
MULTILEVEL GRAPH PARTITIONING SCHEMES ∗

George Karypis and Vipin Kumar
Department of Computer Science, University of Minnesota, Minneapolis, MN 55455

{karypis, kumar}@cs.umn.edu

Abstract – In this paper we present experiments with a class
of graph partitioning algorithms that reduce the size of the graph
by collapsing vertices and edges, partition the smaller graph, and
then uncoarsen it to construct a partition for the original graph.
We investigate the effectiveness of many different choices for all
three phases: coarsening, partition of the coarsest graph, and
refinement. In particular, we present a new coarsening heuristic
(called heavy-edge heuristic) for which the size of the partition of
the coarse graph is within a small factor of the size of the final
partition obtained after multilevel refinement. We also present a
new scheme for refining during uncoarsening that is much faster
than the Kernighan-Lin refinement. We test our scheme on a large
number of graphs arising in various domains including finite el-
ement methods, linear programming, VLSI, and transportation.
Our experiments show that our scheme consistently produces par-
titions that are better than those produced by spectral partitioning
schemes in substantially smaller timer (10 to 35 times faster than
multilevel spectral bisection). Also, when our scheme is used
to compute fill reducing orderings for sparse matrices, it sub-
stantially outperforms the widely used multiple minimum degree
algorithm.

1 Introduction

Graph partitioning is an important problem that has exten-
sive applications in many areas, including scientific com-
puting and VLSI design. The problem is to partition the
vertices of a graph in p roughly equal parts, such that the
number of edges connecting vertices in different parts is
minimized. For example, the solution of a sparse system of
linear equations Ax = b via iterative methods on a parallel
computer gives rise to a graph partitioning problem. A key
step in each iteration of these methods is the multiplication
of a sparse matrix and a (dense) vector. The problem of
minimizing communication in this step is identical to the
problem of partitioning the graph corresponding to the ma-
trix A [26]. If parallel direct methods are used to solve a
sparse system of equations, then a graph partitioning algo-
rithm can be used to compute a fill reducing ordering that

∗This work is sponsored by the AHPCRC under the auspices of the
DoA, ARL cooperative agreement number DAAH04-95-2-0003/contract
number DAAH04-95-C-0008, the content of which does not necessar-
ily reflect the position or the policy of the government, and no official
endorsement should be inferred. Access to computing facilities was pro-
vided by Cray Research Inc. Related papers are available via WWW at
URL: http://www.cs.umn.edu/users/kumar/papers.html

lead to high degree of concurrency in the factorization phase
[26, 9]. The multiple minimum degree orderingused almost
exclusively in serial direct methods is not suitable for par-
allel direct methods, as it provides very little concurrency
in the parallel factorization phase.

The graph partitioning problem is NP-complete. How-
ever, many algorithms have been developed that find a
reasonably good partition. Spectral partitioning methods
are known to produce excellent partitions for a wide class
of problems, and they are used quite extensively [33, 20].
However, these methods are very expensive since they re-
quire the computation of the eigenvector corresponding to
the second smallest eigenvalue (Fiedler vector). Execu-
tion of the spectral methods can be speeded up if compu-
tation of the Fiedler vector is done by using a multilevel
algorithm [2]. This multilevel spectral bisection algorithm
(MSB) usually manages to speedup the spectral partition-
ing methods by an order of magnitude without any loss
in the quality of the edge-cut. However, even MSB can
take a large amount of time. In particular, in parallel direct
solvers, the time for computing ordering using MSB can be
several orders of magnitude higher than the time taken by
the parallel factorization algorithm, and thus ordering time
can dominate the overall time to solve the problem [14].
The execution time of MSB can be further speeded up by
computing the Fiedler vector in parallel. The algorithm for
computing the Fiedler vector, is iterative and in each itera-
tion it performs a matrix-vector multiplication of a matrix
whose graph is identical to the one we are trying to partition.
These matrix-vector products can be performed efficiently
on a parallel computer only if a good partition of the graph
is available—a problem that MSB is trying to solve in the
first place. As a result, parallel implementation of spectral
methods exhibit poor efficiency since most of the time is
spent in performing communication [21, 1].

Another class of graph partitioning techniques uses the
geometric information of the graph to find a good partition.
Geometric partitioning algorithms [17, 28, 29] tend to be
fast but often yield partitions that are worse than those ob-
tained by spectral methods. Among the most prominent
of these scheme is the algorithm described in [28]. This
algorithm produces partitions that are provably within the
bounds that exist for some special classes of graphs. How-
ever, due to the randomized nature of these algorithms,

1

multiple trials are often required to obtain solutions that
are comparable in quality to spectral methods. Multiple
trials do increase the time [13], but the overall runtime
is still substantially lower than the time required by the
spectral methods. However, geometric graph partitioning
algorithms have limited applicability because often the ge-
ometric information is not available, and in certain problem
areas (e.g., linear programming), there is no geometry as-
sociated with the graph. Recently, an algorithm has been
proposed to compute geometry information for graphs [4].
However this algorithm is based on computing spectral in-
formation, which is expensive and dominates the overall
time taken by the graph partitioning algorithm.

Another class of graph partitioning algorithms reduce
the size of the graph (i.e., coarsen the graph) by collaps-
ing vertices and edges, partition the smaller graph, and
then uncoarsen it to construct a partition for the origi-
nal graph. These are called multilevel graph partitioning
schemes [3, 5, 15, 20, 7, 30]. Some researchers investi-
gated multilevel schemes primarily to decrease the parti-
tioning time, at the cost of somewhat worse partition qual-
ity [30]. Recently, a number of multilevel algorithms have
been proposed [3, 20, 5, 15, 7] that further refine the par-
tition during the uncoarsening phase. These schemes tend
to give good partitions at reasonable cost. In particular, the
work of Hendrickson and Leland [20] showed that multi-
level schemes can provide better partitions than the spectral
methods at lower cost for a variety of finite element prob-
lems. Their scheme uses random maximal matching to suc-
cessively coarsen the graph until it has only a few hundred
vertices. Then it partitions this small graph using the spec-
tral methods. Now it uncoarsens the graph level by level,
and applies Kernighan-Lin refinement periodically. How-
ever, even-though multilevel algorithms have been shown
to be good alternatives to both spectral and geometric al-
gorithms, there is no comprehensive study today on their
effectiveness on a wide range of problems.

In this paper we experiment with various parameters
of multilevel algorithms, and their effect on the quality of
partition and ordering. We investigate the effectiveness
of many different choices for all three phases: coarsening,
partition of the coarsest graph,and refinement. In particular,
we present a new coarsening heuristic (called heavy-edge
heuristic) for which the size of the partition of the coarse
graph is within a small factor of the size of the final partition
obtained after multilevel refinement. We also present a new
scheme for refining during uncoarsening that is much faster
than the Kernighan-Lin refinement used in [20].

We test our scheme on a large number of graphs arising
in various domains including finite element methods, linear
programming, and VLSI. Our experiments show that our
scheme consistently produces partitions that are better than
those produced by spectral partitioningschemes in substan-

tially smaller timer (10 to 35 times faster than multilevel
spectral bisection). Compared with the scheme of [20],
our scheme is about twice as fast, and is consistently bet-
ter in terms of cut size. Much of the improvement in run
time comes from our faster refinement heuristic. We also
used our graph partitioning scheme to compute fill reduc-
ing orderings for sparse matrices. Surprisingly, our scheme
substantially outperforms the multiple minimum degree al-
gorithm [27], which is the most commonly used method for
computing fill reducing orderings of a sparse matrix.

