
MULTILEVEL ALGORITHMS FOR GENERATING COARSE

GRIDS FOR MULTIGRID METHODS
�

Irene Moulitsas and George Karypis

Department of Computer Science & Engineering

University of Minnesota 4-192 CS/EE

200 Union St SE, Minneapolis, MN 55455

karypis, moulitsa@cs.umn.edu

May 3, 2001

�This work was supported by NSF CCR-9972519, EIA-9986042, ACI-9982274, by Army Research O�ce contract
DA/DAAG55-98-1-0441, by the DOE ASCI program, and by Army High Performance Computing Research Center contract
number DAAH04-95-C-0008. Access to computing facilities was provided by the Minnesota Supercomputing Institute.

1



Serial Multilevel Coarse Grid Construction

1 Introduction

Geometric Multigrid methods have gained widespread acceptance for solving large systems of linear equa-

tions, especially for structured grids. One of the challenges in successfully extending these methods to

unstructured grids is the problem of generating an appropriate set of coarse grids. Even though a num-

ber of di�erent agglomerative approaches have been developed for coarse grid construction, there is still a

great need for improvement because of the following two reasons. First, existing methods use locally greedy

heuristics that often lead to coarse grids whose elements have poor quality (e.g., bad aspect ratios). Second,

these algorithms are serial in nature, and they cannot be e�ciently parallelized.

The focus of this paper is the development of robust algorithms, both serial and parallel, for generating

a sequence of coarse grids from the original unstructured grid. Our algorithms treat the problem of coarse

grid construction as an optimization problem that tries to optimize the overall quality of the resulting fused

elements. We solve this problem using the multilevel paradigm that has been very successful in solving the

related grid/graph partitioning problem.

2 Previous Works

The most widely used discretization technique on unstructured grids, is the �nite volume method on the

dual grid (see [12]). Although several variants of the agglomeration technique on such grids exist (see, for

example, [4]), the basic approach is the following :

1. Select a starting vertex and list the neighbors;

2. Fuse these neighbors to a new coarse grid control volume;

3. Update the list of neighboring volumes

4. Go to step 2 and repeat until all volumes have been agglomerated

The above algorithm can be applied recursively such that an arbitrary number of coarse grids can be

created. This leads to arbitrary control volumes with not any control over the quality of these volumes.

A commonly used improvement to the above algorithm is to build the neighborhood, in step 2, using a

greedy algorithm, so that the aspect ratio of the resulting control volume is maximized [17].

3 Serial Multilevel Coarse Grid Construction

The aim of the multilevel coarse grid construction algorithm that we developed is to construct a sequence

of coarse grids starting from the original grid. The key di�erence between our algorithms and the ones that

were previously proposed is that each successively coarser grid is generated from the previous one by using

the multilevel paradigm to optimize the quality of the fused elements.

In the rest of this section we discuss the various objective functions that we used to measure the overall

quality of the generated grids and provide the details of the algorithms. Note that our discussion will only

focus on generating the next level coarse grid and the overall sequence of grids can be obtained by applying

the same algorithms repeatedly.

2



Serial Multilevel Coarse Grid Construction Objectives

3.1 Objectives

In order to ensure fast convergence rates of multigrid algorithms the sequence of coarse grids must contain

well shaped elements. A measure of the quality of a cell is its aspect ratio A. In the three-dimensional space

the aspect ratio will be de�ned as

A =
S3=2

V
;

where, in this case, S is the surface area, and V the volume, of the control volume respectively.1

The aim should be to obtain control volumes that will be as compact as possible. Hence we would like to

get control volumes that will be as \spherical" as possible. Therefore we would like to attain aspect ratios

that will be as low as possible, i.e. 6
p
�, which is the aspect ratio for the sphere.

Consequently, the following objective function F1 can be formulated for the coarse grid cells

F1 =

NCoarseX

i=1

S
3=2
i

Vi
(1)

where NCoarse is the number of control volumes on the coarse grid, Si and Vi are the surface area and

volume for control volume i.

