
Expert Agreement and Content Based Reranking in a Meta
Search Environment using Mearf ∗

B. Uygar Oztekin
University of Minnesota,

Dep. of Computer Science,
Army HPC Research Center

oztekin@cs.umn.edu

George Karypis
University of Minnesota,

Dep. of Computer Science,
Army HPC Research Center

karypis@cs.umn.edu

Vipin Kumar
University of Minnesota,

Dep. of Computer Science,
Army HPC Research Center

kumar@cs.umn.edu

ABSTRACT
Recent increase in the number of search engines on the Web
and the availability of meta search engines that can query
multiple search engines makes it important to find effective
methods for combining results coming from different sources.
In this paper we introduce novel methods for reranking in
a meta search environment based on expert agreement and
contents of the snippets. We also introduce an objective
way of evaluating different methods for ranking search re-
sults that is based upon implicit user judgements. We in-
corporated our methods and two variations of commonly
used merging methods in our meta search engine, Mearf,
and carried out an experimental study using logs accumu-
lated over a period of twelve months. Our experiments show
that the choice of the method used for merging the out-
put produced by different search engines plays a significant
role in the overall quality of the search results. In almost
all cases examined, results produced by some of the new
methods introduced were consistently better than the ones
produced by traditional methods commonly used in various
meta search engines. These observations suggest that the
proposed methods can offer a relatively inexpensive way of
improving the meta search experience over existing meth-
ods.

General Terms
Algorithms, performance, experimentation

Keywords
Merging, reranking, meta search, collection fusion, expert
agreement

1. INTRODUCTION
With the current rate of growth of the Web, most search

engines are unable to index a large enough fraction of the
available web pages. Furthermore, it is becoming increas-
ingly difficult to keep up with the rate at which already
indexed resources are updated. Heuristics used in different
search engines are often different from each other empha-
sizing some aspects, de-emphasizing others, not necessarily
sustaining the same quality across varying types of queries.

∗Available at http://mearf.cs.umn.edu/

Copyright is held by the author/owner(s).
WWW2002, May 7–11, 2002, Honolulu, Hawaii, USA.
ACM 1-58113-449-5/02/0005.

Meta search engines have the potential of addressing these
problems by combining search results from multiple sources.
They can provide better overall coverage of the web than
provided by any individual search engine. They can also of-
fer potentially better overall rankings by taking advantage
of the different heuristics that are used by different search
engines.

A key component of a meta search engine is the method
used to merge the individual lists of documents returned by
different engines to produce a ranked list that is presented
to the user. The overall quality of this ranking is critical,
as users tend to examine the top ranked documents more
than the lower ranked documents. There are many meta
search engines available on the web ([18], [17], [2], [12], [15],
[10]), but due to commercial nature of most of these systems,
technical details of the underlying collection fusion methods
are often unavailable. Most of the meta search engines, for
which technical details are available ([4], [20], [23]), use a
variation of the linear combination of scores scheme (LC)
described by Vogt and Cottrell [24]. This scheme requires
that a weight is associated with each source (reflecting its
importance) as well as a weight associated with each doc-
ument reflecting how well it matches the query. Then, it
uses a product of the two to compute an overall score for
each document to be used in ranking. If the weight of each
source is unknown or uniform and if the sources only provide
a ranked list of documents but no numerical scores, which is
the case for most search engines, then this scheme becomes
equivalent to that of interleaving the ranked documents pro-
duced by the different sources.

The focus of this paper is to study different methods that
can be used to merge the results in the context of meta
search engines. To this end, we introduce four novel methods
for merging results from different search engines and eval-
uate their performance. The schemes we are proposing are
motivated by the observation that even though the various
search engines cover different parts of the web and use differ-
ent ranking mechanisms, they tend to return results in which
the higher ranked documents are more relevant to the query.
Presence of the same documents in the results of different
search engines in top ranks can be a good indication about
their relevance to the query. In fact some existing LC-based
methods already use this observation to boost the ranks of
such documents. The methods we are proposing take advan-
tage of this observation, and also look for common themes
present in top ranked documents to extract a signature that
can be used to rerank other documents. As a result, un-

333

like LC-based methods, our methods can boost the ranks of
the documents that are similar in content to the top ranked
documents deemed relevant. These new methods that use
expert agreement in content to merge and rerank documents
have been incorporated in our meta search engine, Mearf,
which is accessible from http://mearf.cs.umn.edu/.

We experimentally evaluated the rankings produced by
these methods with two variations of the linear combination-
based approaches that are commonly used in many meta
search engines. Our experimental evaluation was based on
a systematic analysis of the query logs from Mearf over the
course of a year, involving over ten thousand distinct queries.
We propose an evaluation method that uses implicit user
judgements seen through user clicks and introduce average
position of clicks as a metric that can be used in evaluating
different methods automatically and objectively under cer-
tain conditions. Although far from perfect, this approach
arguably offers better statistical significance than what can
be practically achieved by explicit user feedback.

Our experiments show that the choice of the method used
for merging the output produced by different search engines
plays a significant role in the overall quality of the search
results. In almost all cases examined, results produced by
some of the methods introduced were consistently better
than the ones produced by traditional LC-based methods
commonly used in various search engines. As a reality check,
we also compare our methods to Google, a popular and
highly regarded search engine used by Mearf, to see whether
or not the results produced by Mearf methods as well as
LC-based methods contain more relevant documents that
appear earlier in the ranked-list presented to the users. Our
results show that LC-based methods do not perform better
than Google, but some of the Mearf methods are consis-
tently better than Google according to the evaluation crite-
ria. These observations suggest that the proposed methods
can offer relatively inexpensive way of improving the meta
search experience over existing methods.

The remainder of the paper is organized as follows: Sec-
tion 2 presents related work, Section 3 gives an overview of
the Mearf architecture, Section 4 gives a detailed description
of the fusion methods implemented in Mearf with runtime
analysis, Section 5 presents the experimental setup and dis-
cusses the results obtained, and finally Section 6 summarizes
the results presenting conclusions and suggestions for future
research.

2. RELATED WORK
Metacrawler [20, 21, 17] is probably one of the first meta

search engines that were developed in the context of the
world-wide-web. Its architecture was similar to current meta
search engines and used a relatively simple mechanism to
combine the results from the different search engines, elimi-
nating duplicate URLs and merging the results in an inter-
leaving fashion possibly taking into account scores returned
if available. Profusion [23, 18], another early meta search
engine, shares some of the characteristics of Metacrawler,
but employs a somewhat more sophisticated approach for
combining the results. In this approach, each search en-
gine has a confidence value assigned with it, and each doc-
ument returned by the search engine has a score assigned
to it that is normalized between zero and one. This score
is taken either directly from the search engine’s output or is
derived from the ranked list. Profusion then multiples these