Even though multilevel algorithms are quite fast com-
pared with spectral methods, they can still be the bottleneck
if the sparse system of equations is being solved in parallel
[26, 14]. The coarsening phase of these methods is easy
to parallelize [23], but the Kernighan-Lin heuristic used in
the refinement phase is very difficult to speedup in parallel
computers [12]. Since both the coarsening phase and the re-
finement phase with Kernighan-Lin heuristic take roughly
the same amount of time, the overall scheme cannot be
speeded up significantly. Our new faster methods for re-
finement reduce this bottleneck substantially. In fact our
parallel implementation [23] of this multilevel partitioning
is able to get a speedup of as much as 56 on a 128-processor
Cray T3D for moderate size problems.

2 Graph Partitioning

The k-way graph partitioningproblem is defined as follows:
Given a graph G = (V , E) with |V | = n, partition V
into k subsets, V1, V2, . . . , Vk such that Vi ∩ Vj = ∅ for
i �= j , |Vi | = n/k, and

⋃
i Vi = V , and the number

of edges of E whose incident vertices belong to different
subsets is minimized. A k-way partition of V is commonly
represented by a partition vector P of length n, such that
for every vertex v ∈ V , P[v] is an integer between 1 and
k, indicating the partition at which vertex v belongs. Given
a partition P, the number of edges whose incident vertices
belong to different subsets is called the edge-cut of the
partition.

The efficient implementation of many parallel algorithms
usually requires the solution to a graph partitioningproblem,
where vertices represent computational tasks, and edges
represent data exchanges. A k-way partition of the com-
putation graph can be used to assign tasks to k processors.
Because the partition assigns equal number of computa-
tional tasks to each processor the work is balanced among
k processors, and because it minimizes the edge-cut, the
communication overhead is also minimized.

Another importantapplication of recursive bisection is to
find a fill reducing ordering for sparse matrix factorization
[9, 26, 16]. This type of algorithms are generally referred
to as nested dissection ordering algorithms. Nested dissec-
tion recursively splits a graph into almost equal halves by
selecting a vertex separator until the desired number of par-

2

titions are obtained. The vertex separator is determined by
first bisecting the graph and then computing a vertex sepa-
rator from the edge separator. The vertices of the graph are
numbered such that at each level of recursion, the separator
vertices are numbered after the vertices in the partitions.
The effectiveness and the complexity of a nested dissection
scheme depends on the separator computing algorithm. In
general, small separators result in low fill-in.

The k-way partition problem is most frequently solved
by recursive bisection. That is, we first obtain a 2-way
partition of V , and then we further subdivide each part
using 2-way partitions. After log k phases, graph G is
partitioned into k parts. Thus, the problem of performing a
k-way partition is reduced to that of performing a sequence
of 2-way partitions or bisections. Even though this scheme
does not necessarily lead to optimal partition, it is used
extensively due to its simplicity [9, 16].

3 Multilevel Graph Bisection

The graph G can be bisected using a multilevel algorithm.
The basic structure of a multilevel algorithm is very simple.
The graph G is first coarsened down to a few hundred
vertices, a bisection of this much smaller graph is computed,
and then this partition is projected back towards the original
graph (finer graph), by periodically refining the partition.
Since the finer graph has more degrees of freedom, such
refinements usually decrease the edge-cut.

Formally, a multilevel graph bisection algorithm works
as follows: Consider a weighted graph G0 = (V0, E0), with
weights both on vertices and edges. A multilevel graph
bisection algorithm consists of the following three phases.

Coarsening Phase The graph G0 is transformed into
a sequence of smaller graphs G1, G2, . . . , Gm such that
|V0| > |V1| > |V2| > · · · > |Vm|.
Partitioning Phase A 2-way partition Pm of the graph
Gm = (Vm, Em) is computed that partitions Vm into two
parts, each containing half the vertices of G0.

Uncoarsening Phase The partition Pm of Gm is pro-
jected back to G0 by going through intermediate parti-
tions Pm−1, Pm−2, . . . , P1, P0.

3.1 Coarsening Phase

During the coarsening phase, a sequence of smaller graphs,
each with fewer vertices, is constructed. Graph coarsen-
ing can be achieved in various ways. In most coarsening
schemes, a set of vertices of Gi is combined together to
form a single vertex of the next level coarser graph Gi+1.
Let V v

i be the set of vertices of Gi combined to form vertex
v of Gi+1. We will refer to vertex v as a multinode. In order
for a bisection of a coarser graph to be good with respect to
the original graph, the weight of vertex v is set equal to the

sum of the weights of the vertices in V v
i . Also, in order to

preserve the connectivity information in the coarser graph,
the edges of v are the union of the edges of the vertices in
V v

i . In the case where more than one vertex of Vv
i , contain

edges to the same vertex u, the weight of the edge of v is
equal to the sum of the weights of these edges. This is use-
ful when we evaluate the quality of a partition at a coarser
graph. The edge-cut of the partition in a coarser graph will
be equal to the edge-cut of the same partition in the finer
graph.

Two main approaches have been proposed for obtaining
coarser graphs. The first approach is based on finding a
random matching and collapsing the matched vertices into
a multinode [3, 20, 2], while the second approach is based
on creating multinodes that are made of groups of vertices
that are highly connected [5, 15, 7]. The later approach is
suited for graphs arising in VLSI applications, since these
graphs have highly connected components. However, for
graphs arising in finite element applications, most vertices
have similar connectivity patterns (i.e., the degree of each
vertex is fairly close to the average degree of the graph). In
the rest of this section we describe the basic ideas behind
coarsening using matchings.

Given a graph Gi = (Vi , Ei), a coarser graph can be
obtained by collapsing adjacent vertices. Thus, the edge
between two vertices is collapsed and a multinode consist-
ing of these two vertices is created. This edge collapsing
idea can be formally defined in terms of matchings. A
matching of a graph, is a set of edges, no two of which are
incident on the same vertex. Thus, the next level coarser
graph Gi+1 is constructed from Gi by finding a matching of
Gi and collapsing the vertices being matched into multin-
odes. The unmatched vertices are simply copied over to
Gi+1. Since the goal of collapsing vertices using matchings
is to decrease the size of the graph Gi , the matching should
be of maximal size. That is, it should contain all possible
the edges, no two of which are incident on the same vertex.
The matching of maximal size is called maximal matching.
Note that depending on how matchings are computed, the
size of the maximal matching may be different.

In the remaining sections we describe four ways that
we used to select maximal matchings for coarsening. The
complexity of all these schemes is O(|E |).
Random Matching (RM) A maximal matching can be
generated efficiently using a randomized algorithm. In our
experiments we used a randomized algorithm similar to that
described in [3, 20]. The random maximal matching algo-
rithm is the following. The vertices are visited in random
order. If a vertex u has not been matched yet, then we ran-
domly select one of its unmatched adjacent vertices. If such
a vertex v exists, we include the edge (u, v) in the match-
ing and mark vertices u and v as being matched. If there

3

is no unmatched adjacent vertex v, then vertex u remains
unmatched in the random matching.

