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Abstract

Recent increase in the number of search engines on the Web and the availability of meta search engines
that can query multiple search engines makes it important to find effective methods for combining results
coming from different sources. In this paper we introduce novel methods for reranking in a meta search
environment based on expert agreement and contents of the snippets. We also introduce an objective way
of evaluating different methods for ranking search results. Our experimental evaluation shows that some
of our methods produce rankings that are consistently better than the rankings produced by methods
that are commonly used in many meta search engines as well as rankings produced by a popular search
engine.
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1 Introduction

With the current rate of growth of the Web, most search engines are unable to index a large enough fraction
of the available web pages. Furthermore, it is becoming increasingly difficult to keep up with the rate at
which already indexed resources are updated. Heuristics used in different search engines may be dramatically
different from each other, emphasizing some aspects, de-emphasizing others, not necessarily sustaining the
same ranking quality across varying types of queries. Meta search engines have the potential of addressing
all these problems, as they combine search results from many different search engines. They can provide
better overall coverage of the web than provided by any individual search engine. They can also offer
potentially better overall rankings by taking advantage of the different heuristics that are used by different
search engines.

A key component of a meta search engine is the fusion method that merges the individual lists of
documents returned by different search engines to produce a ranked list that is presented to the user. The
overall quality of this ranking is critical, as most users tend to click on the top ranked documents ignoring
a large number of lower ranked documents. The problem of combining search results from multiple sources
is referred to as the collection fusion problem in information retrieval and some work in this area is related
to meta search ([1], [3], [2], [7]).

There are a large number of meta search engines available on the web. Due to commercial nature of most
of these systems, technical details of the underlying collection fusion methods are often unavailable. Most of
the meta search engines, for which technical details are available, use a variation of the linear combination
of scores scheme described by Vogt and Cottrell [8]. This scheme assumes availability of a weight for each
source (reflecting its importance) and a score for each document produced by a source. It uses a product of
the two to compute an overall score for each document and an overall ranking. If the weight of each source
is unknown (or is considered equal) and if the sources only provide a ranked list of documents, (but no

*A long version of this paper including detailed discussion of related work and more thorough analysis of the results with
examples is available as a techical report at http://www.cs.umn.edu/
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numerical scores), then this scheme becomes essentially equivalent to one that simply interleaves the ranked
documents produced by different sources. A few minor variations of this schemes are possible depending
upon how the duplicate documents (i.e., documents present in the output of multiple sources) are handled.

In this paper, we introduce four novel methods for fusing results from different search engines. A set of
documents that are individually considered to be important by different search engines and are similar to each
other (in content) are likely to be quite important. Furthermore, any other documents that are similar (in
content) to these documents are also important. Our experience with traditional search engines suggests that
engines that have different coverages and use different ranking heuristics may produce drastically different
results even among the top 10 to 20 documents retrieved. However, for most of the queries, many of the top
ranked documents are usually relevant to the query. Our methods analyze a small number of top ranked
documents for each search engine to find a relevant set of documents and use them to rerank all other
documents.

These new methods have been incorporated in our meta search engine, Mearf, which is accessible from
http://mearf.cs.umn.edu/. To allow reasonable response time, our implementation deals only with the
snippets returned by the search engines and not the complete documents. We compare the ranking produced
by these methods with those produced by commonly used interleaving based methods as well as Google. We
experimentally evaluated the different methods by performing a user study over the course of seven months.
Our experiments show that the proposed methods produce rankings that are consistently better than the
rankings produced by methods that are commonly used in many meta search engines as well as rankings
produced by Google.

The remaining of the paper is organized as follows: Section 2 gives an overview of the Mearf architecture,
Section 3 gives a detailed description of the fusion methods implemented in Mearf, Section 4 presents and
discusses the experimental results, and finally Section 5 summarizes the results and presents the conclusions.

