
A Medium-Grained Algorithm for Distributed Sparse Tensor Factorization

Shaden Smith, George Karypis
Department of Computer Science and Engineering, University of Minnesota

{shaden, karypis}@cs.umn.edu

Abstract—Modeling multi-way data can be accomplished
using tensors, which are data structures indexed along three
or more dimensions. Tensors are increasingly used to analyze
extremely large and sparse multi-way datasets in life sciences,
engineering, and business. The canonical polyadic decomposi-
tion (CPD) is a popular tensor factorization for discovering
latent features and is most commonly found via the method of
alternating least squares (CPD-ALS). The computational time
and memory required to compute CPD limits the size and
dimensionality of the tensors that can be solved on a typical
workstation, making distributed solution approaches the only
viable option. Most methods for distributed-memory systems
have focused on distributing the tensor in a coarse-grained,
one-dimensional fashion that prohibitively requires the dense
matrix factors to be fully replicated on each node. Recent work
overcomes this limitation by using a fine-grained decomposi-
tion of the tensor nonzeros, at the cost of computationally
expensive hypergraph partitioning. To that effect, we present
a medium-grained decomposition that avoids complete factor
replication and communication, while eliminating the need for
expensive pre-processing steps. We use a hybrid MPI+OpenMP
implementation that exploits multi-core architectures with a
low memory footprint. We theoretically analyze the scalability
of the coarse-, medium-, and fine-grained decompositions and
experimentally compare them across a variety of datasets.
Experiments show that the medium-grained decomposition
reduces communication volume by 36-90% compared to the
coarse-grained decomposition, is 41-76x faster than a state-of-
the-art MPI code, and is 1.5-5.0x faster than the fine-grained
decomposition with 1024 cores.

Keywords-Sparse tensor, distributed, PARAFAC, CPD, par-
allel, medium-grained

I. INTRODUCTION

Multi-way data arises in many of today’s applications. A
natural representation of this data is via a tensor, which is
the extension of a matrix to three or more dimensions (called
modes). For example, we can model product reviews as user-
item-word triplets [1], the Never-Ending Language Learning
(NELL) knowledge database as noun-verb-noun triplets [2],
or electronic health records as patient-procedure-diagnosis
triplets [3]. These tensors have very long modes and are very
sparse (e.g., NELL has a density of 9×10−13).

The recent popularity of tensors has led to an increased
use of tensor factorization, a powerful tool for discovering
the latent features in multi-way data. The most popular fac-
torization is the canonical polyadic decomposition (CPD), a
rank decomposition that can be seen as a higher-dimensional
generalization of the singular value decomposition. The CPD

represents the tensor via a matrix of latent features for each
mode. We refer to these matrices as factors. The columns of
the factors often represent some real-world interpretation of
the dataset, such as film genre, word category, or phenotype.
The CPD has been used with great success to perform tasks
such as identifying word synonyms [4], performing webpage
queries [5], and generating a list of recommendations [6].

Computing the CPD is a non-convex optimization prob-
lem. The most common method is using the method of
alternating least squares (CPD-ALS), which solves the non-
convex problem by turning each iteration into a sequence
of convex least squares solutions. The computational time
and memory required to compute the CPD limits the size
and dimensionality of the tensors that can be solved on a
typical workstation, making distributed solution approaches
the only viable option.

Two systems for distributed tensor factorization are
DFACTO [7] and SALS [8]. They partition the input tensor
in a coarse-grained fashion, and require the dense matrix
factors to be present on each node. A drawback to both
methods is that they are not memory scalable because the
matrix factors can consume more memory than the original
sparse tensor and each node must communicate those factors
in their entirety, each iteration. HYPERTENSOR [9] is a
recent work that overcomes this limitation by using a fine-
grained decomposition of the tensor’s nonzeros. The fine-
grained decomposition reduces communication volume by
using hypergraph partitioning, which often takes signifi-
cantly more time than actually computing the factorization.

To address these limitations, we present a distributed
CPD-ALS algorithm that is scalable in terms of computation
and memory. Scalability is achieved by performing an m-
dimensional decomposition of the tensor, where m is the
number of modes, and one-dimensional decompositions of
the factor matrices. Our distributed-memory CPD-ALS im-
plementation, called DMS, is has two levels of parallelism:
MPI provides node-level parallelism and OpenMP provides
multi-core parallelism within each computing node. Our
contributions are:

1) A CPD-ALS algorithm for distributed-memory sys-
tems that uses an m-dimensional decomposition of the
tensor and one-dimensional decompositions of the fac-
tors to achieve computational and memory scalability.

2) A theoretical analysis of the medium-grained decom-
position, which shows that it reduces the communi-

cation overhead from O(IF) to O
(
IF/ m

√
p
)
, where

IF is the size of the output and p is the number of
cores.

3) An extensive set of experiments across various datasets
on up to 512 cores. DMS reduces communication
volume by 36% to 90%, is 20× to 60× faster than
DFACTO, and is 1.7× to 5.0× faster than our own
fine-grained implementation.

The rest of this paper is organized as follows. Section II
introduces notation and provides a background on the CPD
and ALS. Section III highlights existing approaches for dis-
tributed tensor factorization. We describe our tensor decom-
position and distributed CPD-ALS algorithm in Section IV,
and detail efficient algorithms for finding a decomposition
in Section V. Section VI details our experimental setup
and provide a discussion of the results. Finally, Section VII
provides some concluding remarks.

II. TENSOR BACKGROUND

A. Tensor Notation

We denote vectors using bold lowercase letters (λ), ma-
trices using bold capital letters (A), and tensors using bold
capital calligraphic letters (X). The element in coordinate
(i, j, k) of X is X (i, j, k). Unless specified, the sparse
tensor X is of dimension I×J×K and has nnz(X) nonzero
elements. A colon in the place of an index represents all
members of that mode. For example, A(:, f) is column f
of the matrix A. Fibers are the generalization of matrix
rows and columns and are the result of holding two indices
constant. A slice of a tensor is the result of holding one
index constant and the result is a matrix.