Heavy Edge Matching (HEM) While performing the
coarsening using random matchings, we try to minimize
the number of coarsening levels in a greedy fashion. How-
ever, our overall goal is to find a bisection that minimizes
the edge-cut. Consider a graph Gi = (Vi , Ei), a match-
ing Mi that is used to coarsen Gi , and its coarser graph
Gi+1 = (Vi+1, Ei+1) induced by Mi . If A is a set of edges,
define W (A) to be the sum of the weights of the edges in A.
It can be shown that W (Ei+1) = W (Ei) − W (Mi). Thus,
the total edge weight of the coarser graph is reduced by the
weight of the matching. Hence, by selecting a matching Mi

that has a maximal weight, we can maximize the decrease
in the edge weight of the coarser graph. Now, since the
coarser graph has smaller edge weight, it is more likely to
have a smaller edge-cut.

Finding a matching with maximal weight is the idea be-
hind the heavy-edge matching. A maximal weight match-
ing is computed using a randomized algorithm similar to
that for computing a random matching described in Sec-
tion 3.1. The vertices are again visited in random order.
However, instead of randomly matching a vertex u with
one of its adjacent unmatched vertices, we match u with the
vertex v such that the weight of the edge (u, v) is maximum
over all valid incident edges (heavier edge). Note that this
algorithm does not guarantee that the matching obtained
has maximum weight, but our experiments has shown that
it works very well.

Light Edge Matching (LEM) Instead of minimizing the
total edge weight of the coarser graph, one might try to
maximize it. This is achieved by finding a matching Mi that
has the smallest weight, leading to a small reduction in the
edge weight of Gi+1. This is the idea behind the light-edge
matching. It may seem that the light-edge matching does
not perform any useful transformation during coarsening.
However, the average degree of Gi+1 produced by LEM is
significant higher than that of Gi . Graphs with high average
degree are easier to partition using certain heuristics such
as Kernighan-Lin [3].

Heavy Clique Matching (HCM) A clique of an un-
weighted graph G = (V , E) is a fully connected subgraph
of G. Consider a set of vertices U of V (U ⊂ V). The
subgraph of G induced by U is defined as GU = (U, EU),
such that EU consists of all edges (v1, v2) ∈ E such that
both v1 and v2 belong in U . Looking at the cardinality of
U and EU we can determined how close U is to a clique.
In particular, the ratio 2|EU |/(|U |(|U | − 1)) goes to one if
U is a clique, and is small if U is far from being a clique.
We refer to this ratio as edge density.

The heavy clique matching scheme computes a match-

ing by collapsingvertices that have high edge density. Thus,
this scheme computes a matching whose edge density is
maximal. The motivation behind this scheme is that sub-
graphs of G0 that are cliques or almost cliques will most
likely not be cut by the bisection. So, by creating multin-
odes that contain these subgraphs, we make it easier for
the partitioning algorithm to find a good bisection. Note
that this scheme tries to approximate the graph coarsening
schemes that are based on finding highly connected com-
ponents [5, 15, 7].

As in the previous schemes for computing the matching,
we compute the heavy clique matching using a randomized
algorithm. Note that HCM is very similar to the HEM
scheme. The only difference is that HEM matches vertices
that are only connected with a heavy edge irrespective of
the contracted edge-weight of the vertices, whereas HCM
matches a pair of vertices if they are both connected using
a heavy edge and if each of these two vertices have high
contracted edge-weight.

3.2 Partitioning Phase

The second phase of a multilevel algorithm is to compute a
minimum edge-cut bisection Pm of the coarse graph Gm =
(Vm, Em) such that each part contains roughly half of the
vertex weight of the original graph.

A partition of Gm can be obtained using various algo-
rithms such as (a) spectral bisection [33, 2, 18], (b) geo-
metric bisection [28] (if coordinates are available), and (c)
combinatorial methods [25, 8, 9]. Since the size of the
coarser graph Gm is small (i.e., |Vm| < 100), this step takes
a small amount.

We implemented three different algorithms for partition-
ing the coarse graph. The first algorithm uses the spectral bi-
section [33], and the other two use graph growing heuristics.
The first graph-growing heuristic (GGP) randomly selects a
vertex v and grows a region around it in a breadth-first fash-
ion until half of the vertex-weight has been included. The
second graph-growing heuristic (GGGP) also starts from a
randomly selected vertex v but it includes vertices that lead
to the smaller increase in the edge-cut. Since the quality
of the partitions obtained by GGP and GGGP depends on
the choice of v, a number of different partitions are com-
puted starting from different randomly selected vertices and
the best is used as the initial partition. In the experiments
in Section 4.1 we selected 10 vertices for GGP and 5 for
GGGP. We found all of these partitioning schemes to pro-
duce similar partitions with GGGP consistently performing
better.

3.3 Uncoarsening Phase

During the uncoarsening phase, the partition Pm of the
coarser graph Gm is projected back to the original graph,
by going through the graphs G m−1, Gm−2, . . . , G1. Since

4

each vertex of Gi+1 contains a distinct subset of vertices of
Gi , obtaining Pi from Pi+1 is done by simply assigning the
vertices collapsed to v ∈ Gi to the partition Pi+1[v].

Even though Pi+1 is a local minima partition of Gi+1,
the projected partition Pi may not be at a local minima with
respect to Gi . Since Gi is finer, it has more degrees of
freedom that can be used to improve Pi , and decrease the
edge-cut. Hence, it may still be possible to improve the
projected partition of Gi−1 by local refinement heuristics.
For this reason, after projecting a partition, a partition re-
finement algorithm is used. The basic purpose of a partition
refinement algorithm is to select two subsets of vertices, one
from each part such that when swapped the resulting parti-
tion has smaller edge-cut. Specifically, if A and B are the
two parts of the bisection, a refinement algorithm selects
A′ ⊂ A and B′ ⊂ B such that A\A′ ∪ B ′ and B\B′ ∪ A′ is
a bisection with a smaller edge-cut.

A class of algorithms that tend to produce very good
results are those that are based on the Kernighan-Lin (KL)
partition algorithm [25, 6, 20]. The KL algorithm is iterative
in nature. It starts with an initial partition and in each
iteration it finds subsets A′ and B ′ with the above properties.
If such subsets exist, then it moves them to the other part
and this becomes the partition for the next iteration. The
algorithm continues by repeating the entire process. If it
cannot find two such subsets, then the algorithm terminates.

The KL algorithm we implemented is similar to that
described in [6] with certain modifications that significantly
reduce the run time. The KL algorithm, computes for each
vertex v a quantity called gain which is the decrease (or
increase) in the edge-cut if v is moved to the other part. The
algorithm then proceeds by repeatedly selecting a vertex v

with the largest gain from the larger part and moves it to
the other part. After moving v, v is marked so it will not be
considered again in the same iteration, and the gains of the
vertices adjacent to v are updated to reflect the change in
the partition. The algorithm terminates when the edge-cut
does not decrease after x number of vertex moves. Since,
the last x vertex moves did not decrease the edge-cut they
are undone. The choice of x = 50 works quite well for all
our graphs.

The efficient implementation of the above algorithm re-
lies on the method used to compute the gains of successive
finer graphs and the use of appropriate data structure to
store these gains. Our algorithm computes the gains of
the vertices during the projection of the partition. In do-
ing so, it utilizes the computed gains for the vertices of
the coarser graph and it only needs to compute the gains
of the vertices that are along the boundary of the partition.
The data structure used to store the gains is a hash table
that allow insertions, updates, and extraction of the vertex
with maximum gain in constant time. Details about the
implementation of the KL algorithm can be found in [22].

In the next section we describe three different refinement
algorithms that are based on the KL algorithm but differ in
the time they require to do the refinement.

