2 52.2 27.3 41.0
ZL, SS 39.9 53.9 28.4 44.1
ZL, CS 38.8 54.7 31.3 48.0
BL, S 41.0 50.9 33.7 44.6
BL, SS 39.5 51.5 29.3 42.3
BL, CS 40.2 51.9 30.2 42.4

ZE and BE denote the zero-one error and balanced error percent rates respectively. ZL and BL
are the zero-one and balanced loss functions respectively. S, SS and CS denote the scaling,
scale & shift and Crammer-Singer schemes respectively.

are substantial. For example, The BL-optimized direct K-way
classifier achieves a 10.9% zero-one error rate for DS2 compared
to a corresponding error rate of 21.0% achieved by MaxClassifier.
The only exception is the DS3 dataset for which the MaxClassifier
achieves slightly better results in terms of ZL than the direct clas-
sifier. In addition, unlike the common belief that learning SVM-
based direct multiclass classifiers is computationally very expen-
sive, we found that the Crammer-Singer formulation that we used
to require time that is comparable to that required for building the
various binary classifiers used by the MaxClassifier approach.

4.1.2 Non-Hierarchical Two-Level Learning Ap-
proaches. Analyzing the performance of the various
two-level classifiers that do not use hierarchical information we
see that the scaling (S) and scale & shift (SS) schemes achieve
better error rates than those achieved by the Crammer-Singer
(CS) scheme. The only exception is the DS3 dataset for which
the ZL-based CS scheme achieves the best results.

Since the hypothesis space of the CS scheme is a superset of the
hypothesis spaces of the S and SS schemes, we found this result
to be surprising at first. However, in analyzing the characteristics
of the models that were learned we noticed that the reason for this
performance difference is the fact that the CS scheme tended to
overfit the data. This was evident by the fact that the CS scheme
had lower error rates on the training set than either the S or SS
schemes (results not reported here). Since CS’s linear model has
more parameters than the other two schemes, due to the fact that
the size of the training set for all three of them is the same and
rather limited, such overfitting can easily occur. We believe that
the CS scheme can potentially outperform the other two schemes
for problems in which the training set is larger, and this is some-
thing that we are currently investigating. Note that these obser-
vations regarding these three approaches hold for the two-level
approaches that use hierarchical information as well.

Comparing the performance of the S and SS schemes against
that of the direct K-way classifier we see that the two-level
schemes are somewhat worse for DS2 and DS3 and considerably
better for DS1 and DS4. In addition, they are consistently and
substantially better than the MaxClassifer approach across all four
datasets.

4.1.3 Hierarchical Two-Level Learning Approaches.
Tables 2 and 3 contains results that show the performance that
is achieved by incorporating different types of hierarchical infor-
mation in the two-level learning framework. For the remote ho-
mology prediction problem they present results that combine in-
formation from the ancestor nodes (fold and fold+class), whereas
for the fold recognition problem they present results that combine
information from ancestor nodes (class), descendant nodes (super-
family), and their combination (superfamily+class).

Analyzing the results obtained for the remote homology pre-
diction problems we see that the use of hierarchical informa-
tion does not improve the error rates. In fact, the two-level
schemes that do not use hierarchical information achieve consis-
tently smaller error rates than the ones that do. However, the sit-
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uation is different for the fold recognition problems in which the
use of hierarchical information leads to some improvements for
DS4, especially in terms of balanced error.

In terms of which hierarchical information is more beneficial,
by looking at the various results we can see that adding informa-
tion from ancestor nodes is in general better than adding informa-
tion from descendant nodes, and combining both types of infor-
mation can sometimes lead to good classification performance. In
fact, the best performance (ZE of 27.3% and BE of 41.0%) was
achieved by such a combined scheme.