One way of formulating the problem of coarse grid construction is to develop an algorithm that optimizes

equation (1) subject to the constraints that each fused element will contain at least Lmin and at most Lmax

elements of the previous mesh. Alternatively, we can enhance our objective function by allowing it to take

into account the weight, that is the number of elements that are fused together, of each control volume

i, thus allowing us to focus more on improving the aspect ratios of larger elements. In this case the new

objective function will be

F2 =

NCoarseX

i=1

wi
S
3=2
i

Vi
: (2)

Potentially, though, objective function F2 can yield a coarse grid whose overall quality is good, but

nonetheless, there still may be a limited number of cells that will have poor quality. This can be avoided

by adding another objective in our optimization; that of minimizing the aspect ratio of the worst cell. In

particular this is given by

F3 = max
i=1:::NCoarse

S
3=2
i

Vi
(3)

Experiments (see section 5) have shown that the dual objective of functions F2 and F3 tend to yield the

best results.

3.2 Overview of the approach

We build a graph from our initial grid as follows: every cell of the grid is represented by a vertex in the

graph. An edge between two vertices in the graph signi�es that the corresponding grid cells share a common

face. For every vertex in the graph we have three values associated with it. These are the vertex weight, the

vertex surface and the vertex volume. The vertex weight shows how many cells the current cell is made up

of. It is initialized with the value of one. The vertex surface is zero for the cells whose all faces are internal.

For these cells which have boundary faces, the surface area of the boundary faces is represented by vertex

surface. The vertex volume is the volume of the cell. Every edge in the cell is associated with the edge

weight. The edge weight represents the surface area of this cells in the grid.

1The aspect ratio can be analogously de�ned for two{dimensional meshes as well.

3



Parallel Implementation Globular Agglomeration

In the spirit of graph partitioning methods, our approach consists of two phases; the coarsening phase and

the re�nement phase. Our coarsening and re�ning phases are similar in nature to those used by multilevel

graph partitioning algorithms (see, for example, [6], [7]). Successive coarser graphs are constructed by

computing a matching of the vertices. During re�nement a greedy re�nement algorithm is used that randomly

traverses the vertices and attempts to move them to adjacent cells if such moves improve the objective

function subject to the Lmin and Lmax constraints.

3.3 Globular Agglomeration

The key step of our algorithm is the method used to compute the matching during coarsening. Motivated

by earlier research on graph partitioning we use a method called \globular matching" that was inspired by

the heavy edge heuristic. In this approach the vertices are visited in decreasing order of their degree. If a

vertex has not been matched yet, we match it with one of its adjacent unmatched vertices that will lead

to the smallest aspect ratio. Note that this algorithm does not guarantee that the matching obtained has

the best properties (over all possible matchings), but our experiments have shown that it works very well in

practice. The complexity of computing a globular agglomeration is O(jEj), which is asymptotically similar

to that for computing the random agglomeration.

4 Parallel Implementation

In recent years, a number of scalable parallel formulations of multilevel graph partitioning algorithms have

been developed (see [9], [8], [16]). However, even though our serial coarse grid construction algorithm shares

many characteristics with these multilevel partitioning algorithms, their parallel formulations cannot be used

to e�ciently parallelize the grid construction algorithm. This is because, unlike graph partitioning, in which

the number of partitions is very small relatively to the size of the graph, in coarse grid construction, the

number of fused elements (which correspond to the number of partitions) is very large and of the same

order as the number of vertices. This di�erence makes existing parallel formulations of multilevel graph

partitioning unscalable, as their communication overhead is lower bounded by the number of partitions.

This lead to develop an entirely new approach of parallelizing the coarse grid construction algorithm that

does not rely on existing parallel formulations of multilevel graph partitioning.

4.1 Overview of the approach

The overall structure of our parallel algorithm is shown in Fig. 1. Initially, the mesh is distributed among

the processors using a parallel multilevel graph partitioning algorithm. This results in a distribution in

which each processor contains a well-shaped subdomain, in the sense that the number of elements between

processors is minimized. Now, each processor, operates on its locally stored portion of the overall mesh,

and uses the serial multilevel coarse grid construction algorithm to generate a coarse grid for its local

subdomain. Since the processors operate only on their own subdomains, this approach leads to a coarse

grid whose interior contains elements with good aspect ratios, but because it is not allowed to create fused

elements across processor subdomain boundaries, the quality of the elements along the processor subdomain

boundaries may be poor.

One way of correcting this problem is to allow fused elements on the boundaries to participate in re-

�nement iterations with the fused elements stored in neighboring (with respect to the mesh) processors.