A tensor can be unfolded, or matricized, into a matrix
along any of its modes. In the mode-n matricization, the
mode-n fibers form the columns of the resulting matrix.
The mode-n unfolding of X is denoted as X(n). If X is
of dimension I×J×K, then X(1) is of dimension I×JK.

Two essential matrix operations used in the CPD are
the Hadamard product and the Khatri-Rao product. The
Hadamard product, denoted A ∗ B, is the element-wise
multiplication of A and B. The Khatri-Rao product, denoted
A � B, is the column-wise Kronecker product. If A is I×J
and B is M×J , then A � B is IM×J .

B. Canonical Polyadic Decomposition

The CPD is a generalization of the singular value de-
composition (SVD) to tensors. In the SVD, a matrix M is
factored into the summation of F rank-one matrices, where
F can either be the rank of M or some smaller integer if a
low-rank approximation is desired. CPD extends this concept
to factor a tensor into the summation of F rank-one tensors.
We are almost always interested in F � max{I, J,K}
for sparse tensors. In this work we treat F as a small
constant on the order of 10 or 100. A rank-F CPD produces
factors A ∈ RI×F , B ∈ RJ×F , and C ∈ RK×F . A, B,

Algorithm 1 CPD-ALS

1: while not converged do
2: Aᵀ = (CᵀC ∗ BᵀB)−1

(
X(1)(C � B)

)ᵀ
3: Normalize columns of A
4: Bᵀ = (CᵀC ∗ AᵀA)−1

(
X(2)(C � A)

)ᵀ
5: Normalize columns of B
6: Cᵀ = (BᵀB ∗ AᵀA)−1

(
X(3)(B � A)

)ᵀ
7: Normalize columns of C and store in λ
8: end while

and C are typically dense regardless of the sparsity of X .
Unlike the SVD, the CPD does not require orthogonality
in the columns of the factors. We output the factors with
normalized columns and λ ∈ RF , a vector for weighting the
rank-one components. Using this form we can reconstruct X
via

X (i, j, k) ≈
F∑

f=1

λ(f)A(i, f)B(j, f)C(k, f).

Besides CPD there are other ways to compute factoriza-
tions of tensors such as the Tucker Decomposition [10].
However, the work in this paper focuses only on CPD and
any reference to tensor factorization will indicate a CPD
tensor factorization.

C. CPD with Alternating Least Squares

CPD-ALS is the most common algorithm for computing
the CPD. The non-convex problem is transformed into a
convex one for each factor and iterate until convergence.
During each iteration, B and C are fixed and we solve the
unconstrained least squares optimization problem

minimize
A

1

2
||X(1) − A(C � B)ᵀ||2F

with solution

Aᵀ = (CᵀC ∗ BᵀB)−1
(
X(1)(C � B)

)ᵀ
We first find Â = X(1)(C � B), followed by the Gram

matrix M = (CᵀC ∗ BᵀB). M is an F×F positive semi-
definite matrix and so we use its Cholesky factorization
instead of explicitly computing its inverse. B and C are
then solved for similarly. The factors are normalized each
iteration and λ stores the F column norms. The full CPD-
ALS steps are shown in Algorithm 1.

We denote Â = X(1)(C�B) as the matricized tensor times
Khatri-Rao product (MTTKRP). Explicitly forming C � B
and performing the matrix multiplication requires orders of
magnitude more memory than the original sparse tensor.
Instead, we exploit the block structure of the Khatri-Rao
product to perform the multiplication in place. The fastest
MTTKRP algorithms can execute an MTTKRP operation
in O (F · nnz(X)) floating-point operations (FLOPs), with

a leading constant dependent on the sparsity pattern of the
tensor [7], [11], [12]. Entry Â(i, f) is given by

Â(i, f) =
∑

X (i,:,:)

X (i, j, k)B(j, f)C(k, f). (1)

Equation (1) shows us two important properties of the
MTTKRP operation. First, nonzeros in slice X (i, :, :) will
only contribute to row Â(i, :). Second, the j and k indices
in slice X (i, :, :) determine which rows of B and C must be
accessed during the multiplication.

CPD-ALS iterates until convergence. The residual of a
tensor X and its CPD approximation Z is√

〈X ,X 〉+ 〈Z,Z〉 − 2〈X ,Z〉.

〈X ,X 〉 = ||X ||2F is a direct extension of the matrix
Frobenius norm, i.e., the sum-of-squares of all nonzero
elements. X is also a constant input and thus its norm can
be pre-computed. The norm of a factored tensor is

||Z||2F = λᵀ (CᵀC ∗ BᵀB ∗ AᵀA)λ.

Fortunately, each AᵀA product is computed during the CPD-
ALS iteration and the results can be cached and reused in
just O(F 2) space. The complexity of computing the residual
is bounded by the inner product 〈X ,Z〉 which is given by

F∑
f=1

λ(f)

 ∑
nnz(X)

X (i, j, k)A(i, f)B(j, f)C(k, f)

 . (2)

The cost of Equation (2) is 4F · nnz(X) FLOPs, which
is more expensive than an entire MTTKRP operation. In
Section IV-B6 we present a method of reusing MTTKRP
operation results to reduce the cost to 2FI .

All of the above discussion can be generalized to tensors
with more than three modes. For more information on
tensors and their factorizations, we direct the reader to the
excellent survey by Kolda and Bader [13].

III. RELATED WORK

Distributed CPD algorithms such as DFACTO [7] and
SALS [8] use coarse-grained decompositions in which
independent one-dimensional (1D) decompositions are used
for each tensor mode. Processes own a set of contiguous
slices for each mode and are responsible for the corre-
sponding factor rows. Figure 1 is an illustration of this
decomposition scheme. An advantage of this scheme is the
simplicity of performing MTTKRP operations. Each process
owns all of the nonzeros that contribute to its owned output
and thus the only communication required is exchanging
updated factor rows after each iteration. Independent 1D
decompositions can be interpreted as a task decomposition
on the problem output, often called the owner-computes rule.