two scores (search-engine confidence and document score),
and ranks the documents in decreasing order of this score.
Later publication on Metacrawler [19] suggests that, at some
point, it too used a linear combination based scheme called
Normalize-Distribute-Sum algorithm, similar to Profusion’s
approach. Savvy Search [4, 9] focuses primarily on the prob-
lem of learning and identifying the right set of search engines
to which to issue the queries, and to a lesser extent on how
the returned results are merged. Callan, et al. [3] have fo-
cused on building a framework to find collections containing
as many relevant documents as possible and suggested three
ranking schemes depending on different scenarios: (i) if no
rankings are available, then use interleaving; (ii) if scores
from different collections are comparable, then use the score
from the sources to produce a global ranking; (iii) if scores
are not comparable, then use a weighting scheme to form
a global ranking by calculating the weights associated with
each collection. Finally, Inquirus [10] took an entirely dif-
ferent approach to the problem of combining the results of
different search engines. Instead of relying on the engine’s
ranking mechanism, Inquirus retrieves the full contents of
the documents returned and ranks them more like a tradi-
tional search engine using information retrieval techniques
applicable to full documents only (e.g., using cosine sim-
ilarity to query, extracting information about query term
context and proximity of query terms in the documents,
etc.). This approach can potentially offer better ranking at
the cost of scalability. Recent additions to Inquirus include
topic-geared query modification and ranking incorporated
in an incremental user interface [7]. Besides these widely
known non-commercial meta search engines, a number of
meta search engines are available [2, 12, 15]. However, due
to their commercial nature, there is limited information on
the underlying approaches used to combine the results.

In general, most of the known methods used for combining
the results of different search engines in the context of meta
search can be classified as a variation of the linear combi-
nation of scores scheme (LC), generalized by Vogt and Cot-
trell [24]. In this approach, the relevance of a document to a
query is computed by combining both a score that captures
the quality of each source and a score that captures the qual-
ity of the document with respect to the query. Formally, if q
is a query, d is a document, s is the number of sources, and
w = (w1, w2, . . . , ws) are the source scores, then the overall
relevance ρ of d in the context of the combined list is given
by

ρ(w, d, q) =
X

systems

wiρi(d, q)

In the context of meta search engines, this translates to
assigning weights to each one of the search engines and a
weight to each link (using the score of the link in the search
engine if available, otherwise using a function of the rank
to obtain a score), multiplying the two to obtain the final
score for each link (just it was done in the case of Profu-
sion). Linear combination of scores approach is also used in
various information retrieval systems to query distributed
databases or to combine different retrieval approaches and
query representations from a single database (e.g. [22, 1,
16]).

Besides the above directly related research, the underlying
techniques used in meta search engines also draw ideas from
a number of different areas of classical information retrieval,

334

including source selection, information fusion, reranking, and
presentation. In the rest of this section we briefly review
some of the most relevant research in these areas.

The problem of source selection focuses on identifying the
right collections to be queried given a particular user query.
In the context of meta search engines, source selection can
be used to select what subset of meta search engines to use.
This is especially useful in the context of specialized queries.
Gravano et al. [8] assumed that they have access to term fre-
quency information for each database and proposed to use
this information and the query terms to obtain an estimate
of how much relevant documents each source would return
for a given query. French et al. [5, 6] proposed metrics for
evaluating database selection techniques and compared the
two approaches. Wu, Yu, Meng, et al. [26, 25] proposed an
efficient source selection method that could be used when
the number of databases are fairly large. They also have a
nice summary of major components in meta searching espe-
cially regarding source selection and collection fusion prob-
lems. Query probing methods have been proposed [11] to
obtain approximate statistics about sources such as term
frequencies by sending a number of query probes, enabling
methods based on term frequency and other information of
the sources to be used up to a degree in situations in which
one does not have access to the documents in the collection
nor their statistics.

The problem of collection fusion is focused towards se-
lecting the best sources and how many items to be retrieved
from each so as to maximize coverage under restrictions on
the number of items that will be retrieved. Most of the work
related to collection fusion problem for distributed databases
is not directly applicable to Web meta search context. Ma-
jority of the search engines supply data in predetermined
increments like 10 or 20 links, and a typical user rarely ex-
amines more than a few tens of links for a given query. Spec-
ifying a fractional amount of links to be retrieved from each
search engine is feasible but due to practical considerations
and the incremental nature of the results, current systems
tend to use all of the links that are retrieved from a partic-
ular search engine. It is also not common practice to adjust
the number of links to be retrieved from a search engine
based on the query terms. In general the server selection in
a meta search environment is a binary or at most a discrete
problem (e.g., select 20, 50, or 100 links from a particular
search engine). Methods based on document scores are not
directly applicable to meta search domain either: Majority
of search engines do not report any scores at all, and there
are considerable variations between the ones reporting some
sort of scores.

3. MEARF FRAMEWORK
Mearf is a typical meta search engine augmented with

text processing abilities. Its user interface consists of a CGI
program that allows to input a query string, and select a
subset of the supported search engines.

Various modules in Mearf and their interaction are sum-
marized in Figure 1. Once a query is submitted to Mearf,
its search engine interface module connects to the selected
subset of search engines, obtains their results in the html
format, parses them, removes advertisements, and extracts
and returns the actual links. Note that if the number of
links to be retrieved is larger than a given search engine’s
link increment value, multiple html pages are retrieved until

Reranking

Query, search
engine selection,

parameters

Output as an
ordered list

User Interface (CGI, HTML)

Search Engine
Interface

HTML Retriever

Text Processing

Figure 1: Mearf structure

either search engine’s results are depleted or until the re-
quested number of links are fetched. The search engine in-
terface module basically handles all communications to the
search engines. To expedite retrieval, it opens multiple con-
nections via multi-threading. For each link, the associated
URL, URL title, and snippet information are passed on to
the text processing module. This module processes URL ti-
tles and snippets (stop list, stemming, tf-idf normalization)
to form a sparse vector for each link to be used in vector-
space model operations in the reranking module. Once the
duplicates are removed and a reranking method is applied,
the results are presented to the user.

We have a dictionary consisting of about 50K stemmed
words and an augmented stop list, both geared for html and
snippet domain. If a term does not appear in the dictionary
but appears in the query, it is assumed to be a rare term
and gets assigned a predetermined important idf value, if
a term is neither in the query nor in the dictionary, or if
it is in the stop list but not in the query, it is ignored. We
normalize each vector using 2-norm. We implemented sparse
vector, html and text processing modules handling all html
to text conversions, word stemming (a variation of Porter’s
stemming algorithm), text to sparse vector conversions, and
operations on sparse vectors. All of these modules, including
multithreaded html retrieving and search engine interfacing,
are written in C++, balancing efficiency, flexibility and ease
of maintenance.

Mearf uses a robust duplicate removal scheme. It is able
to detect a very large majority of duplicate URLs and/or
mirrors with very few false positives. Although it is possible
to merge different URLs if their snippets are very similar
(for example, updated version vs older version of the same
web page), these cases are rare, and benefits of a decent
duplicate removal scheme outweights the loses.

With this framework we are able to extract and process
hundreds of links per search engine, and most search en-
gines are willing to supply a maximum of 300 to 800 links
to a regular user. By using five to ten search engines, Mearf
architecture can quickly retrieve and process up to a few
thousands of unique links for a given query. Default behav-
ior of Mearf for a regular user is to forward the query to four
or five search engines, and retrieve from each 20 links. For
a typical query, after the duplicates are removed, we are left
with about 60 to 70 unique links. Unlike traditional search
engines that display results in increments, Mearf presents

335

Figure 2: Mearf results for the query “C++ stl pro-
gramming”

all in a single, compact, ordered list fitting about 20 results
on a typical browser page.