Kernighan-Lin Refinement The idea of Kernighan-Lin
refinement (KLR) is to use the projected partition of Gi+1

onto Gi as the initial partition for the Kernighan-Lin algo-
rithm. The KL algorithm has been found to be effective
in finding locally optimal partitions when it starts with a
fairly good initial partition [3]. Since the projected parti-
tion is already a good partition, KL substantially decreases
the edge-cut within a small number of iterations. Further-
more, since a single iteration of the KL algorithm stops as
soon as x swaps are performed that do not decrease the
edge-cut, the number of vertices swapped in each iteration
is very small. Our experimental results show that a single
iteration of KL terminates after only a small percentage of
the vertices have been swapped (less than 5%), which re-
sults in significant savings in the total execution time of this
refinement algorithm.

Greedy Refinement Since we terminate each pass of the
KL algorithm as soon as no further improvement can be
made in the edge-cut, the complexity of the KLR scheme
described in the previous section is dominated by the time
required to insert the vertices into the appropriate data struc-
tures. Thus, even though we significantly reduced the num-
ber of vertices that are swapped, the overall complexity
does not change in asymptotic terms. Furthermore, our
experience shows that the largest decrease in the edge-cut
is obtained during the first pass. In the greedy refinement
algorithm (GR), we take advantage of that by running only
a single iteration of the KL algorithm [3]. This usually re-
duces the total time taken by refinement by a factor of two
to four (Section 4.1).

Boundary Refinement In both the KLR and GR algo-
rithms, we have to insert the gains of all the vertices in
the data structures. However, since we terminate both al-
gorithms as soon as we cannot further reduce the edge-cut,
most of this computation is wasted. Furthermore, due to
the nature of the refinement algorithms, most of the nodes
swapped by either the KLR and the GR algorithm are along
the boundary of the cut, which is defined to be the vertices
that have edges that are cut by the partition.

In the boundary refinement algorithm, we initially insert
into the data structures the gains for only the boundary
vertices. As in the KLR algorithm, after we swap a vertex
v, we update the gains of the adjacent vertices of v not yet
being swapped. If any of these adjacent vertices become
a boundary vertex due to the swap of v, we insert it into
the data structures if the have positive gain. Notice that the
boundary refinement algorithm is quite similar to the KLR
algorithm, with the added advantage that only vertices are

5

inserted into the data structures as needed and no work is
wasted.

As with KLR, we have a choice of performing a sin-
gle pass (boundary greedy refinement (BGR)) or multiple
passes (boundary Kernighan-Lin refinement (BKLR)) un-
til the refinement algorithm converges. As opposed to the
non-boundary refinement algorithms, the cost of perform-
ing multiple passes of the boundary algorithms is small,
since only the boundary vertices are examined.

To further reduce the execution time of the boundary
refinement while maintaining the refinement capabilities
of BKLR and the speed of BGR one can combine these
schemes into a hybrid scheme that we refer to it as BKLGR.
The idea behind the BKLGR policy is to use BKLR as long
as the graph is small, and switch to BGR when the graph is
large. The motivation for this scheme is that single vertex
swaps in the coarser graphs lead to larger decrease in the
edge-cut than in the finer graphs. So by using BKLR at these
coarser graphs better refinement is achieved, and because
these graphs are very small (compared to the size of the
original graph), the BKLR algorithm does not require a lot
of time. For all the experiments presented in this paper, if
the number of vertices in the boundary of the coarse graph is
less than 2% of the number of vertices in the original graph,
refinement is performed using BKLR, otherwise BGR is
used.

4 Experimental Results

We evaluated the performance of the multilevel graph par-
titioning algorithm on a wide range of matrices arising in
different application domains. The characteristics of these
matrices are described in Table 1. All the experiments were
performed on an SGI Challenge, with 1.2GBytes of mem-
ory and 200MHz Mips R4400. All times reported are in
seconds. Since the nature of the multilevel algorithm dis-
cussed is randomized, we performed all experiments with
fixed seed.

4.1 Graph Partitioning

As discussed in Sections 3.1, 3.2, and 3.3, there are many
alternatives for each of the three different phases of a mul-
tilevel algorithm. It is not possible to provide an exhaus-
tive comparison of all these possible combinations without
making this paper unduly large. Instead, we provide com-
parison of different alternatives for each phase after making
a reasonable choice for the other two phases.

Matching Schemes We implemented the four matching
schemes described in Section 3.1 and the results for a 32-
way partition for some matrices is shown in Table 2. These
schemes are (a) random matching (RM), (b) heavy edge
matching (HEM), (c) light edge matching (LEM), and (d)
heavy clique matching (HCM). For all the experiments, we

Matrix Name Order Nonzeros Description
BCSSTK28 (BC28) 4410 107307 Solid element model
BCSSTK29 (BC29) 13992 302748 3D Stiffness matrix
BCSSTK30 (BC30) 28294 1007284 3D Stiffness matrix
BCSSTK31 (BC31) 35588 572914 3D Stiffness matrix
BCSSTK32 (BC32) 44609 985046 3D Stiffness matrix
BCSSTK33 (BC33) 8738 291583 3D Stiffness matrix
BCSPWR10 (BSP10) 5300 8271 Eastern US power network
BRACK2 (BRCK) 62631 366559 3D Finite element mesh
CANT (CANT) 54195 1960797 3D Stiffness matrix
COPTER2 (COPT) 55476 352238 3D Finite element mesh
CYLINDER93 (CY93) 45594 1786726 3D Stiffness matrix
FINAN512 (FINC) 74752 335872 Linear programming
4ELT (4ELT) 15606 45878 2D Finite element mesh
INPRO1 (INPR) 46949 1117809 3D Stiffness matrix
LHR71 (LHR) 70304 1528092 3D Coefficient matrix
LSHP3466 (LS34) 3466 10215 Graded L-shape pattern
MAP (MAP) 267241 937103 Highway network
MEMPLUS (MEM) 17758 126150 Memory circuit
ROTOR (ROTR) 99617 662431 3D Finite element mesh
S38584.1 (S33) 22143 93359 Sequential circuit
SHELL93 (SHEL) 181200 2313765 3D Stiffness matrix
SHYY161 (SHYY) 76480 329762 CFD/Navier-Stokes
TROLL (TROL) 213453 5885829 3D Stiffness matrix
WAVE (WAVE) 156317 1059331 3D Finite element mesh

Table 1: Various matrices used in evaluating the multilevel graph parti-

tioning and sparse matrix ordering algorithm.

used the GGGP algorithm for the initial partition phase and
the BKLGR as the refinement policy during the uncoars-
ening phase. For each matching scheme, Table 2 shows
the edge-cut, the time required by the coarsening phase
(CTime), and the time required by the uncoarsening phase
(UTime). UTime is the sum of the time spent in partition-
ing the coarse graph (ITime), the time spent in refinement
(RTime), and the time spent in projecting the partition of a
coarse graph to the next level finer graph (PTime).

RM HEM LEM HCM
BCSSTK31 14489 84024 412361 115471
BCSSTK32 184236 148637 680637 153945
BRACK2 75832 53115 187688 69370

CANT 817500 487543 1633878 521417
COPTER2 69184 59135 208318 59631

CYLINDER93 522619 286901 1473731 354154
4ELT 3874 3036 4410 4025

INPRO1 205525 187482 821233 141398
ROTOR 147971 110988 424359 98530

SHELL93 373028 237212 1443868 258689
TROLL 1095607 806810 4941507 883002
WAVE 239090 212742 745495 192729

Table 3: The edge-cut for a 32-way partition when no refinement was

performed, for the various matching schemes.