However, this approach leads to �ne grain communication and synchronization that can potentially limit the

overall parallel e�ciency. For this reason we developed an alternate approach for correcting the quality of

4



Experimental Results

1...nsteps

Create Fused Element Graph

Refine Graph

Distribute Graph

Redistribute Original Graph

Run serial algorithm on every processor

Repartition Fused Element Graph and

Figure 1: The various phases of the the parallel procedure.

these interface elements. The key idea of our approach is to use an adaptive graph partitioning algorithm

to perturb the existing mesh partition, so that the elements along the processor interface boundary move

closer to the interior, and away from the boundary. The motivation behind this approach is that if the fused

elements along the interface move towards the interior of the subdomain, then their adjacent fused elements

will move to the same subdomain as well, and their quality can be improved by simply performing local

re�nement. This is illustrated in Fig. 2, in which the dark black lines correspond to the new partitioning of

the original mesh. Note that the repartitioning of the mesh can be done in such a way so that the elements

that have already been fused together are assigned to the same processor, thus preserving the quality of the

existing fused elements.

Our parallel algorithm uses the adaptive graph partitioning algorithm available in ParMetis ([11]), and

the overall process of adaptive repartitioning followed by local re�nement is performed until the overall

quality the coarse grid does not improve any further. Our experiments have shown that the overall process

converges within a small number of iterations (less than ten).

5 Experimental Results

We evaluated the performance of our algorithm on two grids. The �rst case, M6, is an unstructured mesh

with 94493 elements that corresponds to an M6 wing. The second case, F22, is an unstructured mesh, with

5



Experimental Results Serial Algorithm Results

Original Partition

New partition

Figure 2: Partition.

428748 elements, corresponding to the wing of an F22 airplane. Both cases are 3D tetrahedral meshes. We

have evaluated the performance of our parallel algorithm for constructing coarse grids on a 1024{processor

CRAY T3E parallel computer where each processor has 512MB of memory.

5.1 Serial Algorithm Results

We have tested the quality of the grids obtained from our serial algorithm in the simulation of an unsteady

ow of moving grids, arising in aero{elasticity problems, using an edge{based multigrid solver.

In Fig. 3 and Fig. 4 we show the convergence of the multigrid method using di�erent techniques for

the construction of the coarse grids, for M6 and F22 respectively. These �gures show the results for six

di�erent algorithms for constructing coarse grids. The results labeled \Trad 1" correspond to the single

neighborhood based agglomerative scheme described in section 2. The results labeled \Trad 2" correspond

to the neighborhood based agglomerative scheme that takes into account the aspect ratio of the new cells,

see [14], [17]). The remaining results labeled \ML F1", \ML F2", \ML F3", \ML F3 F2", correspond to

our multilevel coarse grid construction algorithms using the F1 (1), F2 (2), F3 (3), and F3 + F2 objective

functions respectively from section 3.1.

From these results we can see that, in general, the multilevel algorithm produces grids that lead to fewer

multigrid iterations. The only notable exception is \ML F3 F2" for F22, in which the multigrid solver fails

to converge.

6



Experimental Results Serial Algorithm Results

-10

-8

-6

-4

-2

0

0 20 40 60 80 100 120 140 160 180 200 220

Lo
g(

R
es

)

Iterations

Trad 1

-10

-8

-6

-4

-2

0

0 20 40 60 80 100 120 140 160 180 200 220

Lo
g(

R
es

)

Iterations

Trad 2

-10

-8

-6

-4

-2

0

0 20 40 60 80 100 120 140 160 180 200 220

Lo
g(

R
es

)

Iterations

ML_F1

-10

-8

-6

-4

-2

0

0 20 40 60 80 100 120 140 160 180 200 220

Lo
g(

R
es

)

Iterations

ML_F2

-10

-8

-6

-4

-2

0

0 20 40 60 80 100 120 140 160 180 200 220

Lo
g(

R
es

)

Iterations

ML_F3

-10

-8

-6

-4

-2

0

0 20 40 60 80 100 120 140 160 180 200 220

Lo
g(

R
es

)

Iterations

ML_F3_F2

Figure 3: Convergence of multigrid algorithm on M6.