A limitation of these coarse-grained methods is that by
owning slices in each mode of the tensor, processes own
nonzeros that can span the complete modes of X . As a

Figure 1: A coarse-grained decomposition of X . Slices
owned by a single process are shaded.

result, from Equation (1) we can see that processes will
require access to the factors in their entirety over the
course of the MTTKRP operations during an ALS iteration.
The memory footprint of all factors can rival that of the
entire tensor when the input is very sparse. Thus, memory
consumption is not scalable and since updated factors must
be communicated, communication is also not scalable.

Adding constraints such as non-negativity or sparsity in
the latent factors is also an interest to the tensor community.
A distributed non-negative CPD algorithm for dense tensors
was introduced in [14]. A coarse-grained decomposition was
used on the tensor and factors. A generalized framework
for constrained CPD that uses the Alternating Direction
Method of Multipliers (ADMM) was presented in [15].
Parallelism is extracted by performing a 2D decomposition
on the matricized tensor and a row distribution of the factors.
Neither of these two methods for parallel constrained tensor
factorization were explicitly designed for sparse tensors and
thus the storage and communication of full factors is not
considered a limitation.

Recently, a new CPD-ALS algorithm named HYPER-
TENSOR was presented in [9]. HYPERTENSOR uses a fine-
grained decomposition over X in which nonzeros are indi-
vidually assigned to processes. Several methods of comput-
ing such a decomposition are presented, with the most suc-
cessful relying on hypergraph partitioning. HYPERTENSOR
maps X to a hypergraph with nnz(X) vertices and I+J+K
hyperedges. The vertex representing nonzero X (i, j, k) is
connected to hyperedges i, j, and k. The experiments
presented in [9] show that a balanced partitioning of the
hypergraph leads to a load-balanced computation with low
communication volume.

SPLATT [11] is a software toolkit for parallel sparse
tensor factorization on shared-memory systems. It uses
a compressed, fiber-centric data structure for the tensor
called compressed sparse fiber (CSF). The CSF data struc-
ture allows SPLATT to perform operation-efficient, multi-
threaded MTTKRP operations using a single tensor repre-
sentation [16]. The MTTKRP algorithm used in SPLATT
computes whole rows of Â at a time by processing all of

the fibers in a single slice:

Â(i, :)←
J∑

j=1

(
B(j, :) ∗

K∑
k=1

X (i, j, k)C(k, :)

)
.

Factoring out the contributions of B allows SPLATT to
use fewer FLOPs than other algorithms that operate on
individual nonzeros.

IV. MEDIUM-GRAINED CPD-ALS
In order to address the high memory and communi-

cation requirements of the coarse-grained decomposition
while at the same time eliminate the need to perform the
expensive pre-processing step associated with hypergraph
partitioning, we developed an approach that uses a medium-
grained decomposition. Like coarse- and fine-grained meth-
ods, medium-grained have roots in the sparse matrix com-
munity [17]–[19]. The medium-grained decomposition uses
an m-mode decomposition over the tensor and related 1D
decompositions on the factor matrices. The medium-grained
CPD-ALS algorithm is parallelized at the node-level using a
message passing model and exploits multi-core architectures
as well with thread-level parallelism on each node.

In order to simplify the presentation, this section considers
only three mode tensors and the generalization of the algo-
rithms to higher-order tensors is discussed in Section IV-C.

A. Data Distribution Scheme

Assume that there are p = q×r×s processing elements
available. We form a 3D decomposition of X by partitioning
its three modes into q, r, and s chunks, respectively. The
intersections of these partitions form a total of p partitions
arranged in a q×r×s grid. We denote X (x,y,z) as the
partition of X with coordinate (x, y, z), and p(x,y,z) as the
process that owns X (x,y,z). We refer to a group processes
which share a coordinate as a layer. For example, p(i,:,:) is
a layer of r×s processes along the first mode and p(:,j,:) is
layer of q×s processes along the second mode.

In our implementation, each process stores its subtensor in
the CSF data structure. This allows us to use the operation-
efficient MTTKRP algorithm included in SPLATT to extract
parallelism on shared-memory architectures.

We use the 3D decomposition of X to induce partitionings
of the rows of A, B, and C. The rows of A are divided
into chunks A1, . . . ,Aq which have boundaries aligned with
the q partitions of the first mode of X . The rows in Ai

are collectively owned by all processes in layer p(i,:,:). The
rows of B and C are similarly divided into B1, . . . ,Br and
C1, . . . ,Cs, respectively. This decomposition is illustrated
in Figure 2a.

We further partition the rows of each chunk of A into
r×s groups such that each process in layer p(i,:,:) owns
a subset of the rows of Ai. We note that the partitioning
need not assign a contiguous set of rows to a process and a
process is not required to be assigned any rows. The output

of the MTTKRP operation, Â, has the same distribution as
A. Process pi owns the same rows of Âi as it does Ai.
The process is repeated for B and C similarly. We relabel
the slices of X in order to make the rows owned by each
process contiguous. This is illustrated in Figure 2c.

In subsequent discussions we will refer to process-level
partitions of A in two ways: Api refers to the chunk of A
owned by process pi, and A(x,y,z) refers to the chunk of A
owned by process with coordinate (x, y, z). The coordinate
form will simplify discussion during the MTTKRP operation
that relies on the 3D decomposition.

B. Distributed CPD-ALS
We will now detail each step of a CPD-ALS iteration

using our 3D decomposition. For brevity we only discuss
the computations used for the first mode. The other tensor
modes are computed identically.

1) Distributed MTTKRP Operations: Process p(x,y,z)
performs an MTTKRP operation with X (x,y,z). Any nonze-
ros in X (x,y,z) whose mode-1 indices are non-local will
produce partial products that must be sent to other processes
in the layer p(x,:,:). Likewise, p(x,y,z) will receive partial
products from any processes in layer p(x,:,:) which output
to rows in Â(x,y,z). The received partial products are then
aggregated, resulting in the completed Â(x,y,z).