Our objective behind Mearf was to build an experimental
testbed that will allow us to evaluate different fusion ap-
proaches. To generate enough traffic and to encourage peo-
ple to use Mearf, we advertised it in our department home-
page by putting a small search box, forwarding the query to
Mearf’s own page (http://mearf.cs.umn.edu/). Mearf was
publicly available since November 2000 and has a small but
stable user base, attracting several hundred queries every
week from users worldwide. Figure 2 shows how the user-
interface looks like for a typical user.

Mearf has two modes: standard mode and superuser mode
(which is activated via a hidden cgi parameter). In standard
mode, a user is only allowed to select which search engines
to use, but he/she has no control on any other parameters.
Once a regular user types a query and hits the “go” button,
Mearf issues parallel queries to its set of search engines and
then randomly selects one of the six different fusion methods
implemented to rerank the results. We also added another
method that uses only Google with its original rankings into
the randomly selected methods pool, i.e., some of the queries
that the user makes in Mearf is nothing more than a search
using Google. Note that in order to evaluate the different
fusion methods in an unbiased way, the standard interface of
Mearf does not allow the user to specify or know which one
of the different methods is used in reranking the results. In
standard mode, for each query, Mearf records a number of
statistics, including the query text itself, the fusion method
that was randomly selected, as well as the ranks of the re-
turned documents that were clicked on (if any) by the user.
In superuser mode, which is only used by the members of
our group, additional diagnostic information is presented,
and the user has control on all of the Mearf parameters in-
cluding the method selection, but in this mode, no statistics
are recorded. Members of our group used Mearf strictly in
superuser mode, hence none of the queries we made affected
the logs that are used in the evaluations.

4. RERANKING METHODS
Unlike many meta search engines, fusion methods used in

Mearf do not solely rely on the original scores and/or the
order of the links returned by the search engines. Mearf
implements six different methods for fusing together the re-
sults of the different search engines. The first two meth-
ods, called Interleave and Agreement, implement variations
of widely used linear combination of scores approach ([24],
[23], [20], [22], [1], [16]). We used up to four or five general
purpose, popular search engines and assigned them equal
weights. Note that if different weights are available for differ-
ent search engines, Interleave and Agreement methods can
be easily modified accordingly. In the remaining four meth-
ods, namely Centroid, WCentroid, BestSim, and BestMSim,
we first find a set of relevant documents and rerank all the
documents based on their cosine similarity to a vector ob-
tained from the relevant set. Original rankings do play a
role in the selection of the relevant set but the set produced
for each method is different.

The key motivation behind the Mearf methods is that the
different search engines can be thought of as experts, and
the set of documents that they returned can be considered
as their expert answers on the particular query. The key
assumption is that answers for which different experts agree
on are more likely to be relevant than answers for which
there is little agreement among experts.

Let us first introduce some of the notation used in describ-
ing the methods, then we will explain each method, starting
from the näıve ones.

4.1 Notations
In search engine results, a link (or a document) consists

of a triplet (url, url title, snippet). In Mearf we augment
this with a sparse vector by processing the url title and
the snippet. Thus a link forms a quadruple (url, url title,
snippet, vector). We will use the notation lsi to denote the
ith link from search engine s and vector(l) to denote the
sparse vector of link l.

A permutation p(poss1, poss2, . . . , possn) of size n is de-
fined to be an n-tuple of positive integers, and an entry
possi denotes the position of a link from search engine i,
where n is the number of search engines used in the query.
For example if we have four search engines the permutation
p(1, 6, 5, 3) states that we selected the 1st link from search
engine 1, 6th link from search engine 2, 5th link from search
engine 3, and 3rd link from search engine 4.

A range selection rs(sets1, sets2, . . . , setsn) of size n ap-
plied to permutations of size n is used to put a limit on the
allowed permutations of size n for a given context.

Each setsi is a set of positive integers and a permutation
p(poss1, poss2, . . . , possn) restricted with a range selection
rs(sets1, sets2, . . . , setsn)

is valid only if ∀i, (i ∈ [1, n]∧i ∈ N) =⇒ posi ∈ seti where
N is the set of positive integers.

Note that the number of valid permutations for a given
range selection rs(sets1, sets2, . . . , setsn) is:
|sets1|× |sets2|× |sets3|× · · ·× |setsn| where |seti| denotes

the cardinality of set seti.
The rank of a particular link in a given search engine, is

the position of the link in the results for that search engine.
We will use the notation score(l) to denote the relevance
measure of a link l calculated by Mearf using one of the
methods, higher values denoting better relevance. Score of

336

a link is a real number in the range [0, 1] in all but one
method (in the Agreement method, the possible range is
theoretically [0, n], where n is the number of search engines,
maximum value occurring only if all n search engines report
the same URL in their first position).

The + = operator is used to denote addition then assign-
ment, e.g., if a and b are two variables (or vectors) a+ = b
denotes a = a + b. For a vector v, |v|2 denotes the second
norm of vector v.

4.2 Interleave
Interleaving is probably the first method one might think

of in information fusion. In this method, we interleave the
results coming from different search engines, visiting result
sets of search engines one by one for each rank: take the
firsts from all search engines, seconds from all, thirds from
all and so on. If the current link from a search engine is a
duplicate of a previously visited link, we skip this link and
go on to the next search engine. Note that in this method,
duplicate links are reported only when the first occurrence
is seen. If the individual rankings of the search engines are
perfect and each search engine is equally suited to the query,
this method should produce the best ranking. Interleave
method corresponds to linear combination of scores scheme
[24] with equal server weights, taking the best score in case of
duplicates. The following pseudo-code outlines one possible
implementation:

let n be the number of links to be retrieved from each engine

let results be an empty array of links

for i = 1 to n

for s = 1 to number of search engines

if lsi exists and is not a duplicate of links in results

insert lsi at the end of results.

return results

4.3 Agreement
In the Interleave method, if a link occurs in multiple

search engines, we selected the best rank and ignored the
others. However, one might suggest that a link occurring
in multiple search engines can be more important than the
ones occurring in just one engine at similar ranks. For in-
stance a link that has 3rd, 2nd, 2nd, and 3rd ranks in four
different search engines, respectively, may be a better link
than the one that has 1st or 2nd rank in one search engine
only. To improve the rankings of this type of documents, we
implemented the “Agreement” scheme that is described in
the following pseudo-code.

let results be an empty array of links

for each link lsi
score(lsi) = [1/rank(lsi , s)]c

while there are duplicate links across search engines

merge the links by adding up their scores

add all links to results

sort links in results according to their scores

return results

Where c is a parameter that can be used to control how
much boost a link will get if it occurred multiple times. As
an example: if c is 1, a link occurring at 4th rank in two
search engines will have a score of 1

4
+ 1

4
= 1

2
making it

equal in score to a link occurring at 2nd position, and better
than any link occurring at 3rd position in a single search
engine only. If c were 0.5, if we do the same calculation:

1
2

+ 1
2

= 1, we see that now it has precedence against 2nd

and higher placed single links. If c is small, emphasis on
agreement is increased, if it is large, this effect is reduced.
Another way to control how agreement affects the results
might be to use c = 1 but give different weights to duplicate
ranks according to the number of duplicates across search
engines. Yet another way, is to adjust weights according not
only to the number of duplicates but also to the ranks of each
duplicate. In our current implementation we are adding up
the ranks with parameter c set to 1. Note that this method is
very similar to linear combination of scores scheme [24] with
equal server weights, if scores of the duplicates are added.