4.1.4 Alternative Performance Assessment Methods.
Given a sequence x, the various classification functions that are
learned during the second-level learning (Equations 4–8) also re-
turn a ranking of the K classes. This ranking provides key infor-
mation as to what the classifier believes are the most likely classes
of x. In the case of the zero-one and balanced error only the first
class in this ranked order is considered. If it happens to be correct,
then there is no error, whereas if the highest rank class is incor-
rect, then x is considered to be mispredicted. However, from a
practical standpoint, certain mispredictions are worse than others.
For example, if x’s true class is the second ranked prediction, then
this is better than if it was the last ranked prediction.

To better understand the multiclass models produced by incor-
porating hierarchy information we analyzed the classification er-
rors of the two-level approach that does not use hierarchy infor-
mation and those produced by the approach that does in terms of
their position within the computed ranking. Due to space con-
straints, we limited our analysis to the DS3 and DS4 datasets and
the hierarchy-aware scheme that utilizes class-level information.

For each misclassified sequence xwe computed two quantities.
The first, referred to as IN, is the number of folds that are part of
the same SCOP class with x that were ranked higher than x’s true
fold. The second, referred to as OUT, is the number of folds that
are part of a different SCOP class from x that were ranked higher
than x’s true fold. The sum of the IN and OUT values for each one
of the mispredicted sequences for the various schemes are shown
in Table 4. These results show that the schemes that utilize hier-
archy information have consistently smaller IN and OUT values
and in many cases, these differences are quite substantial. The re-
duction in terms of the OUT values is general higher, indicating
that by incorporating SCOP class information, the classifiers were
able to eliminate many of the incorrect rankings that put a fold
that belongs to a different SCOP class as a better prediction than a
fold within the same SCOP class. The reduction in terms of the IN
values indicate that the classifiers utilizing hierarchy information
were able to move the correct fold higher up in the ranking. Both
of these characteristics are desirable, indicating that the use of hi-
erarchy information does lead to better classifiers, even though
they may not reduce the zero-one or the balanced error.

4.1.5 SVM-Struct versus Ranking Perceptron. For the
two-level approaches that do not use hierarchical information, Ta-
bles 2 and 3 show the error-rates achieved by both the ranking
perceptron and the SVM-struct algorithms. From these results we

Table 4: Ancestor Level Errors for the fold recognition problem.

DS3 DS4
METHOD IN OUT IN OUT

Without Hierarchy Information
ZL, S 91 411 130 506
ZL, SS 96 450 136 499
ZL, CS 91 377 134 490
BL, S 118 487 137 536
BL, SS 109 462 136 525
BL, CS 100 438 137 536

With Class-level Nodes
ZL, S 96 371 103 438
ZL, SS 94 375 102 442
ZL, CS 90 371 131 472
BL, S 93 402 118 454
BL, SS 94 389 118 454
BL, CS 104 400 118 454

IN and OUT are assessment statistics (See text for details). ZL and BL are the zero-one
and balanced loss functions respectively. S, SS and CS denote the scaling, scale & shift and
Crammer-Singer schemes respectively.

can see that for the S and SS schemes, the performance achieved
by the ranking perceptron are comparable to and in some cases
slightly better than those achieved by the SVM-struct algorithm.
However, in the case of the CS scheme, SVM-struct is superior to
the perceptron and achieves substantially smaller error rates.

This relative performance of the perceptron algorithm is both
surprising as well as expected. The surprising aspect is that it is
able to keep up with the considerably more sophisticated, math-
ematically rigorous, and computationally expensive optimizers
used in SVM-struct, which tend to converge to a local minimum
solution that is close the global minimum. However, this behav-
ior, especially when the results of the CS scheme are taken into
account, was expected because the hypothesis spaces of the S and
SS schemes are rather small (the number of variables in the S and
SS models are K and 2K, respectively) and as such the optimiza-
tion problem is relatively easy. However, in the case of the CS
scheme which is parameterized byK2 variables, the optimization
problem becomes harder, and SVM-struct’s optimization frame-
work is capable of finding a better solution.

Due to this observation we did not pursue the ranking percep-
tron algorithm any further when we considered two-level models
that incorporate hierarchy information.