2) Cholesky Factorization: BᵀB and CᵀC are F×F
matrices that comfortably fit in the memory of each process.
Assume BᵀB and CᵀC are already resident in each process’
memory. All processes redundantly compute the Cholesky
factorization of M = (CᵀC ∗ BᵀB) in O(F 3) time, which
is a negligible overhead for the low-rank problems that we
are interested in. We perform the forward and backward sub-
stitutions in block form to exploit our row-wise distribution
of Â:

Aᵀ = M−1Â
ᵀ
=
[

M−1Â
ᵀ
p1

M−1Â
ᵀ
p2

. . . M−1Â
ᵀ
pp

]
3) Column Normalization: After computing the new

factor A, we normalize its columns and store the norms
in the F×1 vector λ. Processes first compute the local
column norms of Api and collectively find the global λ
with a parallel reduction. Finally, each process normalizes
the columns of Api

with λ.
Processes further parallelize the normalization process by

using the 1D decomposition of the matrix rows and finding
thread-local norms. The threads then use a reduction before
the global λ is computed.

4) Forming the New Gram Matrix: Each process needs
the updated AᵀA factor in order to form M during the
proceeding modes. We view the block matrix form of the
computation to derive a distributed algorithm:

AᵀA =
[

Aᵀ
p1

Aᵀ
p2

. . . Aᵀ
pp

]
Ap1

Ap2

. . .
App

 =

p∑
i=1

Aᵀ
pi

Api .

A1

A2

B1 B2 B3

C1

C2

(a) X is distributed over a 2×3×2 grid.

A2

B1 B2 B3

C1

C2

(b) Process layer p(2,:,:) collectively owns A2.

X (2,3,1)

A(2,3,1)

B(2,3,1)

C(2,3,1)

(c) Process p7 owns X 2,3,1 and the
shaded factor rows. Shaded nonzeros do
not result in communication.

Figure 2: A medium-grained decomposition for twelve processes.

Each process first computes its local Aᵀ
pi

Api . The 1D decom-
position on the rows of Api

is used again to extract thread-
level parallelism. We then perform an All-to-All reduction
to find the final matrix and distribute it among all processes.

5) Updating Non-Local Rows: Processes with non-local
rows of A must receive updated values before the next
MTTKRP operation. This communication is a dual of ex-
changing partial products during the distributed MTTKRP
operation. Any processes that sent partial MTTKRP products
to process pi now receive the updated rows of Api

.
6) Residual Computation: Convergence is tested at the

end of every iteration. In Section II-C we showed that
residual computation cost is bounded by 〈X ,Z〉, which uses
4F · nnz(X) FLOPs. We observe that contributions from B
and C with X are already computed during the MTTKRP
operation. Thus, we can cache Â and rewrite Equation (2)
as

1ᵀ

Ap1
∗ Âp1

Ap2
∗ Âp2

. . .

App
∗ Âpp

λ =

p∑
i=1

1ᵀ
(

Âpi
∗ Api

)
λ, (3)

where 1 is the vector of all ones. This reduces the compu-
tation to 2IF FLOPs.

Each process computes its own local 1ᵀ
(

Âpi ∗ Api

)
λ.

Thread-level parallelism is achieved via 1D row decompo-
sitions on Âpi

and Api
. Finally, we use a parallel reduction

on each node’s local result and form 〈X ,Z〉.

C. Extensions to Higher Modes

Extending our distributed CPD-ALS algorithm to tensors
with an arbitrary number of modes is straightforward. Sup-
pose X is a tensor with m modes and we wish to compute
factors A(1), . . . ,A(m).

Operation-efficient MTTKRP algorithms for a general
number of modes are found in [11], [16]. Adding partial
products from neighbor processes remains the same, with
the only consideration being that a layer is no longer a 2D
group of processes, but a group of dimension m−1.

Residual computation again is easily extended. General-
ized MTTKRP computes

Â
(1)

(i1, f) =
∑

X (i1, . . . , im)A(2)(i2, f) . . .A(n)(im, f),

and so we can directly use Equation (3) to complete the
residual calculation. Assuming Â

(1)
can be cached, our

algorithm does not increase in cost as more modes are added.

D. Complexity Analysis

The cost of CPD-ALS is bounded by MTTKRP and
its associated communication. Coarse-, medium-, and fine-
grained distributed algorithms distribute work such that each
process does O(F ·nnz(X)/p) work. They differ, however,
in the overheads associated with communication. In this sec-
tion, we discuss the communication costs present in coarse-
and medium-grained decompositions for a single mode. We
define the communication cost as the number of words of
A and Â that must be communicated. The flexibility of
fine-grained decompositions makes analysis difficult; both
coarse- and medium-grained communication patterns are
possible if the nonzeros are distributed appropriately. In our
discussion we will use the personalized all-to-all collective
communication. Derivation of its complexity can be found
in [20].

Assume that X has m modes, is of dimension I× . . .×I ,
p processes are arranged in a m

√
p× . . .× m

√
p grid, and that

messages require O(1) time to transfer per word. A medium-
grained decomposition has two communication steps to
consider: aggregating non-local rows during an MTTKRP
operation and sending updated rows of Api after an iteration.

In the worst case, every process has nonzeros in all
(I/ m
√
p) slices of the layer. A process must send (I/p)

unique rows of Â to each of its neighbors in the layer. Using
a personalized all-to-all collective, this communication is
accomplished in time

IF

p

(
p

m−1
m − 1

)
=

(
IF
m
√
p
− IF

p

)
= O

(
IF
m
√
p

)
. (4)

The worst case of the update stage is sending (I/p) rows
to each of the p

m−1
m neighbors in the layer. This operation

is the dual of Equation (4) and has the same cost.
In comparison, a coarse-grained decomposition will send

up to (I/p) rows to all p processes. The communication
overhead is thus

IF

p
(p− 1) = O (IF) . (5)

No partial results from an MTTKRP operation need to
be communicated, however, so Equation (5) is the only
communication associated with a coarse-grained decompo-
sition. Comparing Equations (4) and (5) shows that only the
medium-grained decomposition can reduce communication
costs by increasing parallelism. We experimentally evaluate
this observation in Section VI-D.