4.4 Centroid
We developed two methods based on centroids: Centroid

and WCentroid (weighted centroid). In both of them, the
key idea is that the first k links coming from each search
engine can be trusted to be relevant to the query. In the
Centroid method we find the average (or centroid) of the
vectors of the first k links reported from each search engine
and then rank all the links using the cosine measure of its
vector to the centroid vector calculated.

let k be the number of top links to be considered in ranking

let centroid be an empty sparse vector

let results be an empty array of links

for s = 1 to number of search engines

for i = 1 to k

if lsi exists

centroid = centroid + vector(lsi)

centroid = centroid/|centroid|2
for each link lsi

score(lsi) = vector(lsi) · centroid

while there are duplicate links across search engines

merge duplicates by taking the maximum of the scores

add all links to results

sort links in results according to their scores

return results

4.5 WCentroid
The previous method did not consider rank of the links in

the search engines. Another approach is to weight the links
according to the place of the links in the search engines.
The first links will be given higher weights, and we will de-
cay the weights of the links according to their place in top
k. We used a linearly decaying weighting function starting
with 1 at the 1st rank, and min val at the kth rank, where
min val is a value between 0 and 1. If min val is set to 1,
it becomes equivalent to the Centroid method. We suggest
a value between 0.25 and 0.5, if k is small (about 5), and a
value between 0 and 0.25, if k is larger. Although we tried
non-linear weighting functions, we found this approach to
be simple and effective for the ranges of k used in Mearf.

let k be the number of top links to be considered in ranking

let centroid be an empty sparse vector

let results be an empty array of links

for s = 1 to number of search engines

for i = 1 to k

if lsi exists

centroid+ = vector(lsi) · [1− (i−1)·(1−min val)
k]

centroid = centroid/|centroid|2
for each link lsi

score(lsi) = vector(lsi) · centroid

while there are duplicate links across search engines

337

merge duplicates by taking the maximum of the scores

add all links to results

sort links in results according to their scores

return results

Weighted centroid method can be considered as a method
using a relevance set with each item weighted differently
according to some criteria instead of being treated equally.
In our case the weights are obtained according to the ranks
of the links in the search engine they are coming from.

4.6 BestSim
The two centroid methods used search engines’ own rank-

ings in selecting the relevant set used in reranking. BestSim
and BestMSim schemes use a slightly different approach. We
still consider the top k links from each search engine but the
relevant set is not all the first k links, but a subset of them
selected according to the contents of the links. In BestSim
method, we try to find a link from each source so that the
tuple of links selected has the maximum self-similarity.

More formally, we consider all permutations
p(poss1, poss2, . . . , possn) restricted with a range selection
rs({1, 2, . . . , k}, {1, 2, . . . , k}, . . . , {1, 2, . . . , k}), and try to find
the best permutation bp(r1, r2, . . . , rs) where the self-similarity
of the vectors of the links l1r1 , l2r2 , . . . , lsrs

is the highest among
all possible permutations.

The rationale behind both BestSim and BestMSim meth-
ods is to use expert agreement in content to select the rele-
vant set.

let current best = −1

for each search engine i

seti = {1, 2, . . . , min(k, number of links returned(i)}
if all setis are empty

return nil

for each valid permutation p(r1, r2, . . . , rs)

under rs(set1 , set2 , . . . , sets)

centroid =
sP

i=1
vector(liri

)

if |centroid|2 > current best

current best = |centroid|2
best centroid = centroid

best centroid = best centroid/|best centroid|2
for each link lsi

score(lsi) = vector(lsi) · best centroid

while there are duplicate links across search engines

merge duplicates by taking the maximum of the scores

add all links to results

sort links in results according to their scores

return results

4.7 BestMSim
This method is similar to BestSim method, but instead

of looking for a single permutation with best self-similarity
we try to find the first m best permutations. In the begin-
ning we consider the first k links from each search engine,
find the permutation with highest self-similarity, record it,
remove the links selected from candidate sets, and then aug-
ment them by the next available links (k + 1). After doing
this m times, we obtain the relevance set. Note that, in our
implementation, a link from each search engine can only
appear in one of the permutations. For instance, let us sup-
pose that we start with 5 links from each search engine (links
1,2,3,4,5) and select the 1st from 1st engine, 3rd from 2nd

engine, and 5th from 4th engine. For the second iteration,
we will consider links numbered 2,3,4,5,6 from first engine,
1,2,4,5,6 from the second one, 1,2,4,5,6 from the third one
and so on in selecting the next best similarity. We continue
until we find m tuples or run out of links.

let ranking vector be an empty sparse vector

for i = 1 to s

seti = {1, 2, . . . , min(k, number of links returned(i)}
for i = 0 to m− 1 (*)

for each valid permutation p(r1, r2, . . . , rs)

under rs(set1 , set2 , . . . , sets)

centroid =
sP

i=1
vector(liri

)

if |centroid|2 > current best

current best = |centroid|2
best centroid = centoid

for j = 1 to s

index[j] = rj

for j = 1 to s

setj = setj − {index[j]}
setj = setj + {(k + i)}

ranking vector+ = best centroid/|best centroid|2
ranking vector = ranking vector/|ranking vector|2
for each link lsi

score(lsi) = vector(lsi) · ranking vector

while there are duplicate links across search engines

merge duplicates by taking the maximum of the scores

add all links to results

sort links in results according to their scores

return results

A variation for BestMSim is to weight the vectors of links
in each permutation among the m permutations found ac-
cording to the self-similarity measure of the permutation,
giving higher emphasis on more coherent permutations. Yet
another approach is to use a decaying weighting function
assigned to each permutation number, first one getting a
weight of 1, and linearly decaying the weights up to the
mth permutation, analogous to centroid - weighted centroid
schemes, decaying the weights as i in loop (*) increases.

In some sense, BestSim method can be considered as a
method capturing the main theme present in the first k re-
sults from each search engine. We feel that it could be more
suited for specific queries. BestMSim, on the other hand,
has the potential to capture more than one theme in the
first k + m links. Thus, it may be preferable in the case of
multi-modal or general queries.

4.8 Runtime Analysis
In all Mearf methods, we find a relevant set, remove dupli-

cates, and rerank all documents according to the reranking
vector found from the relevant set. The only difference in
costs between these four methods are in the selection and
processing of the relevant set to form the reranking vector.