In terms of the size of the edge-cut, there is no clear cut
winner among the various matching schemes. The value of
32EC for all schemes are within 10% of each other. Out of
these schemes, RM does better for 2 matrices, HEM does
better for six matrices, LEM for three, and HCM for one.

The time spent in coarsening does not vary significantly
across different schemes. But RM requires the least amount
of time for coarsening, while LEM and HCM require the
most (upto 38% more time than RM). This is not surprising
since RM looks for the first unmatched neighbor of a vertex

6

RM HEM LEM HCM
32EC CTime UTime 32EC CTime UTime 32EC CTime UTime 32EC CTime UTime

BCSSTK31 44810 5.93 2.46 45991 6.55 1.95 42261 7.65 4.90 44491 7.48 1.92
BCSSTK32 71416 9.21 2.91 69361 10.26 2.34 69616 12.13 6.84 71939 12.06 2.36
BRACK2 20693 6.86 3.41 21152 7.54 3.33 20477 7.90 4.40 19785 8.07 3.42

CANT 323.0K 20.34 8.99 323.0K 22.39 5.74 325.0K 27.14 23.64 323.0K 26.19 5.85
COPTER2 32330 5.18 2.95 30938 6.39 2.68 32309 6.94 5.05 31439 7.25 2.73

CYLINDER93 198.0K 16.49 5.25 198.0K 18.65 3.22 199.0K 21.72 14.83 204.0K 21.61 3.24
4ELT 1826 0.82 0.76 1894 0.91 0.78 1992 0.92 0.95 1879 1.08 0.74

INPRO1 78375 10.40 2.90 75203 11.56 2.30 76583 13.46 6.25 78272 13.34 2.30
ROTOR 38723 12.94 5.60 36512 14.31 4.90 37287 15.51 8.30 37816 16.59 5.10

SHELL93 84523 36.18 10.24 81756 40.59 8.94 82063 46.02 16.22 83363 48.29 8.54
TROLL 317.4K 67.75 14.16 307.0K 74.21 10.38 305.0K 93.44 70.20 312.8K 89.14 10.81
WAVE 73364 20.87 8.24 72034 22.96 7.24 70821 25.60 15.90 71100 26.98 7.20

Table 2: Performance of various matching algorithms during the coarsening phase. 32EC is the edge-cut of a 32-way partition, CTime is the time spent

in coarsening, and RTime is the time spent in refinement.

(the adjacency lists are randomly permuted). On the other
hand, HCM needs to find the edge with the maximum edge
density, and LEM produces coarser graphs that have vertices
with higher degree than the other three schemes; hence,
LEM requires more time to both find a matching and also
to create the next level coarser graph. The coarsening time
required by HEM is only slightly higher (upto 10% more)
than the time required by RM.

Comparing the time spent during uncoarsening, we see
that both HEM and HCM require the least amount of time,
while LEM requires the most. In some cases, LEM re-
quires as much as 7 times more time than either HEM or
HCM. This can be explained by results shown in Table 3.
This table shows the edge-cut of 32-way partition when no
refinement is performed (i.e., the final edge-cut is exactly
the same as that found in the initial partition of the coars-
est graph). Table 3 shows that the edge-cut of LEM on
the coarser graphs is significantly higher than that for ei-
ther HEM or HCM. Because of this, all three components
of UTime increase for LEM relative to those of the other
schemes. The ITime is higher because the coarser graph
has more edges, RTime increases because a large number
of vertices need to be swapped to reduce the edge-cut, and
PTime increases because more vertices are along the bound-
ary; which requires more computation [22]. The time spent
during uncoarsening for RM is also higher than the time re-
quired by the HEM scheme by upto 50% for some matrices
for somewhat similar reasons.

From the discussion in the previous paragraphs we see
that UTime is much smaller than CTime for HEM and HCM,
while UTime is comparable to CTime for RM and LEM.
Furthermore, for HEM and HCM, as the problem size in-
creases UTime becomes an even smaller fraction of CTime.
As discussed in introduction, this is of particular importance
when the parallel formulation of the multilevel algorithm is
considered.

As the experiments show, HEM is a good matching
scheme that results in good initial partitions, and requires
little refinement. Even though it requires slightly more time
than RM, it produces consistently smaller edge-cut. We se-

lected the HEM as our matching scheme of choice because
of its consistent good behavior.

Initial Partition Algorithms As described in Section 3.2,
a number of algorithms can be used to partition the coarse
graph. We have implemented the following algorithms: (a)
spectral bisection (SBP), (b) graph growing (GGP), and (c)
greedy graph growing (GGGP). Due to space limitationswe
do not report the results here but they can be found in [22].
In summary, the results in [22] show that GGGP consistently
finds smaller edge-cuts than the other schemes at slightly
better run time. Furthermore, there is no advantage in
choosing spectral bisection for partitioning the coarse graph.

Refinement Policies As described in Section 3.3, there
are different ways that a partition can be refined during the
uncoarsening phase. We evaluated the performance of five
refinement policies, both in terms of how good partitions
they produce and also how much time they require. The re-
finement policies that we evaluate are (a) Greedy refinement
(GR), (b) Kernighan-Lin refinement (KLR), (c) boundary
Greedy refinement (BGR), (d) boundary Kernighan-Lin re-
finement (BKLR), and (e) the combination of BKLR and
BGR (BKLGR).

The result of these refinement policies for partitioning
graphs corresponding to some of the matrices in Table 1 in
32 parts is shown in Table 4. These partitions were produced
by using the heavy-edge matching (HEM) during coarsen-
ing and the GGGP algorithm for initially partitioning the
coarser graph.

A number of interesting conclusions can be drawn out
of Table 4. First, for each of the matrices and refinement
policies, the size of the edge-cut does not vary significantly
for different refinement policies. For each matrix the edge
cut of every refinement policy is within 15% of the best
refinement policy for that particular matrix. On the other
hand, the time required by some refinement policies does
vary significantly. Some policies require up to 20 times
more time than others. KLR requires the most time while
BGR requires the least.

7

GR KLR BGR BKLR BKLGR
32EC RTime 32EC RTime 32EC RTime 32EC RTime 32EC RTime

BCSSTK31 45267 1.05 46852 2.33 46281 0.76 45047 1.91 45991 1.27
BCSSTK32 66336 1.39 71091 2.89 72048 0.96 68342 2.27 69361 1.47
BRACK2 22451 2.04 20720 4.92 20786 1.16 19785 3.21 21152 2.36

CANT 323.4K 3.30 320.5K 6.82 325.0K 2.43 319.5K 5.49 323.0K 3.16
COPTER2 31338 2.24 31215 5.42 32064 1.12 30517 3.11 30938 1.83

CYLINDER93 201.0K 1.95 200.0K 4.32 199.0K 1.40 199.0K 2.98 198.0K 1.88
4ELT 1834 0.44 1833 0.96 2028 0.29 1894 0.66 1894 0.66

INPRO1 75676 1.28 75911 3.41 76315 0.96 74314 2.17 75203 1.48
ROTOR 38214 4.98 38312 13.09 36834 1.93 36498 5.71 36512 3.20

SHELL93 91723 9.27 79523 52.40 84123 2.72 80842 10.05 81756 6.01
TROLL 317.5K 9.55 309.7K 27.4 314.2K 4.14 300.8K 13.12 307.0K 5.84
WAVE 74486 8.72 72343 19.36 71941 3.08 71648 10.90 72034 4.50

Table 4: Performance of five different refinement policies. All matrices have been partitioned in 32 parts. 32EC is the number of edges crossing

partitions, and RTime is the time required to perform the refinement.