V. COMPUTING THE DATA DECOMPOSITION

Our discussion so far has provided an overview of our
medium-grained data decomposition and a distributed algo-
rithm for CPD-ALS. There are two forms of overhead that an
ideal data decomposition will minimize: load imbalance and
communication volume. Graph and hypergraph partitioners
co-optimize these objectives, but can require significant pre-
processing. We chose to optimize the objectives separately.
We load balance the computation during the tensor decom-
position because computational load is mostly a function
of the number of nonzeros assigned to a process. Commu-
nication volume is optimized during the decomposition of
the factor matrices because the assignment of rows directly
impacts communication.

A. Finding a Balanced Tensor Decomposition

Our objective is to derive a load balanced q×r×s de-
composition of the modes of X . We begin by randomly
permuting the each mode of the tensor. The purpose of
the random permutation is to remove any ordering present
from the data collection process that could result in load
imbalance. Each mode is then partitioned independently.

The decomposition of the first mode into q parts is deter-
mined as follows: We greedily assign partition boundaries
by adding consecutive slices until a partition has at least
nnz(X)/q nonzeros. We call nnz(X)/q the target size of a
partition because it will result in a load balanced partitioning
of the mode. Slices can vary in density and adding a slice
with many nonzeros can push a partition significantly over
the target size. Thus, after identifying the slice which pushes
a partition over the target size we compare it to the slice
immediately before and choose whichever leads to better
balance.

Each of the independent mode decompositions is an
instance of the chains-on-chains partitioning problem, for
which there are fast exact algorithms [21]. We found that
in practice, using optimal partitionings led to higher load
imbalance than greedily choosing sub-optimal partitionings.
Since we ultimately work with the intersection of the 1D

partitionings, having optimality in each dimension does not
guarantee optimality in the final partitioning.

B. Partitioning the Factor Matrices

A process may have nonzeros whose indices correspond
to factor rows which are not owned by the process itself.
These non-local rows must be communicated. Thus, the
partitioning of rows during the sub-division of Ai directly
affects the number of partial results which are exchanged
during the MTTKRP operation. Our objective is to minimize
the total number of communicated rows, or the communica-
tion volume. We adapt a greedy method of assigning rows
developed for two-dimensional sparse matrix-vector multi-
plication [19]. We again partition each mode independently.

The sub-division of A is determined as follows: The
q chunks of of A are partitioned independently. For each
row ir in chunk Ai, processes count the number of tensor
partitions (and thus, processes) that contain a nonzero value
in slice X (ir, :, :). Any row that is found in only a single
partition is trivially assigned to the owner because it will not
increase communication volume. Next, the master process in
the layer p(i,:,:) coordinates the assignment of all remaining
rows. At each step it selects the processes with the two
smallest communication volumes, pj and pk, with pj having
the smaller volume. The master process sends a message
to pj instructing it to claim rows until its volume matches
pk. Processes first claim indices which are found in their
local tensor and only claim non-local ones when options are
exhausted. The assignment procedure sometimes reaches a
situation in which all processes have equal volumes but not
all rows have been assigned. To overcome this obstacle we
instruct the next process to claim a 1/(r×s) fraction of the
remaining rows.

These steps are then performed on the second and third
tensor modes to complete the decomposition.

C. Choosing the Shape of the Decomposition

Our decomposition does not require an equal number
of processes along each mode. We select at runtime the
number of processes that should be assigned to each mode.
Most tensors will feature one or more modes that are
significantly longer than the others. For example, the Netflix
tensor described in Section VI has over 20× more users
than it does films. When choosing the dimensions for the
decomposition, it is advantageous to assign more processes
to the long modes than the short ones. The reasoning behind
this decision is that short modes are likely to require storage
and communication regardless of the decomposition and we
should instead use more processes to further the decompose
the modes which can benefit.

A constraint we impose when computing the decompo-
sition is that the product of the dimensions must equal the
number of processes, i.e., q×r×s = p. To achieve this, we

Algorithm 2 Deriving the decomposition shape

Input: dims, the dimensions of X ; m, the number of modes
in X ; p, the number of processes.

Output: P , a vector storing the decomposition dimensions
1: F ← the prime factors of p in non-increasing order
2: P ← 1, an m-dimensional vector of ones
3: . Find the optimal number of slices per process.
4: target ← (

∑m
i=1 dims[i]) /p

5: for all f ∈ F do . Assign a factor of p at a time
6: distances ← 0, an m-dimensional vector of zeros
7: . Find the mode with the most work per process
8: for i← 1 to m do
9: distances[i]← (dims[i]/P [i])− target

10: end for
11: furthest← argmaxi distances[i]
12: P [furthest]← P [furthest]× f . Give f processes
13: end for

break p into its prime factors and greedily assign them to
modes. This process is detailed in Algorithm 2.

VI. EXPERIMENTAL METHODOLOGY & RESULTS

A. Experimental Setup

We used SPLATT to implement three versions of dis-
tributed CPD-ALS. We refer to the collection of our im-
plementations as DMS (distributed-memory SPLATT). The
first version, DMS-CG, uses a coarse-grained decomposi-
tion and is a direct implementation of the algorithm used
in SPLATT and adapted to distributed-memory systems.
The second method uses a medium-grained decomposition
described in Section IV and is denoted DMS-MG. Our
final implementation is DMS-FG, which follows the fine-
grained tensor decomposition used in the evaluation of
HYPERTENSOR [9]. All three algorithms use the same
computational kernels and only differ in decomposition and
the resulting communications. DMS-CG and DMS-MG are
implemented with personalized all-to-all collective opera-
tions, while DMS-FG uses point-to-point communications.

Zoltan [22] with PHG was used for hypergraph partition-
ing with LB APPROACH set to “PARTITION”. All hyper-
graphs were partitioned offline using 512 cores. Partitioning
required between 1400 seconds on Netflix and 6400 seconds
on Delicious.

DMS is implemented in C with double-precision floating-
point numbers and 64-bit integers. DMS uses MPI for
distributed memory parallelism and OpenMP for shared-
memory parallelism. All source code is available for down-
load1. Source code was compiled with GCC 4.9.2 using
optimization level three.

We compare against DFACTO, which to our knowledge
is the fastest publicly available tensor factorization software.