A reasonable duplicate removal scheme can be implemented
with runtime costs in the range from O(n log n) to O(n2),
where n is the total number of links retrieved. The lower-
bound corresponds to a unique sort, with the possibility to
use either the URL strings or a processed version of them
as keys. (In Mearf we have a notion of URL stemming. We
have a few rules to stem various prefixes as well as postfixes
to better handle redundant naming schemes with very few
false positives. For instance, “www.cs.umn.edu/˜oztekin/”,

338

“www.cs.umn.edu/˜oztekin”, “cs.umn.edu/˜oztekin”, and
“www.cs.umn.edu/˜oztekin/index.html”, are all mapped to
the same key.) This scheme takes care of the majority of
the duplicate URLs, but it may also be desirable to identify
and remove mirrors. In this case, we combine the previ-
ous approach with pairwise similarity comparison. If both
the titles and the body of the snippets are very similar, one
may identify them as mirrors, possibly taking into account
a token-wise URL similarity if desired. O(n2) run time is
due to the mirror identification part. It may also be possible
to find a compromise in between, balancing robustness and
runtime.

Once the reranking vector is found, ranking the results
and sorting them takes O(n) and O(n log n) time, respec-
tively.

Let us now investigate the time required to obtain the
reranking vector in all four methods. Assuming that we have
s search engines, investigate top k links from each engine,
and for the case of BestMSim, find m best tuples. In our
implementation, cost of forming the reranking vector using
Centroid and WCentroid methods is O(sk), with BestSim,
it is O(ks), and finally, for BestMSim, it is O(mks).

Note that for small s, k and m compared to n, which is
the case for Mearf (their values are set to 4 or 5), the cost
of finding the duplicates (ranges from O(n log n) to O(n2)
depending on the method used) and ordering the results
(O(n log n)) dominates the runtime in the case of Centroid
and WCentroid methods. If n is sufficiently large compared
to other parameters, then this is also valid for BestSim, and
BestMSim. In fact comparing the six methods in terms
of processing time, the difference between Interleave and
Agreement methods vs four Mearf methods is minimal (not
detectable in most cases with our resolution of ˜20 millisec-
onds). If we look at the total runtime for a query, network
connection time takes about 2 seconds, total processing time
including parsing the cgi parameters, all text processing,
reranking, html generation, and logging takes about 0.1 to
0.3 seconds under light load (our server is not purely dedi-
cated to Mearf).

5. EXPERIMENTAL EVALUATION

5.1 Methodology
One way of evaluating the results of different fusion meth-

ods is to select a number of users and a set of queries and
let the users explicitly judge the performance of these meth-
ods on the selected set of queries. This method can give
fairly accurate results on the performance of the methods
for that particular set of queries. But due to practical rea-
sons, only a small fraction of the possible queries as well
as users can be sampled. When we deviate from this ap-
proach, we do not have explicit information about relevant
and non-relevant set of documents for a representative set
of queries. If we had, we could directly use them to evaluate
different methods using traditional information retrieval ap-
proaches. Evaluation methods that use implicit relevance in-
formation have been proposed as an alternative in the lack of
explicit judgements. One such method uses automated ways
to simulate user judgements, typically using measures such
as cosine similarity between the query and the documents,
and term frequencies and/or phrase frequencies of the query
terms present in the text [14]. Even though this approach
has the potential to sample a wider range of queries, top

ranked results returned by a typical search engine are al-
ready expected to have the query terms in relatively high
frequencies since search engines rank the results with simi-
lar methods. Thus, objective applicability of this approach
to our domain is limited.

Another way of evaluating the performance of the meth-
ods is to judge them by the implicit relevance indication as
seen in the user logs. This approach enables us to span all
types of queries submitted to Mearf, as well as the whole
range of users who issued them, providing much greater sta-
tistical significance, but it has its own drawbacks. We only
have information about the documents that the users have
clicked on for each query, i.e., we know the positions of the
links investigated for each query. Although the fact that a
user deciding to investigate a set of links by clicking on them
can show a good indication about the relevance of the sum-
mary (snippet and title in our case), it does not necessarily
show that the actual documents referred to are relevant to
the query. Nevertheless, when good snippets are used to
describe the documents, we believe that the correlation is
reasonably high. It is also possible that a document can be
highly relevant to the query but has poor snippet and ti-
tle. Other cases are also possible (user clicks on the link but
the document is no longer online, etc.) For all of the cases,
one may argue that with a large enough sample, these cases
will be evenly distributed among the methods and will not
particularly favor or disfavor one method against others.

In our evaluations, we have chosen the last approach and
used the logs produced by Mearf during the course of al-
most a year (11/22/2000 to 11/10/2001). In the very be-
ginning, the search engines used by Mearf were Altavista,
Directhit, Excite, Google and Yahoo!, but Yahoo! was soon
eliminated as it started to use Google’s technology. Table
1.a summarizes the overall characteristics of the data set
obtained from the logs. Table 1.b shows the characteris-
tics of the data for different fusion methods. The column
labeled “avg results per query” is the average number of
documents returned by Mearf for each query, the column
labeled “number of queries” is the number of times a par-
ticular method was selected to rerank the results, the one
labeled “number of clicks” shows the total number of doc-
uments that were clicked using the corresponding method,
and the column labeled “click ratio” is the number of times
a particular method is used which resulted in at least one
user click, divided by total number of times the method is
used in reranking. Note that for some methods, the num-
ber of times they were used is smaller than the rest. This
is mainly because we designed and introduced the methods
incrementally in the beginning. In addition, we removed
Interleave and Agreement methods from the random pool
after five months once we had enough samples to be confi-
dent that they were inferior to others. This allowed us to
focus on our newly introduced methods and compare them
better against each other in various scenarios.

5.2 Metrics
For a typical query, average user scans through the re-

turned list, in general starting from the top ranks, and clicks
the links that are apparently relevant to what the user was
searching for. If the snippet or the title of a page does not
seem interesting, typical user quickly skips it without click-
ing on the link. This process goes on until one or more
satisfactory documents are found or he/she gets bored or

339

1.a High level statistics
total number of queries 17055
number of queries with clicks 10855
number of clicks 34498
average clicks per query 2.02
avg clicks per query ignoring 3.18
queries without clicks
click ratio (queries with clicks / 0.64
total number of queries)
average retrieval time 1.99 sec
average processing time 0.29 sec
average total time per query 2.28 sec

1.b Statistics for each method
method avg results number number click

per query of queries of clicks ratio
Interleave 62.64 1530 3015 0.64
Agreement 62.09 655 1241 0.60
Centroid 61.74 3381 6702 0.64
WCentroid 61.70 2403 5018 0.65
BestSim 61.93 3443 6817 0.62
BestMSim 61.45 3220 6671 0.65
Google 48.25 2423 5034 0.64

Table 1: Overall characteristics of the dataset

decides to augment or change the query. We believe that a
good search engine or meta search engine using a list pre-
sentation should order the links according to relevance. The
above observations suggest that the performance of the or-
dering of a reranking method could be implicitly measured
by looking at the position of the links that the users found
interesting and clicked on. Intuitively, if the user selects k
specific links and investigates them, a method that places
these k links in higher ranks (preferably first k positions) is
superior to a method that does not.