7



Experimental Results Serial Algorithm Results

-5

-4

-3

-2

-1

0

0 20 40 60 80 100 120 140 160 180 200

Lo
g(

R
es

)

Iterations

Trad 1

-5

-4

-3

-2

-1

0

0 20 40 60 80 100 120 140 160 180 200

Lo
g(

R
es

)

Iterations

Trad 2

-5

-4

-3

-2

-1

0

0 20 40 60 80 100 120 140 160 180 200

Lo
g(

R
es

)

Iterations

ML_F1

-5

-4

-3

-2

-1

0

0 20 40 60 80 100 120 140 160 180 200

Lo
g(

R
es

)

Iterations

ML_F2

-5

-4

-3

-2

-1

0

0 20 40 60 80 100 120 140 160 180 200

Lo
g(

R
es

)

Iterations

ML_F3

-5

-4

-3

-2

-1

0

0 20 40 60 80 100 120 140 160 180 200

Lo
g(

R
es

)

Iterations

ML_F3_F2

Figure 4: Convergence of multigrid algorithm on F22.

8



Experimental Results Parallel Algorithm Results

5.2 Parallel Algorithm Results

We evaluated the performance of our parallel formulation of the multilevel coarse grid construction algorithm

on the same two unstructured meshes used by the serial algorithm. Since our multigrid solver could only

run on an SGI platform we were not able to directly evaluate the quality of the coarse grids in terms of

multigrid convergence. For this reason our evaluation was focused on how e�ective the parallel algorithm is

in optimizing the objective function, and on its scalability.

Table 1 shows the quality of the coarse grids produced by our parallel algorithm using 1; 2; 4; 8; 16; 32; 64

and 128 processors for both the M6 and the F22 data sets. These results were obtained using the dual

objective function of F3 and F2. Some of the results could not be obtained due to the fact that there was

not enough memory on small number of processors. From these results we can see that with respect to the

F2 objective function, the quality of the coarse grids produced by the parallel algorithm remains the same

as we increase the number of processors. In fact the overall F2 objective seems to improve as we increase the

number of processors. This is primarily due to the fact that the larger processor con�gurations produced

grids with slightly more elements. In particular 8:207008e+06 on 128 processors for F22 was 8:288461e+06

on 1 processor. With respect to the F3 objective function the overall quality still remains the same, even

though there are certain instances in which the results are somewhat di�erent. This is primarily due to the

fact that the F3 objective is entirely determined by the quality of a single fused element, and it is much

more sensitive to the underlying randomization of the algorithm.

Table 1: Quality measures on 1; 2; 4; 8; 16; 32; 64 and 128 processors.

M6 F22
processors Maximum Aspect Ratio Weighted Sum Maximum Aspect Ratio Weighted Sum

1 2:436233e+ 01 1:834413e+ 06 NOT ENOUGH MEMORY NOT ENOUGH MEMORY
2 2:331621e+ 01 1:825575e+ 06 NOT ENOUGH MEMORY NOT ENOUGH MEMORY
4 3:191382e+ 01 1:824597e+ 06 NOT ENOUGH MEMORY NOT ENOUGH MEMORY
8 2:550975e+ 01 1:821121e+ 06 1:022124e+ 03 8:288461e+ 06
16 2:265289e+ 01 1:815118e+ 06 2:315982e+ 02 8:259121e+ 06
32 2:263738e+ 01 1:809697e+ 06 1:022124e+ 03 8:238999e+ 06
64 2:263738e+ 01 1:803522e+ 06 1:022124e+ 03 8:220569e+ 06
128 1:022124e+ 03 8:207008e+ 06
256 1:781039e+ 02 8:189893e+ 06

Finally, table 2 shows the run times (in seconds) required by the di�erent processors to construct the

coarse grids. The times appearing here correspond to the runs made for creating Table 1. The single

processor run times were obtained by using the serial algorithm. A number of observations can be made

from this table. First, looking at the results of M6 (for which we were able to run on single processor), we

can see that the two processor time is actually higher than the serial time. This is due to the fact that the

parallel algorithm performs more computations, as it needs to re�ne the solutions multiple times (once after

each repartitioning). However as the number of processors increases, the amount of time required tends

to decrease linearly (both for the M6 and the F22). In fact on 64 processors M6 can be coarsened in 1:56

seconds and on 256 processors F22 can be coarsened in 3:58 seconds.

