
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING48, 96–129 (1998)
ARTICLE NO. PC971404

Multilevel k-way Partitioning Scheme
for Irregular Graphs1

George Karypis2 and Vipin Kumar3

Department of Computer Science/Army HPC Research Center, Unviersity of Minnesota,

Minneapolis, Minnesota 55455

In this paper, we present and study a class of graph partitioning algorithms
that reduces the size of the graph by collapsing vertices and edges, we find
a k-way partitioning of the smaller graph, and then we uncoarsen and refine
it to construct ak-way partitioning for the original graph. These algorithms
compute ak-way partitioning of a graphG = (V, E) in O(|E|) time, which
is faster by a factor ofO(log k) than previously proposed multilevel recursive
bisection algorithms. A key contribution of our work is in finding a high-quality
and computationally inexpensive refinement algorithm that can improve upon an
initial k-way partitioning. We also study the effectiveness of the overall scheme
for a variety of coarsening schemes. We present experimental results on a large
number of graphs arising in various domains including finite element methods,
linear programming, VLSI, and transportation. Our experiments show that this
new scheme produces partitions that are of comparable or better quality than
those produced by the multilevel bisection algorithm and requires substantially
smaller time. Graphs containing up to 450,000 vertices and 3,300,000 edges can
be partitioned in 256 domains in less than 40 s on a workstation such as SGI’s
Challenge. Compared with the widely used multilevel spectral bisection algorithm,
our new algorithm is usually two orders of magnitude faster and produces partitions
with substantially smaller edge-cut.© 1998 Academic Press

Key Words: graph partitioning; multilevel partitioning methods; Kernighan–
Lin heuristic; spectral partitioning methods; parallel sparse matrix algorithms.

1This work was supported by NSF CCR-9423082, by the Army Research Office Contract DA/DAAH04-95-1-
0538, by the IBM Partnership Award, and by the Army High Performance Computing Research Center under
the auspices of the Department of the Army, Army Research Laboratory Cooperative Agreement Number
DAAH04-95-2-0003/Contract DAAH04-95-C-0008, the content of which does not necessarily reflect the
position or the policy of the government, and no official endorsement should be inferred. Access to computing
facilities was provided by AHPCRC, Minnesota Supercomputer Institute, Cray Research Inc., and the Pittsburgh
Supercomputing Center. Related papers are available via WWW at URL: http://www.cs.umn.edu/∼karypis.

2E-mail: karypis@cs.umn.edu.
3E-mail: kumar@cs.umn.edu.

96

0743-7315/98 $25.00
Copyright © 1998 by Academic Press
All rights of reproduction in any form reserved.

MULTILEVEL k-WAY PARTITIONING SCHEME 97

1. INTRODUCTION

The graph partitioning problem is to partition the vertices of a graph inp roughly
equal partitions such that the number of edges connecting vertices in different partitions
is minimized. This problem finds applications in many areas including parallel scientific
computing, task scheduling, and VLSI design. Some examples are domain decomposition
for minimum communication mapping in the parallel execution of sparse linear system
solvers, mapping of spatially related data items in large geographical information systems
on disk to minimize disk I/O requests, and mapping of task graphs to parallel processors.
The graph partitioning problem is NP-complete. However, many algorithms have been
developed that find reasonably good partitionings [2, 3, 5, 7–9, 12, 13, 16, 18–24].

The k-way partitioning problem is most frequently solved by recursive bisection. That
is, we first obtain a 2-way partitioning ofV, and then we recursively obtain a 2-way
partitioning of each resulting partition. After logk phases, graphG is partitioned into
k partitions. Thus, the problem of performing ak-way partitioning is reduced to that
of performing a sequence of bisections. Recently [2, 12, 16], a multilevel recursive
bisection (MLRB) algorithm has emerged as a highly effective method for computing a
k-way partitioning of a graph. The basic structure of a multilevel bisection algorithm is
very simple. The graphG is first coarsened down to a few hundred vertices, a bisection of
this much smaller graph is computed, and then this partitioning is projected back to the
original graph (finer graph) by periodically refining the partitioning. Since the finer graph
has more degrees of freedom, such refinements decrease the edge-cut. The experiments
presented in [16] show that compared to the state-of-the-art implementation of the well-
known spectral bisection [1], MLRB produces partitionings that are significantly better
and is an order of magnitude faster. The complexity of the MLRB for producing ak-way
partitioning of a graphG = (V, E), is O(|E| log k) [16].