2 Mearf Framework

Mearf is a typical meta search engine augmented with text processing abilities. Its user interface consists of
a CGI program that allows to input a query string, and select a subset of the supported search engines.
Once a query is submitted to Mearf, its search engine interface module connects to the selected subset of
search engines, obtains their results in the html format, parses them, removes advertisements, and extracts
and returns the actual links. Note that if the number of links to be retrieved is larger than a given search
engine’s link increment value, multiple html pages are retrieved until either search engine’s results are
depleted or until the requested number of links are retrieved. The search engine interface module basically
handles all communications to the search engines. To expedite retrieval, it opens multiple connections via
multi-threading. For each link, the associated url, url title, and snippet information is passed on to the text
processing module. This module processes url titles and snippets (stop list, stemming, tf-idf normalization)



to form a sparse vector for each link to be used in vector-space model operations in the reranking module.
Once the duplicates are removed and a reranking method is applied, results are presented to the user.

We have a dictionary consisting of about 46,000 stemmed words and an augmented stop list, both geared
for html and snippet domain. If a term does not appear in our dictionary but appears in the query, it is
assumed to be a rare term and gets assigned a predetermined important idf value, if a term is neither in
the query nor in the dictionary, or if it is in the stop list but not in the query, it is ignored. We normalize
each vector using 2-norm. We implemented sparse vector, html and text processing modules handling all
html to text conversions, word stemming (a variation of Porter’s stemming algorithm), text to sparse vector
conversions, and operations on sparse vectors. All of these modules, including multithreaded html retrieving
and search engine interfacing, are written in C++, balancing efficiency, flexibility and ease of maintenance.

Mearf uses a very robust duplicate removal scheme. It is able to detect a very large majority of duplicate
URLSs and/or mirrors with very few false positives. Although it is possible to merge different URLs if their
snippets are very similar (for example updated version vs older version of the same web page), these cases
are rare, and benefits of a decent duplicate removal scheme outweighs the loses.

With this framework we are able to extract and process hundreds of links per search engine, and most
search engines are willing to supply a maximum of 300 to 800 links to a regular user. Default behavior of
Mearf is to forward the query to four or five search engines, and retrieve from each 20 links. For a typical
query, after the duplicates are removed, we are left with about 60 to 80 unique links. We believe that most
users would not go beyond this number for most queries.

3 Ranking Methods

Unlike many meta search engines, the fusion methods used in Mearf do not solely rely on the original
scores and/or the order of the links returned by the search engines. Mearf implements six different methods
for fusing together the results of the different search engines. The first two methods, called Interleave and
Agreement, implement variations of widely used existing schemes([8], [6], [5]). In the remaining four methods,
called Centroid, WCentroid, BestSim, and BestMSim, we first find a set of relevant documents and rerank all
the documents based on their cosine similarity to a vector obtained from the relevant set. Original rankings
do play a role in the selection of the relevant set but the set produced for each method is different.

The key motivation behind the new methods implemented in Mearf is that the different search engines
can be thought of as experts, and the set of documents that they returned can be considered as their expert
answers on the particular query. The key assumption is that answers for which different experts agree on
are more likely to be relevant than answers for which there is little agrement among experts.

Let us first introduce some of the notation used in describing the methods, then we will explain each
method, starting from the naive ones.

3.1 Notations

In search engine results, a link (or a document) consists of a triplet (url, url title, snippet). In Mearf we
augment this with a sparse vector by processing the url title and the snippet. Thus a link forms a quadruple
(url, url title, snippet, vector). We will use the notation If to denote the i*" link from search engine s and
vector(l) to denote the sparse vector of link I.

A permutation p(possi, possz, ..., P0Ssy,) of size n is defined to be an n-tuple of positive integers, and an
entry posg; denotes a position of a link from search engine i, where n is the number of search engines used
in the query. For example if we have four search engines the permutation p(1, 6,5, 3) states that we selected
the 1%¢ link from search engine 1, 6t* link from search engine 2, 5!* link from search engine 3, and 3t link
from search engine 4.

A range selection rs(setsy, setse, setss, ..., Setsy,) of size n applied to permutations of size n is used to put
a limit on the allowed permutations of size n for a given context.

Each sety; is a set of positive integers and a permutation p(possi, possa, ..., Possy ) restricted with a range
selection rs(sets1, setga, Setss, ..., S€tsp)

is valid only if Vi, (i € [1,n] Ai € N) = pos; € set; where N is the set of positive integers.