4.1.6 Zero-One versus Balanced Loss. Comparing the
two different loss functions we see that for almost all schemes,
balanced loss leads to smaller zero-one and balanced error rates.
Even though this result was expected for the balanced error, for
which balanced loss was specifically designed for, its advantage
in terms of zero-one error was surprising. Determining the reason
for this behavior is currently under investigation.

4.2 Comparison with Earlier Results

As discussed in the introduction, our research in this paper was
motivated by the recent work of Ie et. al. [17] in which they looked
at the same problem of solving the K-way classification problem
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in the context of remote homology and fold recognition and pre-
sented a two-level learning approach based on the scaling scheme
(S) with and without hierarchical information. Table 5 shows the
results that were reported in their paper for the DS1 dataset for the
remote homology prediction problem. All the methods are similar
in nature with the corresponding schemes presented in Table 2.

The key differences between the methods shown in Table 5
and our corresponding methods are that (i) the one-vs-rest binary
classifiers were obtained using the profile kernel [22] whereas our
schemes used the SW-PSSM kernel, and (ii) our results have been
optimized by performing a model selection step (Section 3.6).
Comparing the performance of the MaxClassifier scheme in Ta-
bles 2 and 5 we can see that our approach achieves substantially
smaller error rates. This is a direct consequence of the fact that the
SW-PSSM kernel leads to better binary classifiers than the profile
kernel, which is in agreement with the results presented in [31].
Also, the performance of our corresponding two-level learners is
better than those shown in Table 5. We believe that this is due to
the improved binary classifiers as well as model selection.

Note that Ie et. al. [17] also presented results in which they
used the DS1 dataset for fold recognition as well. However, in
their experiments they used the same set of families that were kept
aside to evaluate the remote homology prediction performance for
assessing the performance of fold recognition. However, as was
discussed in Section 3.1, this method does not provide a represen-
tative fold recognition performance, since the test sequences are
remotely homologous to the folds that we want to predict. For this
reason, we did not use DS1 and its corresponding family-based
test set in our experiments and we cannot compare our results with
the fold-recognition results presented in [17].

Table 5: Comparative results for the remote homology detection
problem on dataset DS1

ZE BE

Simple Combination of Binary Outputs
MaxClassifier 20.7 38.0

Two-Level Approaches
Without Hierarchy Information

Ranking Perceptron
ZL, S 21.9 34.4
BL, S 21.8 36.7

SVM-Struct
ZL, S 21.8 36.7
BL, S 20.7 37.6

With Hierarchy Information
With Fold-level Nodes

Ranking Perceptron
ZL, S 23.0 37.6
BL, S 20.6 34.9

SVM-Struct
ZL, S 24.8 37.4
BL, S 20.4 37.5

ZE and BE denote the zero-one error and balanced error percent rates respectively. ZL and
BL are the zero-one and balanced loss functions respectively. S denotes the scaling scheme
results. Note these results were previously published in [17].

5 Discussion and Conclusions
The work described in this paper was designed to answer three
fundamental questions. First, whether or not SVM-based ap-
proaches that directly learn multiclass classification models can
effectively and computationally efficiently solve the problems
of remote homology prediction and fold recognition. Second,
whether or not the recently developed highly accurate binary
SVM-based one-vs-rest classifiers for remote homology predic-
tion and fold recognition can be utilized to build an equally ef-
fective multiclass prediction scheme. Third, whether or not the
incorporation of binary SVM-based prediction models for coarser
and/or finer levels of a typical protein structure hierarchical clas-
sification scheme can be used to improve the multiclass classifica-
tion performance.

The comprehensive experimental evaluation of a number of
previously developed methods or novel methods introduced in the
course of this work using four different datasets derived from the
SCOP protein structure classification scheme showed that, to a
large extent, the answer to all three of these questions to be yes.
The schemes developed in this work show that SVM-based ap-
proaches are a viable tool for developing highly effective classi-
fiers and can be used in production environments under opera-
tional requirements that better serve the needs of the biologists.
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