Comparing GR with KLR, we see that KLR performs
better than GR for 8 out of the 12 matrices. For these 8
matrices, the improvement is less than 5% on the average;
however, the time required by KLR is significantly higher
than that of GR. Usually, KLR requires two to three times
more time than GR.

Comparing the GR and KLR refinement schemes against
their boundary variants, we see that the time required by the
boundary policies is significantly less than that required by
their non-boundary counterparts. The time of BGR ranges
from 29% to 75% of the time of GR, while the time of BKLR
ranges from 19% to 80% of the time of KLR. This seems
quite reasonable, given that BGR and BKLR are simpler
versions of GR and KLR, respectively. But surprisingly,
BGR and BKLR lead to better edge-cut (than GR and KLR,
respectively) in many cases. BGR does better than GR in 6
out of the 12 matrices, and BKLR does better than KLR in
10 out the 12 matrices. Thus, the quality of the boundary
refinement policies is similar if not better than their non-
boundary counterparts.

Even though BKLR appears to be just a simplified ver-
sion of KLR, in fact they are two distinct schemes. In each
scheme, a set of vertices from the two parts of the partition
is swapped in each iteration. In BKLR, the set of vertices
to be swapped from either part is restricted to be only along
the boundary, whereas in the KLR it can potentially be
any subset. BKLR performs better in conjunction with the
HEM coarsening scheme, because for HEM the first parti-
tion of the coarsest graph is quite good (consistently better
than the partition that can be obtained for other coarsening
schemes such as RM and LEM), and it does not change
significantly with each uncoarsening phase. Note that by
restricting each iteration of KL on the boundary vertices,
more iterations are needed for the algorithm to converge to
a local minima. However, these iterations take very little
time. Thus, BKLR provides the very precise refinement
that is needed by HEM.

For the other matching schemes, and for LEM in par-
ticular, the partition of the coarse graph is far from being
close to a local minima when it is projected in the next level

finer graph, and there is room for significant improvement
not just along the boundary. This is the reason why LEM
requires the largest refinement time among all the match-
ing schemes, irrespective of the refinement policy. Since
boundary refinement schemes consider only boundary ver-
tices, they may miss sequences of vertex swaps that involve
non boundary vertices and lead to a better partition. To
compare the performance of the boundary refinement poli-
cies against their non-boundary counterparts, for both RM
and LEM, we performed another set of experiments sim-
ilar to those shown in Table 4. For the RM coarsening
scheme, BGR outperformed GR in 5 matrices, and BKLR
outperformed KLR only in 5 matrices. For the LEM coars-
ening scheme, BGR outperformed GR only in 4 matrices
and BKLR outperformed KLR only in 3 matrices.

Comparing BGR with BKLR we see that the edge-cut
is better for BKLR for 11 matrices, and they perform simi-
larly for the remaining matrix. Note that the improvement
performed by BKLR over BGR is relatively small (less than
4% on the average). However, the time required by BKLR
is always higher than that of BGR (in some cases upto four
times higher). Again we see here that marginal improve-
ments in the partition quality come at a significant increase
in the refinement time. Comparing BKLGR against BKLR
we see that its edge-cut is on the average within 2% of that
of BKLR, while its runtime is significantly smaller than that
of BKLR and somewhat higher than that of BGR.

In summary, when it comes to refinement policies, a
relatively small decrease in the edge-cut usually comes at
a significant increase in the time required to perform the
refinement. Both the BGR and the BKLGR refinement
policies require little amount of time and produce edge-
cuts that are fairly good when coupled with the heavy-edge
matching scheme. We believe that the BKLGR refinement
policy strikes a good balance between small edge-cut and
fast execution.

8

4.2 Comparison with Other Partitioning Schemes

The multilevel spectral bisection (MSB) [2] has been shown
to be an effective method for partitioningunstructuredprob-
lems in a variety of applications. The MSB algorithm
coarsens the graph down to a few hundred vertices using
random matching. It partitions the coarse graph using spec-
tral bisection and obtains the Fiedler vector of the coarser
graph. During uncoarsening, it obtains an approximate
Fiedler vector of the next level fine graph by interpolat-
ing the Fiedler vector of the coarser graph, and computes
a more accurate Fiedler vector using the SYMMLQ. The
MSB algorithm computes the Fiedler vector of the graph
using this multilevel approach. This method is much faster
than computing the Fiedler vector of the original graph di-
rectly. Note that MSB is a significantly different scheme
than the multilevel scheme that uses spectral bisection to
partition the graph at the coarsest level. We used the MSB
algorithm in the Chaco [19] graph partitioning package to
produce partitions for some of the matrices in Table 1 and
compared them against the partitions produced by our mul-
tilevel algorithm that uses HEM during coarsening phase,
GGGP during partitioning phase, and BKLGR during the
uncoarsening phase.

Figure 1 shows the relative performance of our multi-
level algorithm compared to MSB. For each matrix we plot
the ratio of the edge-cut of our multilevel algorithm to the
edge-cut of the MSB algorithm. Ratios that are less than
one indicate that our multilevel algorithm produces better
partitions than MSB. From this figure we can see that for
almost all the problems, our algorithm produces partitions
that have smaller edge-cuts than those produced by MSB.
In some cases, the improvement is as high as 60%. For the
cases where MSB does better, the difference is very small
(less than 1%). However the time required by our multi-
level algorithm is significantly smaller than that required by
MSB. Figure 4 shows the time required by the MSB algo-
rithm relative to that required by our multilevel algorithm.
Our algorithm is usually 10 times faster for small problems,
and 15 to 35 times faster for larger problems. The relative
difference in edge-cut between MSB and our multilevel al-
gorithm decreases as the number of partitions increases.
This is a general trend, since as the number of partitions
increase both schemes cut more edges, to the limiting case
in which |V | partitions are used in which case all |E | edges
are cut.

One way of improving the quality of MSB algorithm
is to use the Kernighan-Lin algorithm to refine the parti-
tions (MSB-KL). Figure 2 shows the relative performance
of our multilevel algorithm compared against the MSB-
KL algorithm. Comparing Figures 1 and 2 we see that
the Kernighan-Lin algorithm does improve the quality of
the MSB algorithm. Nevertheless, our multilevel algorithm
still produces better partitions than MSB-KL for many prob-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

BC30 BC32 BRCK CANT COPT CY93 FINC LHR MAP MEM ROTR S38 SHEL SHYY TROL WAVE

Our Multilevel vs Multilevel Spectral Bisection (MSB)

Baseline: MSB
64 parts

128 parts
256 parts

Figure 1: Quality of our multilevel algorithm compared to the multilevel

spectral bisection algorithm. For each matrix, the ratio of the cut-size of

our multilevel algorithm to that of the MSB algorithm is plotted for 64-,

128- and 256-way partitions. Bars under the baseline indicate that the

multilevel algorithm performs better.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

BC30 BC32 BRCK CANT COPT CY93 FINC LHR MAP MEM ROTR S38 SHEL SHYY TROL WAVE

Our Multilevel vs Multilevel Spectral Bisection with Kernighan-Lin (MSB-KL)

Baseline: MSB-KL
64 parts

128 parts
256 parts

Figure 2: Quality of our multilevel algorithm compared to the multilevel

spectral bisection algorithm with Kernighan-Lin refinement. For each

matrix, the ratio of the cut-size of our multilevel algorithm to that of the

MSB-KL algorithm is plotted for 64-, 128- and 256-way partitions. Bars

under the baseline indicate that our multilevel algorithm performs better.

lems. However, KL refinement further increases the run
time of the overall scheme as shown in Figure 4; thus,
increases the gap in the run time of MSB-KL and our mul-
tilevel algorithm.