Note that for a given range selection rs(setsy, setsa, seétss, ..., Setsp), the number of valid permutations is:



|setsi| % |setsa| X [setss| X ... X |sets,| where |set;| denotes the cardinality of set set;.

The rank of a particular link in a given search engine, is the position of the link in the results for that
search engine. We will use the notation score(l) to denote the relevance measure of a link [ calculated by
Mearf using one of the methods, higher values denoting better relevance. Score of a link is a real number in
the range [0, 1] in all but one method (in the Agreement method, the possible range is theoretically [0, n],
where n is the number of search engines, maximum value occurring only if all n search engines report the
same url in their first position).

3.2 Interleave

Interleaving is probably the simplest method one might think in information fusion. In this method, we just
interleave the results coming from different search engines, visiting result sets of search engines one by one for
each rank: take the firsts from all search engines, seconds from all, thirds from all and so on. If the current
link from a search engine is a duplicate of a previously visited link, we skip this link and go on to the next
search engine. Note that in this method, duplicate links are reported only when the first occurrence is seen.
If the individual rankings of the search engines are perfect and each search engine is equally suited to the
query, this method should produce the best ranking. Interleave method corresponds to linear combination
of scores scheme [8] with equal server weights, taking the best score in case of duplicates. The following
pseudo-code outlines the Interleave method.

let n be the number of links to be retrieved from each engine
let results be an empty array of links
fori=1ton
for s = 1 to number of_search_engines
if I exists and is not a duplicate of links in results
insert I§ at the end of results.
return results

3.3 Agreement

In the interleaving method, if a link occurs in multiple search engines, we selected the best rank and ignored
the others. However one might suggest that a link occurring in multiple search engines can be more important
compared to the ones occurring in just one at similar ranks. For instance a link that has 37¢, 2" 274 and
374 ranks in four different search engines respectively, may be a better link than the one that has 1%¢ or 274
rank in one search engine only. To improve the rankings of this type of documents, we implemented the
“Agreement” scheme that is described in the following pseudo-code.

let results be an empty array of links

for each link /§
score(lf) = [1/rank(l{, s)]°

while there are duplicate links across search engines
merge the links by adding up their scores

add all links to results

sort links in results according to their scores

return results

Where ¢ is a parameter that can be used in controlling how much boost a link will get if it occurred
multiple times. As an example: if ¢ is 1 and a link occurring at 4** rank in two search engines, will have
a rank of % + i = % making it equal in score to a link occurring at 2"? position, and better than any
link occurring at 3"¢ position in a single search engine only. If ¢ were 0.5, if we do the same calculation:
%+% = 1, we see that now it has precedence against 2" and higher placed single links. If ¢ is small, emphasis

on agreement, is increased, if it is large, this effect is reduced. Another way to control how agreement affects



the results might be to use ¢ = 1 but give different weights to duplicate ranks according to the number of
duplicates across search engines. Yet another way, is to adjust weights according not only to the number
of duplicates but also to the ranks of each duplicate. In our current implementation we are adding up the
ranks with parameter ¢ set to 1. Note that this method is very similar to the linear combination of scores
scheme [8] with equal server weights, in which scores of the duplicates are summed.

3.4 Centroid

We developed two methods based on centroids: Centroid and W (eighted)Centroid. In both of them, the key
idea is that the first £ links coming from each search engine can be trusted to be relevant to the query. In
the Centroid method we find the average (or centroid) of the vectors of the first & links reported from each
search engine, and rank all the links using the cosine measure of its vector to the centroid vector calculated.

let k£ be the number of top links that should be considered in ranking
let centroid be an empty sparse vector
let results be an empty array of links
for s = 1 to number_of_search_engines

fori=1tok

if I{ exists
centroid = centroid + vector(l3)

centroid = centroid/|centroid|s
for each link /§

score(li) = vector(l7) - centroid
while there are duplicate links across search engines

merge duplicates by taking the maximum of the scores of duplicates
add all links to results
sort links in results according to their scores
return results