The multilevel paradigm can also be used to construct ak-way partitioning of the
graph directly as illustrated in Fig. 1. The graph is coarsened successively as before.
But the coarsest graph is now directly partitioned intok parts, and thisk-partitioning
is refined successively as the graph is uncoarsened back into the original graph. There
are a number of advantages of computing thek-way partitioning directly (rather than
computing it successively via recursive bisection). First, the entire graph now needs to
be coarsened only once, reducing the complexity of this phase toO(|E|) down from
O(|E| log k). Second, it is well known that recursive bisection can do arbitrarily worse
than k-way partitioning [27]. Thus, a method that obtains ak-way partitioning directly
can potentially produce much better partitionings. Note that the direct computation of
a goodk-way partitioning is harder than the computation of a good bisection (although
both problems are NP-hard) in general. This is precisely whyk-way partitioning is most
commonly computed via recursive bisection. But in the context of multilevel schemes,
we only need a roughk-way partitioning of the coarsest graph, as this can be potentially
refined successively as the graph is uncoarsened. For example, a simple method for
computing this initial partitioning in the multilevel context is simply to coarsen the
graph down tok vertices. However, in the refinement phase, we need to refine ak-way
partitioning, which is considerably more complicated than refining a bisection. In fact, a
direct generalization of the KL refinement algorithm tok-way partitioning used in [10]
is substantially more expensive than performing a KL refinement of a bisection [17].

98 KARYPIS AND KUMAR

FIG. 1. The various phases of the multilevelk-way partitioning algorithm. During the coarsening phase,
the size of the graph is successively decreased; during the initial partitioning phase, ak-way partitioning of
the smaller graph is computed (a 6-way partitioning in this example); and during the uncoarsening phase, the
partitioning is successively refined as it is projected to the larger graphs.

Even for 8-way refinement, the run time is quite high for these schemes [11]. Computing
k-way refinement fork > 8 is prohibitively expensive.

In this paper, we present ak-way partitioning algorithm. The run time of thisk-
way multilevel algorithm (MLkP) is linear to the number of edges, i.e.,O(|E|). A
key contribution of our work is a simple and yet powerful scheme for refining ak-
way partitioning in the multilevel context. This scheme is substantially faster than the
direct generalization [11] of the KL bisection refinement algorithm, but it is equally
effective in the multilevel context. Furthermore, this newk-way refinement algorithm is
inherently parallel [15] (unlike the original KL refinement algorithm which is known to
be inherently sequential in nature [6]), making it possible to develop high-quality parallel
graph partitioning algorithms.

We test our scheme on a large number of graphs arising in various domains including
finite element methods, linear programming, VLSI, and transportation. Our experiments
show that this new scheme produces partitionings that are of comparable or better quality
than those produced by the state-of-the-art implementation of the MLRB algorithm [16],
and it requires substantially smaller time. Graphs containing up to 450,000 vertices and
3,300,000 edges, can be partitioned in 256 partitions in less than 40 s on a workstation
such as SGI’s Challenge. For many of these graphs, the process of graph partitioning takes
even less time than the time to read the graph from the disk into memory. Compared with
the widely used multilevel spectral bisection algorithm [12, 22, 23], our new algorithm
is usually two orders of magnitude faster and produces partitionings with substantially
smaller edge-cut. The run time of ourk-way partitioning algorithm is comparable to
the run time of a small number (2–4) runs of geometric recursive bisection algorithms
[9, 18–20, 24]. Note that geometric algorithms are applicable only if coordinates of the

MULTILEVEL k-WAY PARTITIONING SCHEME 99

vertices are available and require tens of runs to produce cuts that are of quality similar
to those produced by spectral bisection.

The remainder of the paper is organized as follows. Section 2 defines the graph parti-
tioning problem and presents the basic concepts of multilevelk-way graph partitioning.
Some of the material presented in this section on coarsening strategies is similar to that
for multilevel recursive bisection [12, 16], but it is included here to make this paper self
contained. Section 3 presents an experimental evaluation of the various parameters of
the multilevel graph partitioning algorithm and compares its performance with that of a
multilevel recursive bisection algorithm.

2. GRAPH PARTITIONING

The k-way graph partitioning problem is defined as follows: Given a graphG = (V,
E) with |V| = n, partitionV into k subsets,V1, V2, . . . , Vk such thatVi ∩ Vj = ∅ for i ≠ j,
|Vi| = n/k, and

⋃
i Vi = V, and the number of edges ofE whose incident vertices belong

to different subsets is minimized. Ak-way partitioning ofV is commonly represented by
a partitioning vectorP of lengthn, such that for every vertexv ∈ V, P[v] is an integer
between 1 andk, indicating the partition to which vertexv belongs. Given a partitioning
P, the number of edges whose incident vertices belong to different partitions is called
the edge-cutof the partitioning.

The basic structure of a multilevelk-way partitioning algorithm is very simple. The
graph G = (V, E) is first coarsened down to a small number of vertices, ak-way
partitioning of this much smaller graph is computed, and then this partitioning is projected
back toward the original graph (finer graph) by successively refining the partitioning at
each intermediate level. This three-stage process of coarsening, initial partitioning, and
refinement is graphically illustrated in Fig. 1.