1http://cs.umn.edu/∼splatt/

Table I: Summary of datasets.

Dataset I J K nnz storage (GiB)
Netflix 480K 18K 2K 100M 3.0
Delicious 532K 17M 3M 140M 4.2
NELL 3M 2M 25M 143M 4.3
Amazon 5M 18M 2M 1.7B 51.9
Random1 20M 20M 20M 1.0B 29.8
Random2 50M 5M 5M 1.0B 29.8

nnz is the number of nonzero entries in the dataset. K, M, and B stand for
thousand, million, and billion, respectively. storage is the amount of memory
required to represent the tensor as (i, j, k) = v tuples using 64-bit integers
and 64-bit floating-point values.

DFACTO is implemented in C++ and uses MPI for dis-
tributed memory parallelism.

We used F = 16 for all experiments. Experiments were
carried out on HP ProLiant BL280c G6 blade servers on
a 40-gigabit InfiniBand interconnect. Each server had dual-
socket, quad-core Xeon X5560 processors running at 2.8
GHz with 8MB last-level cache and 22 gigabytes of available
memory.

B. Datasets

Table I is a summary of the datasets we used for
evaluation. The Netflix dataset is taken from the Netflix
Prize competition [23] and forms a user-item-time ratings
tensor. NELL [2] is comprised of noun-verb-noun triplets.
Amazon [1] is a user-item-word tensor parsed from product
reviews. We used Porter stemming [24] on review text
and removed all users, items, and words that appeared
less than five times. Delicious is a user-item-tag dataset
originally crawled by Görlitz et al. [25] and is also available
for download. Random1 and Random2 are both synthetic
datasets with nonzeros uniformly distributed. They have the
same number of nonzeros and total mode length (i.e., output
size), but differ in the length of individual modes.

C. Effects of Distribution on Load Balance

Table II shows the load imbalance with 64 and 128 nodes.
Load imbalance is defined as the ratio of the maximum
amount of work (tensor nonzeros) assigned to a process to
the average amount of work over all processes. DMS-CG
suffers severe load imbalance on the Amazon tensor, with
the imbalance growing from 2.17 with 64 nodes to 3.86
with 128 nodes. In contrast, DMS-MG has much lower
imbalance, with its largest ratios being only 1.08 with 64
nodes on Amazon. DMS-FG is the most balanced, with
Zoltan reaching 1.05 on Delicious with 128 nodes and 1.00
on all other that datasets we could partition.

D. Effects of Distribution on Communication Volume

Table III presents results for communication volume with
128 nodes. We only count communication that is a conse-
quence of the tensor decomposition, i.e., the aggregation of
partial products during MTTKRP operations and exchanging

Table II: Load imbalance with 64 and 128 nodes.

DMS-CG DMS-MG DMS-FG
Dataset 64 128 64 128 64 128
Netflix 1.03 1.18 1.00 1.00 1.00 1.00

Delicious 1.21 1.41 1.01 1.06 1.00 1.05
NELL 1.12 1.29 1.01 1.01 1.00 1.00

Amazon 2.17 3.86 1.08 1.08 part part

Load imbalance is the ratio of the largest number of nonzeros assigned
to a process to the average number of nonzeros per process. part
indicates that we were unable to compute a hypergraph partitioning
in the memory available on 64 nodes. Hypergraph partitioning was
performed with the load imbalance parameter set to 1.10.

updated rows. We report the average volume per MPI
process as well as the maximum over all processes. We
define the communication volume as the total number of
rows sent and received per iteration, per MPI process. By
measuring the total number of rows communicated, and not
the number of words, our discussion is independent of the
rank of the decomposition. When F = 1, the number of
communicated rows is equal to the communicated words.

When the each process owns (I/p) rows of a factor,
the worst case communication volume results from sending
(I/p) rows to p processes and receiving I − (I/p) rows for
a total volume of 2I − (I/p). The maximum volume over
all modes is

Vmax = 2I + 2J + 2K − I + J +K

p
.

DFACTO uses a pessimistic approach to communication and
always has a communication volume of Vmax. DMS-CG
uses the same decomposition as DFACTO but instead utilizes
an optimistic approach in which only the necessary factor
rows are stored and communicated. Resultingly, DMS-CG
has a smaller communication volume than Vmax on all
datasets that we were able to collect results for. Despite
the added communication step of aggregating partial results
during the MTTKRP operations, DMS-MG and DMS-FG
exhibit lower average communication volumes than DMS-
CG on all datasets.

DMS-FG has the lowest average volume on all datasets
except Netflix. The discrepancy between mode lengths is
largest on Netflix, resulting in DMS-MG using a 64×2×1
decomposition of the tensor. By using most of processes to
partition only the longest mode, the majority of the possible
communication volume is constrained to the p(i,:,:) layers
which have only two processes each. DMS-MG avoids
partitioning the other tensor modes in exchange for greatly
reducing the communication along the longest mode.

While the average communication volumes are lowest
with DMS-FG, this method also sees the largest maximum
volumes. Hypergraph partitioners optimize the total com-
munication volume, not necessarily the maximum over any
process. Additionally, with fine-grained decompositions a
process may have to exchange rows with all other processes

Table III: Communication volume with 128 nodes.

DMS-CG DMS-MG DMS-FG
Dataset max avg max avg max avg
Netflix 674.8K 616.9K 99.3K 56.8K 2.6M 210.5K

Delicious 2.8M 2.3M 2.5M 1.6M 4.2M 719.2K
NELL 3.8M 3.4M 2.5M 1.7M 6.0M 1.2M

Amazon 8.3M 7.3M 4.0M 2.5M part part
Random1 72.1M 72.1M 39.5M 39.3M part part
Random2 55.2M 55.2M 23.6M 23.5M part part

Table values are the communication volumes with 128 MPI processes. max is the
maximum volume of any MPI process and avg is the average volume. part indicates
that we were unable to compute a hypergraph partitioning in the memory available on
64 nodes.

instead of being bounded by the size of a layer. Thus, some
processes can exhibit very large communication volumes in
exchange for a lower average.