3.5 W<Centroid

The previous method did not consider rank of the links in the search engines. Another approach is to weight
the links according to the place of the links in the search engines. The first links will be given higher weights,
and we will decay the weights of the links according to their place in top k. We used a linearly decaying
weighting function starting with 1 at the 1 rank, and min_val at the kt* rank, where min_val is a value
between 0 and 1. If min_val is set to 1, it becomes equivalent to the Centroid method. We suggest a value
between 0.25 and 0.5, if k is small (about 5), and a value between 0 and 0.25, if k is larger. Although we
tried non-linear weighting functions, we found this approach to be simple and effective for the ranges of k
used in Mearf.

let k be the number of top links that should be considered in ranking
let centroid be an empty sparse vector
let results be an empty array of links
for s = 1 to number_of_search_engines

fori=1tok

if I3 exists
centroid = centroid + vector(l§) - [1 — (l_l)(l_kw]

centroid = centroid/|centroid|z
for each link I}

score(l3) = vector(l) - centroid
while there are duplicate links across search engines

merge duplicates by taking the maximum of the scores of duplicates



add all links to results
sort links in results according to their scores
return results

Weighted centroid method can be considered as a method using a relevance set with each item weighted
differently according to some criteria instead of being treated equally. In our case the weights are obtained
according to the rank of the links in the search engine they are coming from.

3.6 BestSim

The two centroid methods used search engines’ rankings in selecting the relevant set used in reranking.
BestSim and BestMSim schemes use a slightly different approach. We also consider the top k links from
each search engine but the relevant set is not all the first k links, but a subset of them selected according to
the contents of the links. In BestSim method, we are trying to find a link from each source so that the tuple
of links selected has the maximum self similarity. More formally:

We are considering all permutations p(poss1, possa, ..., P0Ssn) restricted with a range selection

rs({1,2,...,k}, {1,2,...,k}, ..., {1,2,...,k}), and find the best permutation bp(ry,rs,...,7s) where the self-
similarity of the vectors of the links l,l,1 , lfQ, ...,I7_ is maximum among all possible permutations.

The rationale behind both BestSim and BestMSim methods is to use expert agreement in content to
select the relevant set.

let current_best = —1
for each search engine ¢
set; = {1, 2, ..., min(k, number_of links_returned(i) }
if all set;s are empty
return nil
for each valid permutation p(r1,r2,...,7s) under rs(set,, set,, ..., sets)
centroid = ivector(lii)
if |centroid|12 1>current_best
current_best = |centroid|z
best_centroid = centroid
best_centroid = best_centroid/|best_centroid|z
for each link I}
score(li) = vector(l§) - best_centroid
while there are duplicate links across search engines
merge duplicates by taking the maximum of the scores of duplicates
add all links to results
sort links in results according to their scores
return results

3.7 BestMSim

This method is similar to BestSim method, but instead of looking for a single permutation with best self
similarity we are trying to find the first m best permutations. In the beginning we consider the first k links
from each search engine, find the permutation with highest self similarity, record it, remove the links selected
from candidate sets, and augment them by the next available links (k + 1). After doing this m times, we
obtain the relevance set. Note that a link from each search engine can only appear in one of the permutations.
For instance, let us suppose that we start with 5 links from each search engine (links 1,2,3,4,5) and selected
the 1%¢ from 1% engine, 3"¢ from 2"¢ engine, 5t* from 4" engine. For the second iteration, we will consider
links numbered 2,3,4,5,6 from first engine, 1,2,4,5,6 from the second one, 1,2,4,5,6 from the third one and so
on in selecting the next best similarity, we continue until we find m tuples or run out of links.



let ranking_vector be an empty sparse vector
fori=1tos
set; = {1, 2, ..., min(k, number of links_returned(i) }
fori=0tom—1 (%)
for each valid permutation p(r1,72,...,7s) under rs(set,, set,, ..., sets)
centroid = ivector(lii)
if |centroid|l2 1> current_best
current_best = |centroid|z
best_centroid = centoid
forj=1tos
index[j] = r;
for j=1tos
set; = set; — {index[j]}
set; = set; + {(k +14)}
ranking_vector = ranking_vector + best_centroid/|best_centroid|»
ranking_vector = ranking_vector [|ranking_vector|2
for each link /§
score(l3) = vector(li) - ranking_vector
while there are duplicate links across search engines
merge duplicates by taking the maximum of the scores of duplicates
add all links to results
sort links in results according to their scores
return results