The graph partitioning package Chaco implements its
own multilevel graph partitioning algorithm that is mod-
eled after the algorithm by Hendrickson and Leland [20, 19].
This algorithm, which we refer to as Chaco-ML, uses ran-
dom matching during coarsening, spectral bisection for par-
titioning the coarse graph, and Kernighan-Lin refinement
every other coarsening level during the uncoarsening phase.
Figure 3 shows the relative performance of our multilevel
algorithms compared to Chaco-ML. From this figure we
can see that our multilevel algorithm usually produces par-
titions with smaller edge-cut than that of Chaco-ML. For
some problems, the improvement of our algorithm is be-
tween 10% to 50%. Again for the cases where Chaco-ML
does better, it is only marginally better (less than 2%). Our
algorithm is usually two to six times faster than Chaco-
ML (Figure 4). Most of the savings come from the choice
of refinement policy (we use BKLGR) which is usually
four to six times faster than the Kernighan-Lin refinement

9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

BC30 BC32 BRCK CANT COPT CY93 FINC LHR MAP MEM ROTR S38 SHEL SHYY TROL WAVE

Our Multilevel vs Chaco Multilevel (Chaco-ML)

Baseline: Chaco-ML
64 parts

128 parts
256 parts

Figure 3: Quality of our multilevel algorithm compared to the multilevel

Chaco-ML algorithm. For each matrix, the ratio of the cut-size of our

multilevel algorithm to that of the Chaco-ML algorithm is plotted for 64-,

128- and 256-way partitions. Bars under the baseline indicate that our

multilevel algorithm performs better.

0

5

10

15

20

25

30

35

40

BC30 BC32 BRCK CANT COPT CY93 FINC LHR MAP MEM ROTR S38 SHEL SHYY TROL WAVE

Relative Run-Times For 256-way Partition

Baseline: Our Multilevel
Chaco-ML

MSB
MSB-KL

Figure 4: The time required to find a 256-way partition for Chaco-ML,

MSB, and MSB-KL relative to the time required by our multilevel algorithm.

implemented by Chaco-ML. Note that we are able to use
BKLGR without much quality penalty only because we use
the HEM coarsening scheme. In addition, the GGGP used
in our method for partitioning the coarser graph requires
much less time than the spectral bisection which is used in
Chaco-ML.

4.3 Sparse Matrix Ordering

The multilevel graph partitioning algorithm can be used to
find a fill reducing ordering for a symmetric sparse matrix
via recursive nested dissection. Let S be the vertex sep-
arator and let A and B be the two parts of the vertex set
of G that are separated by S. In the nested dissection or-
dering, A is ordered first, B second, while the vertices in
S are numbered last. Both A and B are ordered by recur-
sively applying nested dissection ordering. In our multilevel
nested dissection algorithm (MLND) a vertex separator is
computed from an edge separator by finding the minimum
vertex cover [31]. The minimum vertex cover has been
found to produce very small vertex separators.

Overall quality of a fill reducing ordering depends on
whether or not the matrix is factored on a serial or parallel
computer. On a serial computer, a good ordering is the
one that requires the smaller number of operations during

factorization. The number of operations required is usually
related to the number of nonzeros in the Cholesky factors.
The fewer nonzeros usually lead to fewer operations. How-
ever, since the number of operations is the square of the
number of nonzeros, similar fills may have different op-
eration counts. For this reason, all comparisons in this
section are only in terms of the number of operations. On
a parallel computer, a fill reducing ordering, besides mini-
mizing the operation count, should also increase the degree
of concurrency that can be exploited during factorization.
In general, nested dissection based orderings exhibit more
concurrency during factorization than minimum degree or-
derings [10, 27] that have been found to be very effective
for serial factorization.

The minimum degree [10] ordering heuristic is the most
widely used fill reducing algorithm that is used to order
sparse matrices for factorization on serial computers. The
minimum degree algorithm has been found to produce very
good orderings. The multiple minimum degree algorithm
[27] is the most widely used variant of minimum degree due
to its very fast runtime.

The quality of the orderings produced by our multilevel
nested dissection algorithm compared to that of MMD is
shown in Figure 5. For our multilevel algorithm, we used
the HEM scheme during coarsening, the GGGP scheme
for partitioning the coarse graph and the BKLGR refine-
ment policy during the uncoarsening phase. Looking at this
figure we see that our algorithm produces better orderings
for 11 out of the 18 test problems. For the other seven
problems MMD does better. However, for many of these 7
matrices, MMD does only slightly better than MLND. The
only exception is BCSPRW10 for which all nested dissec-
tion schemes perform poorly.

However, for the matrices arising in finite element do-
mains, MLND does consistently better than MMD, and is
some cases by a large factor (two to three times better for
CANT, ROTR, SHEL, and WAVE). Also, from Figure 5
we see that MLND does consistently better as the size of
the matrices increases and as the matrices become more
unstructured. When all 18 test matrices are considered,
MMD produces orderings that require a total of 702 billion
operations, whereas the orderings produced by MLND re-
quire only 293 billion operations. Thus, the ensemble of 18
matrices can be factored roughly 2.4 times faster if ordered
with MLND.

However, another, even more important, advantage of
MLND over MMD, is that it produces orderings that ex-
hibit significantly more concurrency than MMD. The elim-
ination trees produced by MMD (a) exhibit little concur-
rency (long and slender), and (b) are unbalanced so that
subtree-to-subcube mappings lead to significant load im-
balances [26, 9, 14]. One the other hand, orderings based
on nested dissection produce orderings that have both more

10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

BC28 BC29 BC30 BC31 BC32BC33BSP10 BRCKCANT COPTCY934ELT INPRLS34 ROTR SHEL TROLLWAVE

Multilevel Nested Disection vs Multiple Minimum Degree and Spectral Nested Disection

MMD
SND

Baseline: MLND

Figure 5: Quality of our multilevel nested dissection relative to the mul-

tiple minimum degree, and the spectral nested dissection algorithm. The

matrices are displayed in increasing number of equations. Bars above

the baseline indicate that the MLND algorithm performs better.

concurrency and better balance [24, 16]. Therefore, when
the factorization is performed in parallel, the better utiliza-
tion of the processors can cause the ratio of the run time
of parallel factorization algorithms running ordered using
MMD and that using MLND to be substantially higher than
the ratio of their respective operation counts.

The MMD algorithmusually takes two to three times less
time to order the matrices in Table 1 than the time required
by MLND. However, efforts to parallelize the MMD algo-
rithm have had no success [11]. In fact, the MMD algorithm
appears to be inherently serial in nature. On the other hand,
the MLND algorithm is amenable to parallelization. In [23]
we present a parallel formulation of our MLND algorithm
that achieves a speedup of 57 on 128-processor Cray T3D.

Spectral nested dissection (SND) [32] is a widely used
ordering algorithm for ordering matrices for parallel factor-
ization. As in the case of MLND, the minimum vertex cover
algorithm was used to compute a vertex separator from the
edge separator. The quality of the orderings produced by
our multilevel nested dissection algorithm compared to that
of the spectral nested dissection algorithm is also shown in
Figure 5. From this figure we can see that MLND produces
orderings that are better than SND for 17 out of the 18 test
matrices. The total number of operations required to fac-
tor the matrices ordered using SND is 378 billion which is
30% more than the of MLND. Furthermore, as discussed
in Section 4.2, the runtime of SND is substantially higher
than that of MLND. Also, SND cannot be parallelized any
better than MLND; therefore, it will always be slower than
MLND.