E. Strong Scaling

Table IV shows the runtimes of our methods and
DFACTO. We scale from 2 to 128 computing nodes and
measure the time to perform one iteration of CPD-ALS
averaged over 50 runs. Each node has eight processors
available which we utilize. DMS is a hybrid MPI+OpenMP
code and so we use one MPI process and eight OpenMP
threads per node. DFACTO is a pure MPI code and so we
use eight MPI processes per node.

The DMS methods are faster than DFACTO on all
datasets. DMS-MG is 41× faster on Amazon and 76×
faster on Delicious when both methods use 128 nodes (1024
cores). Our success is due to several key optimizations. The
three DMS methods begin faster on small node counts due to
an MTTKRP algorithm which on average is 5× faster [11].
As we increase the number of nodes, DMS methods out-
scale DFACTO due to their ability to exploit parallelism
in the dense matrix operations that take place after the
MTTKRP operation. DMS methods also use significantly
less memory than DFACTO, which is unable to factor some
of our large datasets. This is due to a combination of our
optimistic factor storage and our MPI+OpenMP hybrid code.
DFACTO must replicate factors on every core to exploit
multi-core architectures. Even in the worst case, the DMS
methods only need one copy of each matrix factor (and in
practice, almost always less than one copy).

DMS-FG was unable to partition the tensors with billions
of nonzeros due to the overhead of hypergraph partitioning.
It is important to note that fine-grained decompositions are
not limited to only the hypergraph model, and nonzeros
could instead be randomly assigned to processes. However,
experimental results in [9] show that random assignment
results in runtime performance that is comparable to a
coarse-grained decomposition. On the tensors we were able
to factor, its performance is very comparable to DMS-CG
on Netflix and Delicious, but DMS-CG is 1.7× faster on
NELL.

Table IV: Strong scaling results.

Netflix Delicious NELL
Nodes DFacTo DMS-CG DMS-MG DMS-FG DFacTo DMS-CG DMS-MG DMS-FG DFacTo DMS-CG DMS-MG DMS-FG

1 11.34 1.82 1.82 1.82 mem 7.90 7.90 7.90 mem 10.82 10.82 10.82
2 6.07 1.16 0.84 1.03 mem 4.82 4.11 6.98 mem 6.66 6.01 9.14
4 3.24 0.64 0.37 0.56 mem 3.08 2.23 4.43 mem 4.06 3.32 5.24
8 1.90 0.39 0.18 0.31 28.01 1.88 1.25 2.16 mem 2.55 2.02 3.46

16 1.34 0.23 0.09 0.22 25.54 1.26 1.04 1.35 mem 1.64 1.16 2.33
32 0.95 0.20 0.06 0.20 24.93 0.86 0.59 0.96 mem 1.09 0.82 1.74
64 0.82 0.19 0.04 0.19 25.15 0.81 0.37 0.66 mem 0.76 0.55 1.16

128 1.33 0.14 0.05 0.24 24.34 0.42 0.32 0.48 mem 0.53 0.35 0.92

(a)

Amazon Random1 Random2
Nodes DFacTo DMS-CG DMS-MG DMS-FG DFacTo DMS-CG DMS-MG DMS-FG DFacTo DMS-CG DMS-MG DMS-FG

8 mem mem 8.34 part mem mem 18.25 part mem mem 16.27 part
16 64.12 13.07 4.30 part mem 12.80 11.42 part mem mem 9.61 part
32 50.92 10.06 2.19 part mem 9.98 8.12 part mem 10.61 6.25 part
64 45.29 10.82 1.80 part mem 8.02 5.51 part mem 7.86 4.06 part

128 40.20 7.82 0.97 part mem 6.85 3.96 part mem 5.53 2.81 part

(b)

Table values are seconds per iteration of CPD-ALS, averaged over 50 iterations. mem indicates the configuration required more memory than available. part indicates that we
were unable to compute a data partitioning. Each node has eight cores which are fully utilized.

DMS-MG is the fastest method among the DMS im-
plementations. It ranges from 1.3× to 8.0× faster than
DMS-CG and 1.5× to 5.0× faster than DMS-FG In many
cases, DMS-MG is able to factor tensors when other meth-
ods cannot due to memory limitations or the hypergraph
partitioning overhead. Figure 3 graphs the strong scaling
results for the Netflix dataset. DMS-MG maintains near-
perfect speedup through 512 cores. Between 16 and 128
cores, DMS-MG achieves speedups which are super-linear.
We attribute this behavior to the decomposition shape that
DMS-MG chooses. As discussed in Section VI-D, almost
all processes are assigned to the first mode of the tensor.
In addition to decreasing the communication volume, this
has the added effect of decreasing the amount of A that is
stored and accessed on each node. As a result, the memory
hierarchy is better utilized during the computational kernels.
Interestingly, both DMS-MG and DMS-FG slow down be-
tween 512 and 1024 cores. This is a result of communication
imbalance. While the average communication volume per
node continues to decrease as we scale, we find that the
maximum communication increases after 64 nodes (512
cores). DMS-CG is able to decrease both the average and
maximum communication volume due to it having a much
larger amount of communication.

VII. CONCLUSIONS AND FUTURE WORK

We introduced a medium-grained decomposition for
sparse tensor factorization. The decomposition addresses the
limitations of coarse-grained methods by avoiding complete
replication and communication of the factors. In addition,
the medium-grained decomposition does not require com-
putationally expensive pre-processing such as hypergraph
partitioning to have a low communication volume.

8 16 32 64 128 256 512 1024
Number of cores

10-2

10-1

100

101

102

T
im

e
 p

e
r

it
e
ra

ti
o
n

DFacTo

DMS-CG

DMS-MG

ideal-MG

DMS-FG

Figure 3: Average time per iteration in seconds on the Netflix
dataset. ideal-MG indicates perfect scalability relative to
DMS-MG.