A variation for BestMSim is to weight the vectors of links in each permutation among the m permutations
found according to the similarity measure of the permutation, this approach gives better emphasis on more
coherent permutations. Yet another approach is to use a decaying weight function assigned to each permu-
tation number, first one getting a weight of 1, and linearly decaying the weights up to the m** permutation,
analogous to centroid - weighted centroid schemes, decaying the weights as 4 in loop (*) increases.

4 Experimental Methodology and Results
4.1 Methodology

Although it is possible to compare the results produced by different methods visually by trying different
queries, we felt that any subjective method would not be conclusive in comparing the methods. For this
reason we evaluated the performance by studying how users interact with the fusions produced by different
schemes. In particular we evaluated the different schemes by comparing the ranks of the documents in
the final list that the user found relevant. To determine the relevance of a document we used the implicit
relevance indication provided by whether or not the user clicked (i.e., decided to view) a particular document.
Even though this approach is far from perfect, previous research [4] has shown it to be reasonably accurate,
especially when good snippets are used to describe the documents.

To generate enough traffic and to encourage people to use Mearf, we advertised it in our department home-
page by putting a small search box, forwarding the query to Mearf’s own page (http://mearf.cs.umn.edu/).
While in Mearf, the user is only allowed to select which search engines to use, but he/she has no control of
any of the parameters in Mearf. Once a user types a query and hits the “go” button, Mearf issues parallel
queries to the different search engines and then randomly selects one of the different fusion methods described
in Section 3 to rank the results. The number of documents requested from each of the search engines was
fixed to 20. The results are displayed back to the user in a single page, using a compact presentation fitting
about 20 links in a typical browser page. Note that in order to evaluate the different fusion methods in an
unbiased way, the standard interface of Mearf does not allow the user to specify or know which one of the
different methods is used to rank the results. To evaluate the quality of the rankings produced by Mearf,



total number of queries 9377 method avg number of number | number
number of queries with clicks 5746 results per query | of queries | of clicks
number of clicks 18998 Interleave 62.64 1530 3015
avg clicks per query 2.03 Agreement 62.09 655 1241
avg clicks per query ignoring 3.31 Centroid 62.37 1817 3537
queries without clicks WCentroid 62.66 871 1912
avg retrieval time (seconds) 2.17 BestSim 62.37 1941 3754
avg processing time 0.38 BestMSim 61.86 1771 3788
avg total time per query 2.55 Google 46.33 792 1751
1(a) 1(b)

Table 1: Overall characteristics of the dataset

we added another “fusion” scheme that uses only Google with its original rankings. That is, some of the
queries that the user makes in Mearf is nothing more than a search using Google.

For each query, Mearf records a number of statistics, including the query text itself, the fusion method
that was randomly selected, as well as the ranks of the returned documents that were actually clicked (if
any) by the user. In the following evaluations, we used the logs produced by Mearf from a seven month
period (11/22/00 - 5/16/01). In the beginning, the search engines used by Mearf were Altavista, Directhit,
Excite, Google and Yahoo but later on, we eliminated Yahoo as it started using Google’s technology. Table
1(a) summarizes the overall characteristics of the data set obtained from Mearf’s logs. Table 1(b) shows the
characteristics of the data for different fusion methods. The column labeled as “avg number of results per
query” is the average number of documents returned by Mearf for each query, the column labeled “number
of queries” is the number of times a particular fusion method was selected to fuse the results, and the
column labeled “number of clicks” shows the total number of documents that were clicked from the resulting
document set. Note that for some fusion schemes, the number of times they were used is smaller than the
rest (e.g. WCentroid, Agreement, Google). This is because these methods were introduced towards the
middle of the seven month period.