References

[1] Stephen T. Barnard and Horst Simon. A parallel implementation
of multilevel recursive spectral bisection for application to adaptive
unstructuredmeshes. In Proceedingsof the seventhSIAM conference
on Parallel Processing for Scientific Computing, pages 627–632,
1995.

[2] Stephen T. Barnard and Horst D. Simon. A fast multilevel imple-
mentation of recursive spectral bisection for partitioning unstructured
problems. In Proceedings of the sixth SIAM conference on Parallel
Processing for Scientific Computing, pages 711–718, 1993.

[3] T. Bui and C. Jones. A heuristic for reducing fill in sparse matrix
factorization. In 6th SIAM Conf. Parallel Processing for Scientific
Computing, pages 445–452, 1993.

[4] Tony F. Chan, John R. Gilbert, and Shang-Hua Teng. Geometric
spectral partitioning (draft). Technical Report In Preparation, 1994.

[5] Chung-Kuan Cheng and Yen-Chuen A. Wei. An improved two-way
partitioning algorithm with stable performance. IEEE Transactions
on Computer Aided Design, 10(12):1502–1511, December 1991.

[6] C. M. Fiduccia and R. M. Mattheyses. A linear time heuristic for
improving network partitions. In In Proc. 19th IEEE Design Au-
tomation Conference, pages 175–181, 1982.

[7] J. Garbers, H. J. Promel, and A. Steger. Finding clusters in VLSI cir-
cuits. In Proceedingsof IEEE InternationalConferenceon Computer
Aided Design, pages 520–523, 1990.

[8] A. George. Nested dissection of a regular finite-element mesh. SIAM
Journal on Numerical Ananlysis, 10:345–363, 1973.

[9] A. George and J. W.-H. Liu. Computer Solution of Large Sparse
Positive Definite Systems. Prentice-Hall, Englewood Cliffs, NJ, 1981.

[10] A. George and J. W.-H. Liu. The evolution of the minimum degree
ordering algorithm. SIAM Review, 31(1):1–19, March 1989.

[11] MadhurimaGhose and Edward Rothberg. A parallel implementtaion
of the multiple minimum degree ordering heuristic. Technical report,
Old Dominion University, Norfolk, VA, 1994.

[12] J. R. Gilbert and E. Zmijewski. A parallel graph partitioning algo-
rithm for a message-passing multiprocessor. Internation Journal of
Parallel Programming, (16):498–513, 1987.

[13] John R. Gilbert, Gary L. Miller, and Shang-Hua Teng. Geometric
mesh partitioning: Implementation and experiments. In Proceedings
of International Parallel Processing Symposium, 1995.

[14] Anshul Gupta, George Karypis, and Vipin Kumar. Highly scalable
parallel algorithms for sparse matrix factorization. Technical Report
94-63, Department of Computer Science, University of Minnesota,
Minneapolis, MN, 1994. Submitted for publication in IEEE Trans-
actions on Parallel and Distributed Computing. Available on WWW
at URL ftp://ftp.cs.umn.edu/users/kumar/sparse-cholesky.ps.

[15] Lars Hagen and Andrew Kahng. A new approach to effective circuit
clustering. In Proceedings of IEEE International Conference on
Computer Aided Design, pages 422–427, 1992.

[16] M. T. Heath, E. G.-Y. Ng, and Barry W. Peyton. Parallel algorithms
for sparse linear systems. SIAM Review, 33:420–460, 1991. Also
appears in K. A. Gallivan et al. Parallel Algorithms for Matrix Com-
putations. SIAM, Philadelphia, PA, 1990.

[17] M. T. Heath and P. Raghavan. A Cartesian nested dissection al-
gorithm. Technical Report UIUCDCS-R-92-1772, Department of
Computer Science, University of Illinois, Urbana, IL 61801, 1992.
To appear in SIAM Journal on Matrix Analysis and Applications,
1994.

[18] Bruce Hendrickson and Rober Leland. An improved spectral graph
partitioning algorithm for mapping parallel computations. Technical
Report SAND92-1460, Sandia National Laboratories, 1992.

[19] Bruce Hendrickson and Rober Leland. The chaco user’s guide,
version 1.0. Technical Report SAND93-2339, Sandia National Lab-
oratories, 1993.

[20] Bruce Hendrickson and Rober Leland. A multilevel algorithm for
partitioning graphs. Technical Report SAND93-1301, Sandia Na-
tional Laboratories, 1993.

[21] Zdenek Johan, Kapil K. Mathur, S. Lennart Johnsson, and Thomas
J. R. Hughes. Finite element methods on the connection machine
cm-5 system. Technical report, Thinking Machines Corporation,
1993.

[22] G. Karypis and V. Kumar. Multilevel graph partitioning
schemes. Technical report, Department of Computer Science,
University of Minnesota, 1995. Available on WWW at URL
ftp://ftp.cs.umn.edu/users/kumar/mlevel serial.ps.

[23] G. Karypis and V. Kumar. Parallel multilevel graph partition-
ing. Technical report, Department of Computer Science, Uni-
versity of Minnesota, 1995. Available on WWW at URL
ftp://ftp.cs.umn.edu/users/kumar/mlevel parallel.ps.

[24] George Karypis, Anshul Gupta, and Vipin Kumar. A
parallel formulation of interior point algorithms. In Su-
percomputing 94, 1994. Available on WWW at URL
ftp://ftp.cs.umn.edu/users/kumar/interior-point.ps.

[25] B. W. Kernighan and S. Lin. An efficient heuristic procedure for
partitioning graphs. The Bell System Technical Journal, 1970.

11

[26] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis.
Introduction to Parallel Computing: Design and Analysis of Algo-
rithms. Benjamin/Cummings Publishing Company, Redwood City,
CA, 1994.

[27] J. W.-H. Liu. Modification of the minimum degree algorithm by
multiple elimination. ACM Transactions on Mathematical Software,
11:141–153, 1985.

[28] Gary L. Miller, Shang-Hua Teng, and Stephen A. Vavasis. A unified
geometric approach to graph separators. In Proceedings of 31st
Annual Symposiumon Foundationsof ComputerScience, pages538–
547, 1991.

[29] B. Nour-Omid, A. Raefsky, and G. Lyzenga. Solving finite element
equations on concurrent computers. In A. K. Noor, editor, American
Soc. Mech. Eng, pages 291–307, 1986.

[30] R. Ponnusamy, N. Mansour, A. Choudhary, and G. C. Fox. Graph
contraction and physical optimization methods: a quality-cost trade-
off for mapping data on parallel computers. In International Confer-
ence of Supercomputing, 1993.

[31] A. Pothen and C-J. Fan. Computing the block triangular form of a
sparse matrix. ACM Transactions on Mathematical Software, 1990.

[32] Alex Pothen, H. D. Simon, and Lie Wang. Spectral nested dissection.
Technical Report 92-01, Computer Science Department, Pennsylva-
nia State University, University Park, PA, 1992.

[33] Alex Pothen, Horst D. Simon, and Kang-Pu Liou. Partitioning sparse
matrices with eigenvectorsof graphs. SIAM Journal of Matrix Anal-
ysis and Applications, 11(3):430–452, 1990.

12