Our implementation of medium-grained CPD-ALS algo-
rithm, DMS-MG, is a lightweight MPI+OpenMP hybrid that
further reduced memory footprint compared to pure MPI.
We compared against DFACTO, a state of the art distributed
CPD-ALS tool as well our own implementation of coarse-
and fine-grained methods. We found DMS-MG to be 41×
to 76× faster than DFACTO and 1.5× to 5.0× faster than
a fine-grained implementation with 1024 cores. Using only
eight computing nodes, DMS-MG is capable of factoring a
real-world tensor with 1.7 billion nonzeros in less than ten
minutes.

ACKNOWLEDGMENTS

This work was supported in part by NSF (IIS-0905220,
OCI-1048018, CNS-1162405, IIS-1247632, IIP-1414153,
IIS-1447788), Army Research Office (W911NF-14-1-0316),
Intel Software and Services Group, and the Digital Tech-
nology Center at the University of Minnesota. Access to
research and computing facilities was provided by the Dig-
ital Technology Center and the Minnesota Supercomputing
Institute.

REFERENCES

[1] J. McAuley and J. Leskovec, “Hidden factors and hidden
topics: understanding rating dimensions with review text,” in
Proceedings of the 7th ACM conference on Recommender
systems. ACM, 2013, pp. 165–172.

[2] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hr-
uschka, and T. M. Mitchell, “Toward an architecture for never-
ending language learning,” in In AAAI, 2010.

[3] J. C. Ho, J. Ghosh, and J. Sun, “Marble: high-throughput
phenotyping from electronic health records via sparse nonneg-
ative tensor factorization,” in Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery
and data mining. ACM, 2014, pp. 115–124.

[4] U. Kang, E. E. Papalexakis, A. Harpale, and C. Falout-
sos, “Gigatensor: scaling tensor analysis up by 100 times-
algorithms and discoveries,” in Proceedings of the 18th ACM
SIGKDD international conference on Knowledge discovery
and data mining. ACM, 2012, pp. 316–324.

[5] T. G. Kolda and B. Bader, “The TOPHITS model for higher-
order web link analysis,” in Proceedings of Link Analysis,
Counterterrorism and Security 2006, 2006.

[6] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, A. Hanjalic,
and N. Oliver, “Tfmap: optimizing map for top-n context-
aware recommendation,” in Proceedings of the 35th interna-
tional ACM SIGIR conference on Research and development
in information retrieval. ACM, 2012, pp. 155–164.

[7] J. H. Choi and S. Vishwanathan, “DFacTo: Distributed fac-
torization of tensors,” in Advances in Neural Information
Processing Systems, 2014, pp. 1296–1304.

[8] K. Shin and U. Kang, “Distributed methods for high-
dimensional and large-scale tensor factorization,” in Data
Mining (ICDM), 2014 IEEE International Conference on, Dec
2014, pp. 989–994.

[9] O. Kaya and B. Uçar, “Scalable sparse tensor decomposi-
tions in distributed memory systems,” in Proceedings of the
International Conference for High Performance Computing,
Networking, Storage and Analysis. ACM, 2015, p. 77.

[10] L. R. Tucker, “Some mathematical notes on three-mode factor
analysis,” Psychometrika, vol. 31, no. 3, pp. 279–311, 1966.

[11] S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karypis,
“SPLATT: Efficient and parallel sparse tensor-matrix multi-
plication,” in International Parallel & Distributed Processing
Symposium (IPDPS’15), 2015.

[12] N. Ravindran, N. D. Sidiropoulos, S. Smith, and G. Karypis,
“Memory-efficient parallel computation of tensor and matrix
products for big tensor decomposition,” in Proceedings of the
Asilomar Conference on Signals, Systems, and Computers,
2014.

[13] T. G. Kolda and B. W. Bader, “Tensor decompositions and
applications,” SIAM review, vol. 51, no. 3, pp. 455–500, 2009.

[14] Q. Zhang, M. W. Berry, B. T. Lamb, and T. Samuel, “A
parallel nonnegative tensor factorization algorithm for mining
global climate data,” in Computational Science–ICCS 2009.
Springer, 2009, pp. 405–415.

[15] A. P. Liavas and N. D. Sidiropoulos, “Parallel algorithms
for constrained tensor factorization via the alternating direc-
tion method of multipliers,” arXiv preprint arXiv:1409.2383,
2014.

[16] S. Smith and G. Karypis, “Tensor-matrix products with a
compressed sparse tensor,” in Proceedings of the 5th Work-
shop on Irregular Applications: Architectures and Algorithms.
ACM, 2015, p. 7.

[17] D. M. Pelt and R. H. Bisseling, “A medium-grain method
for fast 2d bipartitioning of sparse matrices,” in Parallel
and Distributed Processing Symposium, 2014 IEEE 28th
International. IEEE, 2014, pp. 529–539.

[18] U. V. Catalyurek, C. Aykanat, and B. Uçar, “On two-
dimensional sparse matrix partitioning: Models, methods, and
a recipe,” SIAM Journal on Scientific Computing, vol. 32,
no. 2, pp. 656–683, 2010.

[19] B. Vastenhouw and R. H. Bisseling, “A two-dimensional
data distribution method for parallel sparse matrix-vector
multiplication,” SIAM review, vol. 47, no. 1, pp. 67–95, 2005.

[20] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction
to parallel computing: design and analysis of algorithms.
Benjamin/Cummings Publishing Company Redwood City,
CA, 1994.

[21] A. Pınar and C. Aykanat, “Fast optimal load balancing
algorithms for 1d partitioning,” Journal of Parallel and Dis-
tributed Computing, vol. 64, no. 8, pp. 974–996, 2004.

[22] K. D. Devine, E. G. Boman, R. T. Heaphy, R. H. Bisseling,
and U. V. Catalyurek, “Parallel hypergraph partitioning for
scientific computing.” IEEE, 2006.

[23] J. Bennett and S. Lanning, “The netflix prize,” in Proceedings
of KDD cup and workshop, vol. 2007, 2007, p. 35.

[24] M. F. Porter, “An algorithm for suffix stripping,” Program,
vol. 14, no. 3, pp. 130–137, 1980.

[25] O. Görlitz, S. Sizov, and S. Staab, “Pints: peer-to-peer infras-
tructure for tagging systems.” in IPTPS, 2008, p. 19.