Note that the average number of results per query is much smaller for Google than for other methods. The
reason is that, in the beginning we retrieved 50 documents per query from Google, which was considerably
smaller than the average number of documents returned by the other methods. During the course of our
experiments we realized that due to the design of Mearf (i.e. all the results returned in a single page) the
total number of documents returned has a significant impact on the average ranks of the documents that
were clicked. Since all documents are returned in a single page, the user tends to scroll down the page easily
and lookup for a relevant document. Hence if the number of returned documents is larger, then the average
rank of the clicked documents also tends to be higher. This trend, clearly visible in Table 3, holds for all
fusion methods as well as Google. We selected a sample from the top 100 queries, we calculated the mean
and standard deviation of the number of links returned, and set Google method to retrieve a uniformly
distributed number of links accordingly. However as the results in Table 1 shows, the average number of
documents returned by queries with Google is still quite small as it is biased by the results obtained in the
early stages of the experiment and the fact that even with the modification the average number of documents
returned is smaller that what it is asked.

4.2 Results

Table 2 summarizes the overall performance of the six fusion methods implemented by Mearf as well as the
results produced by Google. The column labeled “AvgRank” shows the average rank of the documents that
the user deemed as relevant (using the clicks as an indirect relevance indication), and the column labeled
“StdevRank” shows the standard deviation of the ranks of the relevant documents.

The histogram in Figure 2 presents these results in a finer level of granularity. In particular, the x-axis
corresponds to the rank of the relevant documents (using a bin size of 5) and the y-axis corresponds to the
fraction of the relevant documents that fall within a particular bin. For example, the very first bar indicates
that about 12.2% of the documents using the Interleave scheme that the users found relevant were placed
by the Interleave method in the top 5 positions in the final sorted list.



method AvgRank | StdevRank
Interleave 17.37 18.68
Agreement 17.39 19.72
Centroid 13.23 15.11
WCentroid 13.31 14.44
BestSim 14.19 15.42
BestMSim 14.68 16.16
Google 14.59 15.51

Table 2: Overall performance of methods

O Interleave
W Agreement
[J Centroid

O WCentroid
W BestSim

[0 BestMSim
W Google

percentage of clicks

rank of clicks, bin sizeis 5

Figure 2: Histogram of ranks of clicks for different methods.

Looking at the overall results we can see that the centroid based schemes do better than the rest in the
sense that they rank the relevant documents higher, and that the Interleave and Agreement based schemes do
considerably worse. The BestSim and BestMSim schemes are somewhat worse than the two centroid based
schemes, but not by a large factor. Comparing Google against the centroid and best-sim-based methods
we can see that it does somewhat worse than the centroid schemes and BestSim, but a bit better than the
BestMSim. As discussed earlier, these results are biased in favor of Google, as initially our system was
returning fewer documents for Google than for the rest of the fusion methods. For this reason we segmented
the entire data set into four groups based on the number of documents that were returned. These results are
shown in Table 3. The first sub-table contains only the queries that returned up to 24 documents, the second
contains queries that returned 25-49 documents, the third contains queries that returned 50-74 documents,
and the last contains the remaining queries.

The difference is small for the first group (0-24 links returned) but tends to be larger for the other three
groups. Also note that the number of clicks for the first group are much smaller (ranges from 28 to 143)
than for the other groups (where it ranges from few hundreds to several thousands). Hence, the relative
superiority of the centroid based schemes has greater statistical significance for these cases. Looking at
results in Table 3, we can see that the centroid based schemes are substantially better than all other schemes
including Google for all four cases. Note that BestSim and BestMSim also perform better than the Interleave
and Agreement schemes as well as Google for all but the first group. As we discussed earlier, there are no
Google queries that returned more than 74 documents.