For all methods (except the one that directly retrieves
Google results), given a query, we retrieve the same set of
links. Since we are focusing on the reranking aspects, it
became natural to consider metrics that primarily take or-
dering into account. In evaluating the ordering of various
methods, we tried a few approaches including average posi-
tion of the clicks (the lower, the better), average position of
the clicks normalized with the number of links retrieved, and
uninterpolated average precision (in the range 0 to 1, 1 cor-
responding to the perfect case) as discussed in [13]. We also
considered a few variations removing outliers (e.g., positions
50 and higher, typically occurring very infrequently) and/or
redundant duplicate clicks (same click for the same session
occurring multiple times). As an illustration, let us suppose
that the user selects the 5th link for method A, and 8th, 9th,
and 10th links for method B. Let us also consider that the
same amount of links, say 20, are returned for both cases.
The average position of clicks are 5 and 9, respectively, which
makes method A superior to method B using this metric.
The uninterpolated average precision on the other hand, is
0.2 for method A, and about 0.216 for method B, making
method B better than method A according to this metric.
Given roughly the same amount of total links presented,
we found that the average position of the links that a user
clicked on is a more intuitive, easy to interpret, and rela-
tively unbiased way in comparing two methods. Removing
outliers and duplicates did not make a significant difference,
and we chose to remove duplicate clicks only (some users
may double click where only one click is sufficient, or due to

slow connection and slow update, they can click on the same
link multiple times). Normalizing the average positions of
the clicks with the total number of clicks was not desirable,
since, looking at the histogram of the clicks, we felt that it
could introduce bias.

While calculating average position of clicks, we ignored
the queries which resulted in no clicks. One might argue
that the ratio of the queries with clicks vs total number of
queries for a particular method should also be considered in
comparing the methods. For instance, if users choose not
to click any of the results returned more for a particular
method compared to others, this may be an indication that
the method is not producing desirable results. However,
we did not see a significant difference in the value of click
ratio among different methods in overall data and its various
subsets. Table 1.b, last column, shows the ratio for each
method.

We selected the average ranks (positions) of clicks as the
metric used in the evaluations, lower values showing that the
clicks occur in top ranks in the list, and higher values show-
ing that the clicks occur in lower portions in the list. We
would like to point out that since all documents are returned
in a single page, user tends to scroll down the page easily and
lookup for a relevant document even at lower ranks. Hence,
if the number of returned documents is larger, the average
rank of the clicked documents also tends to be higher. This
trend, clearly visible in Table 3, holds for all fusion meth-
ods as well as Google. Note that this metric focuses on the
relevance of the snippets and titles in the eyes of the users.
We assume that a typical user, in general, makes his de-
cision to click or not to click a particular document based
on the perceived relevance of the title and the snippet. We
also assume that the relevance of the snippets and titles on
the average are positively correlated to the relevance of the
documents. In the following sections, when we say that a
method is better than another method, what we mean is
that the method is better in placing more relevant snippets
in better positions compared to the other method accord-
ing to the users’ implicit judgements. If the relevance of
the snippets and titles are highly correlated to the relevance
of the documents, this would further suggest that a better
method in this metric will also be a better method in sup-
plying better documents in higher positions. If summaries
are not available or if the correlation does not hold for a par-
ticular domain, the four Mearf methods are still applicable
if the full documents are used, but evaluating them in that
domain may require different approaches.

In order to be able to compare two methods using the
average position of the clicks, number of links returned by
the two methods should roughly be the same except maybe
in the case in which the method having the smaller aver-
age of the two also has more links than the other. For ex-
ample, if 20 links are returned for one method, and 50 for
another, with average ranks of clicks of 5 and 15, respec-
tively, it is unclear which of the two methods is superior to
the other. On the other hand, if the average rank of clicks
were 15 and 5, respectively, we could argue about the second
method being superior to the first one (since for the second
method, on the average, user finds an interesting document
at 5th link out of 50, compared to 15th out of 20 for the first
method). This issue is not a problem in comparing the first
six methods implemented among themselves since the num-
ber of unique links returned on the average is roughly the

340

method AvgRank StdevRank
Interleave 17.37 18.68
Agreement 17.39 19.72
Centroid 12.74 14.36
WCentroid 12.88 14.19
BestSim 13.64 14.85
BestMSim 13.57 15.16
Google 13.90 15.16

Table 2: Overall performance of methods

same for all. But for Google’s case, this was not true. We
sampled the logs, calculated the mean and standard devia-
tion of the number of links returned on the average for the
six remaining methods, and set Google method to ask for a
uniformly distributed number of links accordingly. This ap-
proach works fine for general queries, but for specific queries,
Google returns considerably fewer number of links compared
to the number of links requested, as well as the total num-
ber of links that would be retrieved from multiple search
engines for the same query. This trend is clearly visible in
first two sub-tables of Table 3, where statistics only con-
tain the queries which returned 0 to 24 links and 25 to 49
links. In the column labeled “Clicks” in these tables, we can
see that Google has considerably more samples than others,
especially in the 0 to 24 links range.

5.3 Results
Table 2 summarizes the overall performance of the six fu-

sion methods implemented as well as the results produced
by Google. The column labeled “AvgHits” shows the aver-
age number of links retrieved for that method, the column
labeled “AvgRank” shows the average position of the docu-
ments that the user deemed as relevant by clicking on them,
and the column labeled “StdevRank” shows the standard
deviation of the positions of the relevant documents.

The histogram in Figure 3 presents the overall behavior
of methods in a finer level of granularity. In particular, the
x-axis corresponds to the rank of the relevant documents
(documents that are clicked) using a bin size of 5, and the
y-axis corresponds to the fraction of the relevant documents
that fall within a particular bin. For example, the very first
bar in the first bin indicates that about 37% of the docu-
ments using the Interleave scheme that the users clicked on
were placed by the Interleave method in the top 5 positions
in the final sorted list. As can be expected, we have more
clicks in first bin for all methods, and fraction of the clicks
drop down as we go to bins corresponding to higher ranks.
Note that the first two bars of each bin correspond to In-
terleave and Agreement methods respectively; the next four
bars correspond to Mearf methods: Centroid, WCentroid,
BestSim, and BestMSim, in this order; and finally, the last
bar corresponds to Google. In the first three bins, the con-
vex shape of top of the columns in the bins suggests that
the fraction of the clicks of Mearf methods are higher com-
pared to other methods in these bins. Later on we see that it
gradually transforms to a concave shape in subsequent bins,
suggesting that Mearf methods have fewer clicks in these
bins.

Looking at the overall results in Table 2, we can see that
the centroid based schemes do better than the rest in the
sense that they rank the relevant documents higher. The
BestSim and BestMSim schemes are somewhat worse than

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

rank of clicks, bin size is 5

p
er

ce
n

ta
g

e
o

f
cl

ic
ks Interleave

Agreement
Centroid
WCentroid
BestSim
BestMSim
Google

Figure 3: Histogram of ranks of clicks for different
methods.

the two centroid based schemes, but better than the rest.
Comparing Google against the centroid and best-sim-based
methods, we can see that all four Mearf methods does bet-
ter than Google despite the fact that the number of links
returned were considerably fewer for Google on the average
(˜48 vs ˜62). Note that just like the example given in section
5.2, we cannot draw conclusion about the relative perfor-
mance of Interleave and Agreement methods with respect
to Google, since the number of links returned for Google
were significantly smaller than the others. This is further
investigated in the next paragraph.