9



Conclusions

Table 2: Run Times (in seconds)

M6 F22
processors Time Time

1 48:56 NOT ENOUGH MEMORY
2 61:06 NOT ENOUGH MEMORY
4 28:88 NOT ENOUGH MEMORY
8 13:46 79:39
16 6:51 35:92
32 3:25 17:97
64 1:85 8:73
128 4:80
256 3:58

6 Conclusions

In this paper we presented serial and parallel algorithms for building coarse grids, in the context of multigrid

solvers, that use the multilevel paradigm. Our results show that this approach leads to coarse grids that

have well{shaped elements and the corresponding parallel formulation can scale linearly to large number of

processors.

10



REFERENCES REFERENCES

References

[1] M. Adams, Heuristics for the Automatic Construction of Coarse Grids in Multigrid Solvers for Finite

Element Problems in Solid Mechanics., Technical Report UCB//CSD-98-994, University of California,

Berkeley, (1998).

[2] T.F. Chan and B.F. Smith, Domain Decomposition and Multigrid Algorithms for Elliptic problems

on unstructured meshes., Electronic Transactions on Numerical Analysis, Volume 2, (1994), pp. 171-182.

[3] C.M. Fiduccia and R.M. Mattheyses, A linear time heuristic for improving network partitions.,

In Proc. 19th IEEE Design Automation Conference (1982), pp. 175-181.

[4] H. Guillard, Node{nested multigrid with Delaunay coarsening., Technical Report INRIA{Sophia An-

tipolis No 1898, France (1993).

[5] B. Hendrickson and R. Leland, A multilevel algorithm for partitioning graphs., Technical Report

SAND93-1301, Sandia National Laboratories (1993).

[6] G. Karypis and V. Kumar, A fast and highly quality multilevel scheme for partitioning irregular

graphs., SIAM Journal on Scienti�c Computing.

[7] G. Karypis and V. Kumar, Multilevel k-way partitioning scheme for irregular graphs., Journal of

Parallel and Distributed Computing

[8] G. Karypis and V. Kumar, Parallel multilevel k-way partitioning scheme for irregular graphs., Su-

percomputing (1996).

[9] G. Karypis and V. Kumar, A coarse-grain parallel formulation of a multilevel k-way graph partition-

ing algorithm., 8th SIAM Conference on Parallel Processing for Scienti�c Computing.

[10] B.W. Kernighan and S. Lin, An e�cient heuristic procedure for partitioning graphs, The Bell System

Technical Journal 49(2) (1970), pp. 291-307.

[11] G. Karypis, K. Schloegel, and V. Kumar, ParMetis Parallel graph partitioning and sparse matrix

ordering library., Department of Computer Science and Engineering and Army HPC Research Center

(1998).

[12] M. Lallemand, H. Steve, and A. Dervieux, Unstructured Multigridding by Volume Agglomeration:

Current Status., Computers and Fluids, Volume 21, No. 3, (1992), pp. 397-433.

[13] D.J. Mavriplis, Directional Coarsening and Smoothing for Anisotropic Navier{Stokes Problems., Elec-

tronic Transactions on Numerical Analysis, Volume 6, (1997), pp. 182-197.

[14] D.J. Mavriplis, Three{Dimensional High{Lift Analysis Using a Parallel Unstructured Multigrid

Solver., Institute for Computer Applications in Science and Engineering NASA Langley Research Cen-

ter, Technical Report 98-20 (1998).

[15] D.J. Mavriplis and S. Pirzadeh, Large Scale Parallel Unstructured Mesh Computations for 3D

High{Lift Analysis, Institute for Computer Applications in Science and Engineering NASA Langley

Research Center, Technical Report 99-9 (1999).

11



REFERENCES REFERENCES

[16] K. Schloegel, G. Karypis and V. Kumar, Parallel multilevel algorithms for multi{constraint graph

partitioning., Department of Computer Science and Engineering, Technical Report 99-031 (1999).

[17] V. Venkatakrishnan D.J. Mavriplis, Agglomeration Multigrid for the three{dimensional Euler equa-

tions., Institute for Computer Applications in Science and Engineering NASA Langley Research Center,

Technical Report 94-5 (1994).

12