Next, we analyzed the results with respect to the length of the queries performed by the users. Table
4 presents results obtained by the different fusion methods by considering the queries of length one, two,
three, four and greater than four. These results suggest that centroid and weighted centroid based methods
generally perform reasonably good with varying number of terms in the query. One interesting trend we
found is that although BestMSim performs better than BestSim for small number of terms, it gets worse
with the increased number of terms, and after 3 terms, BestSim begins to outperform BestMSim. Since



0-24 links returned 25-49 links returned
method avg hits | clicks | AvgRank | StdevRank method avg hits | clicks | AvgRank | StdevRank
Interleave 11.37 103 5.47 4.80 Interleave 38.80 221 11.27 10.99
Agreement 8.31 28 4.68 4.06 Agreement 39.48 126 12.11 11.91
Centroid 10.79 94 4.55 4.69 Centroid 39.87 279 9.77 9.76
W(Centroid 10.78 29 4.17 4.39 W(Centroid 41.08 186 10.01 9.31
BestSim 9.80 93 4.66 4.56 BestSim 38.91 305 11.02 10.63
BestMSim 10.74 114 5.88 5.08 BestMSim 39.37 248 11.06 10.53
Google 5.97 143 4.73 4.91 Google 43.67 338 12.04 11.58

50-74 links returned 75+ links returned
method avg hits | clicks | AvgRank | StdevRank method avg hits | clicks | AvgRank | StdevRank
Interleave 64.07 1658 16.49 17.27 Interleave 81.21 1033 21.28 21.74
Agreement 64.97 594 15.63 17.24 Agreement 80.29 493 21.59 23.38
Centroid 64.46 2023 13.18 14.44 Centroid 80.80 1141 14.87 17.34
W<Centroid 64.51 1085 12.60 13.63 WCentroid 79.91 612 16.01 16.71
BestSim 64.32 2169 13.93 14.82 BestSim 80.54 1187 16.23 17.49
BestMSim 64.65 2194 14.58 15.67 BestMSim 80.53 1232 16.40 18.11
Google 59.66 1270 16.37 16.66 Google n/a n/a n/a n/a

Table 3: Comparison of methods with varying number of links returned

our data set for these queries is relatively small, this can be a spurious pattern. Nevertheless one possible
explanation for this behavior is as follows: Queries with small number of terms tend to be multi-modal. For
these queries, BestMSim is more suitable, as the relevant set computed by this scheme contain many distinct
documents. Queries with large number of terms tend to be very specific. For such queries, the main topic is
captured by the first (or first few) documents, and the documents selected by BestMSim after the first few
iterations may not be very related to the query.

Finally, in evaluating the results produced by either one of the four proposed fusion schemes, we noticed
that Mearf has a natural way of filtering out bad links. Our experiments with a large number of randomly
selected queries shows that for a good majority of these queries at least the bottom 10% links did not
contain any of the query terms, nor a closely related term whenever the ranking is done using one of the
four Mearf methods. It can be difficult to judge the relative importance of highly ranked links produced
by Mearf relative to other search engines. However for a typical query, once we look at the bottom 10% of
results produced by Mearf and the position of these links in the original search engines, we see that these
mostly irrelevant links are scattered all around in the original search engine, not necessarily in bottom 10%.
Although there is no guarantee that the bottom 10% of the links produced by Mearf are all irrelevant but
most of the users would omit these links anyway if they do not see any query terms or related terms in
the snippets. Mearf consistently places broken links, links with poor snippets, links with irrelevant snippets
such as “no summary available”, “404 not found”, “under construction” and snippets with very few terms
to bottom 10%, while populating top ranks with snippets highly related to the query and related terms with
possibly better coverage compared to a single search engine.

5 Conclusion

We introduced four novel methods for fusing the results in a meta search environment that use content-based
agreement among the documents returned by different search engines. Our experiments, and subjective eval-
uations showed that these methods can be used to improve the rankings of a meta search engine considerably
in an automated manner. All of these methods, especially centroid methods and BestSim provide an auto-
mated and inexpensive way of improving the rankings by using only the snippets. We also examined the
performance of the methods with queries of different sizes. The results suggest that selection of methods
or adjustment of parameters could be done on the fly based on the number of terms and number of results
returned. For example, parameter m in BestMSim can be adjusted depending upon the number of terms in
the query.