We segmented the data set according to number of links
returned and examined each case separately in a finer level
of detail. These results are shown in Table 3. The first
sub-table contains only the queries that returned up to 24
documents, the second contains queries that returned 25–49
documents, the third contains queries that returned 50–74
documents, and the last one contains the remaining queries.
Columns labeled “AvgHits” is the average number of links
returned for that method, and “Clicks” is the number of
clicks used in the statistics for that method. Examining
these results, we can see that the centroid based schemes
are better than all other schemes including Google for all
cases except the first one (0–24 links). In this case, draw-
ing objective conclusions is difficult since average number of
links retrieved for the methods are relatively different (vary-
ing from 5.73 to 11.37), and the number of clicks, i.e., sam-
ples that the statistics are based on, are much smaller for
the first group (ranges from 28 to 410) than for the other
groups (where it ranges from few hundreds to several thou-
sands). Behavior of all methods in general, may have less
statistical significance for this case than other cases. Best-
Sim and BestMSim also perform better than the Interleave
and Agreement schemes as well as Google for all but the
first group. Since we did not retrieve more than 74 links
from Google, there are no Google statistics for the last sub-
table. Looking at these results with comparable number of
links returned, Google, Interleave, and Agreement methods
does not have a clear winner among the three, but they are
consistently outperformed by the remaining four methods
except the first sub-table.

Next, we analyzed the results with respect to the length of
the queries performed by the users. Table 4 presents results
obtained by the different fusion methods by considering the

341

0-24 links returned
method AvgHits Clicks AvgRank StdevRank
Interleave 11.37 103 5.47 4.80
Agreement 8.31 28 4.68 4.06
Centroid 11.23 158 4.94 4.79
WCentroid 11.35 98 6.63 7.29
BestSim 9.71 123 4.28 4.27
BestMSim 9.65 153 6.20 5.65
Google 5.73 410 5.31 5.35

25-49 links returned
method AvgHits Clicks AvgRank StdevRank
Interleave 38.80 221 11.27 10.99
Agreement 39.48 126 12.11 11.91
Centroid 40.40 534 10.24 10.12
WCentroid 41.76 455 10.05 10.36
BestSim 40.12 544 11.12 10.55
BestMSim 40.20 487 10.00 9.93
Google 40.26 645 11.41 10.84

50-74 links returned
method AvgHits Clicks AvgRank StdevRank
Interleave 64.07 1658 16.49 17.27
Agreement 64.97 594 15.63 17.24
Centroid 64.13 4340 12.78 14.03
WCentroid 64.34 3301 12.56 13.77
BestSim 64.25 4461 13.46 14.37
BestMSim 64.44 4273 13.55 14.89
Google 59.50 3979 15.19 16.08

75+ links returned
method AvgHits Clicks AvgRank StdevRank
Interleave 81.21 1033 21.28 21.74
Agreement 80.29 493 21.59 23.38
Centroid 79.44 1670 14.18 16.46
WCentroid 78.22 1164 15.45 16.43
BestSim 79.38 1689 15.63 17.16
BestMSim 79.28 1758 15.24 17.09
Google n/a n/a n/a n/a

Table 3: Comparison of methods with varying number of links returned

queries of length one, two, three, four and greater than four.
These results suggest that Centroid and WCentroid meth-
ods generally perform reasonably good with varying number
of terms in the query. One interesting trend we found is that
although BestMSim performs better than BestSim for small
number of terms, it gets worse with the increased number of
terms, and for greater than 3 terms, BestSim begins to out-
perform BestMSim. Since the fraction of the data for these
queries is relatively small, this can be a spurious pattern.
Nevertheless one possible explanation for this behavior is
as follows: Queries with small number of terms tend to be
general or multi-modal in nature. For these queries, BestM-
Sim is more suitable as the relevant set computed by this
scheme may contain many distinct documents. Queries with
large number of terms on the other hand tend to be more
specific. For such queries, the main topic may be captured
by the first (or first few) documents, and the documents se-
lected by BestMSim after the first few iterations may not be
very related to the query.

Finally, in evaluating the results produced by either one
of the four proposed fusion schemes, we noticed that Mearf
has a natural way of filtering out bad links. Our exper-
iments with a large number of randomly selected general
queries shows that, for a good majority of these queries, at
least the bottom 10% links did not contain any of the query
terms, nor a closely related term, whenever the ranking is
done using one of the four Mearf methods. It can be diffi-
cult to subjectively judge the relative importance of highly
ranked links produced by Mearf compared to other search
engines. However for a typical query, once we look at the
bottom 10% of results produced by Mearf and the position
of these links in the original search engines, we see that
these mostly irrelevant links are scattered all around in the
original search engine, not necessarily in the bottom 10%.
Although there is no guarantee that the bottom 10% of the
links in Mearf are all irrelevant, these links will be omit-
ted by most users, as their snippets typically do not contain
the query terms nor any related terms. Mearf consistently
places broken links, links with poor snippets, links with gen-
erally irrelevant snippets such as “no summary available”,
“document not found”, “under construction” and snippets
with very few terms to bottom 10%, while populating top

ranks with snippets containing the query terms and related
terms.

6. CONCLUSION AND FUTURE WORK
We introduced four new methods for merging and rerank-

ing results in a meta search environment that use content-
based agreement among the documents returned by differ-
ent search engines. All of the four methods, centroid based
methods in particular, provide an inexpensive and auto-
mated way of improving the rankings. We also introduced
a metric that can be used to compare different reranking
schemes automatically based upon implicit user judgements
seen through user clicks. This metric is applicable when a
user can reasonably judge the relevance of a document by
looking at the summary provided by the search engine.

Experimental results suggest that selection of methods or
adjustment of parameters can be done on the fly based on
the number of terms in the query and the number of results
returned. For example, the experiments discussed in Sec-
tion 5.3 indicate that the parameter m in BestMSim can be
adjusted depending on the number of terms in the query.
For a larger number of query terms, a smaller value of m
is expected to perform better. It is also possible to de-
velop hybrid of some of these methods as well as incorpo-
rate additional quality measures. None of our methods re-
lies on servers to report scores associated with each link, but
our framework is flexible enough to incorporate both server
scores and link scores as well as other quality measures (e.g.,
the snippet length, past user judgements on the URLs, as
well as originating domains, etc.) quite easily if available.
In fact, we successfully incorporated one such measure in all
four Mearf methods, to gradually penalize very short snip-
pets.

Although Mearf architecture is able to retrieve and pro-
cess a fairly large number of links, due to practical consid-
erations, we did not let regular users have control on the
number of links that will be retrieved per search engine, but
set it to 20. Most search engines were able to supply fairly
relevant links in this range. It may be interesting to extend
this study to larger return sets, and compare these meth-
ods and others in varying situations. Some of the methods
can be more suitable for some ranges, but not for others.