Note that none of our methods rely on servers to report scores associated with each link although our
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All queries 1 term queries
method avg hits | clicks | AvgRank | StdevRank method avg hits | clicks | AvgRank | StdevRank
Interleave 62.64 3015 17.37 18.68 Interleave 53.10 501 16.26 17.73
Agreement 62.09 1241 17.39 19.72 Agreement 51.57 218 19.49 21.93
Centroid 62.37 3537 13.23 15.11 Centroid 53.28 453 12.57 14.87
W(Centroid 62.66 1912 13.31 14.44 WCentroid 53.95 260 11.28 11.92
BestSim 62.37 3754 14.19 15.42 BestSim 54.48 583 14.08 15.28
BestMSim 61.86 3788 14.68 16.16 BestMSim 51.90 503 12.98 14.40
2 term queries 3 term queries
method avg hits | clicks | AvgRank | StdevRank method avg hits | clicks | AvgRank | StdevRank
Interleave 65.75 1101 17.75 18.85 Interleave 65.89 684 16.43 17.75
Agreement 65.96 334 17.93 21.25 Agreement 65.09 302 17.61 19.19
Centroid 64.98 1322 13.64 15.85 Centroid 65.99 739 13.05 15.26
W(Centroid 66.60 654 14.02 15.05 WCentroid 63.51 483 14.51 15.48
BestSim 64.89 1209 15.27 16.78 BestSim 64.94 952 13.63 14.28
BestMSim 65.09 1309 13.25 14.39 BestMSim 65.12 902 14.37 16.25
4 term queries 5+ term queries
method avg hits | clicks | AvgRank | StdevRank method avg hits | clicks | AvgRank | StdevRank
Interleave 66.11 391 18.42 19.98 Interleave 65.95 338 18.46 19.56
Agreement 66.82 145 15.86 17.01 Agreement 65.31 242 15.42 17.18
Centroid 65.30 573 13.05 14.14 Centroid 63.13 450 13.19 13.95
WCentroid 67.76 239 13.18 15.75 W(Centroid 64.68 276 11.55 11.34
BestSim 64.07 580 14.55 15.35 BestSim 66.66 430 12.09 13.77
BestMSim 64.50 570 17.07 17.77 BestMSim 65.83 504 17.92 19.04

Table 4: Comparison of methods with varying query length

framework is flexible enough to incorporate both server scores and link scores as well as other quality measures
if available. Not all methods are best suited for each and every situation. It may be possible to develop
hybrid schemes that combine features of multiple methods. For instance, a combination of WCentroid
and Agreement may produce a fusion method that boosts the rankings of relevant links, at the same time
respecting the original rankings up to a degree.

References

[1]

J. P. Callan, Z. Lu, and W. Bruce Croft. Searching Distributed Collections with Inference Networks . In
E. A. Fox, P. Ingwersen, and R. Fidel, editors, Proceedings of the 18th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 21-28, Seattle, Washington,
1995. ACM Press.

James C. French, Allison L. Powell, James P. Callan, Charles L. Viles, Travis Emmitt, Kevin J. Prey, and
Yun Mou. Comparing the performance of database selection algorithms. In Research and Development
in Information Retrieval, pages 238-245, 1999.

L. Gravano, H. Garcia-Molina, and A. Tomasic. The effectiveness of GIOSS for the text database discovery
problem. SIGMOD Record (ACM Special Interest Group on Management of Data), 23(2):126-137, June
1994.

J. Kim, D. Oard, and K. Romanik. Using implicit feedback for user modeling in internet and intranet
searching. Technical Report CS-TR-4136, University of Maryland Department of Computer Science
Department, 2000.

E. Selberg and O. Etzioni. Multi-service search and comparison using the MetaCrawler. In Proceedings
of the 4th International World-Wide Web Conference, Darmstadt, Germany, December 1995.

Mario Gomez Susan Gauch, Guijun Wang. Profusion: Intelligent fusion from multiple, distributed search
engines. volume 2, pages 637-649, 1996.

11




[7] Geoffrey Towell, Ellen M. Voorhees, Narendra K. Gupta, and Ben Johnson-Laird. Learning collection
fusion strategies for information retrieval. In Proc. 12th International Conference on Machine Learning,
pages 540-548. Morgan Kaufmann, 1995.

[8] Christopher C. Vogt and Garrison W. Cottrell. Fusion via a linear combination of scores. Information
Retrieval, 1(3):151-173, 1999.

12