342

All queries
method AvgHits Clicks AvgRank StdevRank
Interleave 62.64 3015 17.37 18.68
Agreement 62.09 1241 17.39 19.72
Centroid 61.74 6702 12.74 14.36
WCentroid 61.70 5018 12.88 14.19
BestSim 61.93 6817 13.64 14.85
BestMSim 61.45 6671 13.57 15.16
Google 48.25 5034 13.90 15.16

1 term queries
method AvgHits Clicks AvgRank StdevRank
Interleave 53.10 501 16.26 17.73
Agreement 51.57 218 19.49 21.93
Centroid 53.61 955 12.81 14.33
WCentroid 53.29 757 11.43 13.12
BestSim 54.25 1035 12.83 14.29
BestMSim 51.82 939 12.71 14.38
Google 48.80 697 11.61 13.95

2 term queries
method AvgHits Clicks AvgRank StdevRank
Interleave 65.75 1101 17.75 18.85
Agreement 65.96 334 17.93 21.25
Centroid 63.62 2332 13.24 15.25
WCentroid 63.71 1663 13.70 14.75
BestSim 63.95 2347 14.88 16.01
BestMSim 64.22 2412 12.50 13.96
Google 50.48 1936 15.79 16.00

3 term queries
method AvgHits Clicks AvgRank StdevRank
Interleave 65.89 684 16.43 17.75
Agreement 65.09 302 17.61 19.19
Centroid 65.42 1586 12.46 13.83
WCentroid 64.31 1305 13.51 14.44
BestSim 64.26 1689 13.14 13.93
BestMSim 64.67 1548 13.35 15.06
Google 49.28 1128 12.99 14.40

4 term queries
method AvgHits Clicks AvgRank StdevRank
Interleave 66.11 391 18.42 19.98
Agreement 66.82 145 15.86 17.01
Centroid 64.04 1004 12.50 13.91
WCentroid 66.49 631 11.82 13.82
BestSim 64.11 941 13.80 15.01
BestMSim 64.59 950 15.33 16.38
Google 46.40 718 13.06 14.76

5+ term queries
method AvgHits Clicks AvgRank StdevRank
Interleave 65.95 338 18.46 19.56
Agreement 65.31 242 15.42 17.18
Centroid 63.88 825 12.10 13.24
WCentroid 65.37 659 12.33 13.53
BestSim 66.06 805 11.98 13.35
BestMSim 64.69 822 16.04 17.48
Google 38.97 555 13.10 14.89

Table 4: Comparison of methods with varying query length

By combining different methods and dynamically adjusting
their parameters, it may be possible to build better meth-
ods suitable in a wider range of situations. For example, a
hybrid of WCentroid and Agreement may produce a suit-
able method if we have a fairly large number of results from
each search engine and the histogram of the relevance of the
documents vs their positions may exhibit a significant drop
after some point. Such a method will boost the rankings of
the links that have summaries similar to the reranking vec-
tor computed by WCentroid, while respecting the original
rankings produced by the search engines up to a degree.

7. REFERENCES
[1] Brian T. Bartell, Garrison W. Cottrell, and

Richard K. Belew. Automatic combination of multiple
ranked retrieval systems. In Research and Development
in Information Retrieval, pages 173–181, 1994.

[2] C4.com. http://www.c4.com/.

[3] J. P. Callan, Z. Lu, and W. Bruce Croft. Searching
Distributed Collections with Inference Networks. In
Proceedings of the 18th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 21–28, Seattle,
Washington, 1995. ACM Press.

[4] Daniel Dreilinger and Adele E. Howe. Experiences
with selecting search engines using metasearch. ACM
Transactions on Information Systems, 15(3):195–222,
1997.

[5] James C. French and Allison L. Powell. Metrics for
evaluating database selection techniques. In 10th
International Workshop on Database and Expert
Systems Applications, 1999.

[6] James C. French, Allison L. Powell, James P. Callan,
Charles L. Viles, Travis Emmitt, Kevin J. Prey, and
Yun Mou. Comparing the performance of database
selection algorithms. In Research and Development in
Information Retrieval, pages 238–245, 1999.

[7] E. Glover. Using Extra-Topical User Preferences to
Improve Web-Based Metasearch. PhD thesis, 2001.

[8] L. Gravano, H. Garćıa-Molina, and A. Tomasic. The
effectiveness of GIOSS for the text database discovery
problem. SIGMOD Record (ACM Special Interest
Group on Management of Data), 23(2):126–137, June
1994.

[9] Adele E. Howe and Daniel Dreilinger.
SAVVYSEARCH: A metasearch engine that learns
which search engines to query. AI Magazine,
18(2):19–25, 1997.

[10] Inquirus. http://www.inquirus.com/.

[11] Panagiotis Ipeirotis, Luis Gravano, and Mehran
Sahami. Automatic classification of text databases
through query probing. Technical Report
CUCS-004-00, Computer Science Department,
Columbia University, March 2000.

[12] Ixquick. http://www.ixquick.com/.

[13] D. D. Lewis. Evaluating and Optimizing Autonomous
Text Classification Systems. In E. A. Fox,
P. Ingwersen, and R. Fidel, editors, Proceedings of the
18th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 246–254, Seattle, Washington, 1995. ACM
Press.

[14] Longzhuang Li and Li Shang. Statistical performance
evaluation of search engines. In WWW10 conference

343

posters, May 2–5, 2001, Hong Kong.

[15] Mamma. http://www.mamma.com/.

[16] M. Catherine McCabe, Abdur Chowdhury, David A.
Grossman, and Ophir Frieder. A unified environment
for fusion of information retrieval approaches. In
ACM-CIKM Conference for Information and
Knowledge Management, pages 330–334, 1999.

[17] Metacrawler. http://www.metacrawler.com/.

[18] Profusion. http://www.profusion.com/.

[19] E. Selberg. Towards Comprehensive Web Search. PhD
thesis, 1999.

[20] E. Selberg and O. Etzioni. Multi-service search and
comparison using the MetaCrawler. In Proceedings of
the 4th International World-Wide Web Conference,
Darmstadt, Germany, December 1995.

[21] E. Selberg and O. Etzioni. The MetaCrawler
architecture for resource aggregation on the Web.
IEEE Expert, (January–February):11–14, 1997.

[22] Joseph A. Shaw and Edward A. Fox. Combination of
multiple searches. In Third Text REtrieval Conference,
1994.

[23] Mario Gomez Susan Gauch, Guijun Wang. Profusion:
Intelligent fusion from multiple, distributed search
engines. Journal of Universal Computer Science,
2(9):637–649, 1996.

[24] Christopher C. Vogt and Garrison W. Cottrell. Fusion
via a linear combination of scores. Information
Retrieval, 1(3):151–173, 1999.

[25] Zonghuan Wu, Weiyi Meng, Clement Yu, and
Zhuogang Li. Towards a highly-scalable and effective
metasearch engine. In WWW10 Conference, May 2–5,
2001, Hong Kong. ACM, 2001.

[26] Clement T. Yu, Weiyi Meng, King-Lup Liu, Wensheng
Wu, and Naphtali Rishe. Efficient and effective
metasearch for a large number of text databases. In
Proceedings of the 1999 ACM CIKM International
Conference on Information and Knowledge
Management, Kansas City, Missouri, USA, November
2-6, 1999, pages 217–224. ACM, 1999.

344