Next we describe each of these phases in more detail.

2.1. Coarsening Phase

During the coarsening phase, a sequence of smaller graphsGi = (Vi, Ei), is constructed
from the original graphG0 = (V0, E0) such that |Vi| < |Vi−1|. In most coarsening schemes,
a set of vertices ofGi is combined to form a single vertex of the next level coarser graph
Gi+1. Let Vv

i be the set of vertices ofGi combined to form vertexv of Gi+1. In order
for a partitioning of a coarser graph to be good with respect to the original graph, the
weight of vertexv is set equal to the sum of the weights of the vertices inVv

i . Also, in
order to preserve the connectivity information in the coarser graph, the edges ofv are
the union of the edges of the vertices inVv

i . In the case where more than one vertex of
Vv

i contain edges to the same vertexu, the weight of the edge ofv is equal to the sum
of the weights of these edges. This coarsening method ensures the following properties
[12]: (i) the edge-cut of the partitioning in a coarser graph is equal to the edge-cut of
the same partition in the finer graph and (ii) a balanced partitioning of the coarser graph
leads to a balanced partitioning of the finer graph.

This edge collapsing idea can be formally defined in terms of matchings [2, 12]. A
matchingof a graph is a set of edges, no two of which are incident on the same vertex.
Thus, the next level coarser graphGi+1 is constructed fromGi by finding a matching of
Gi and collapsing the vertices being matched into multinodes. The unmatched vertices are

100 KARYPIS AND KUMAR

simply copied over toGi+1. Since the goal of collapsing vertices is to decrease the size of
the graphGi, the matching should be maximal. A matching is calledmaximal matching
if it is not possible to add any other edge to it without making two edges become incident
on the same vertex. Note that depending on how matchings are computed, the size of
the maximal matching may be different.

The coarsening phase ends when the coarsest graphGm has a small number of vertices
or if the reduction in the size of successively coarser graphs becomes too small. In our
experiments, for ak-way partition, we stop the coarsening process when the number of
vertices becomes less thanck, wherec = 15 in our experiments. The choice of this value
of c was to allow the initial partitioning algorithm to createk partitions of roughly the
same size. We also end the coarsening phase if the reduction in the size of successive
graphs is less than a factor of 0.8.

In the remaining sections we describe three ways that we used to select maximal
matchings for coarsening. Two of these matchings, RM [2, 12] and HEM [16], have
been previously investigated in the context of MLRB.

Random Matching (RM).A maximal matching can be generated efficiently using a
randomized algorithm. In our experiments we used a randomized algorithm similar to
that described in [2, 12, 16]. The random maximal matching algorithm works as follows.
The vertices are visited in random order. If a vertexu has not been matched yet, then
we randomly select one of its unmatched adjacent vertices. If such a vertexv exists, we
include the edge (u, v) in the matching and mark verticesu andv as being matched. If
there is no unmatched adjacent vertexv, then vertexu remains unmatched in the random
matching. The complexity of the above algorithm isO(|E|).

Heavy Edge Matching (HEM).Random matching is a simple and efficient method to
compute a maximal matching and minimizes the number of coarsening levels in a greedy
fashion. However, our overall goal is to find a partitioning that minimizes the edge-cut.
Consider a graphGi = (Vi, Ei), a matchingMi that is used to coarsenGi, and its coarser
graphGi+1 = (Vi+1, Ei+1) induced byMi. If A is a set of edges, defineW(A) to be the
sum of the weights of the edges inA. It can be shown that

W(Ei+1) = W(Ei)−W(Mi). (1)

Thus, the total edge-weight of the coarser graph is reduced by the weight of the match-
ing. Hence, by selecting a maximal matchingMi whose edges have a large weight, we
can decrease the edge-weight of the coarser graph by a greater amount. As the analy-
sis in [13] shows, since the coarser graph has smaller edge-weight, it also has a smaller
edge-cut.

Finding a maximal matching that contains edges with large weight is the idea behind the
heavy-edge matchingoriginally introduced in [16]. A heavy-edge matching is computed
using a randomized algorithm similar to that for computing a random matching described
earlier. The vertices are again visited in random order. However, instead of randomly
matching a vertexu with one of its adjacent unmatched vertices, we matchu with the
vertexv such that the weight of the edge (u, v) is maximum over all valid incident edges
(heavier edge). Note that this algorithm does not guarantee that the matching obtained
has maximum weight (over all possible matchings), but our experiments have shown that

MULTILEVEL k-WAY PARTITIONING SCHEME 101

it works very well in practice. The complexity of computing a heavy-edge matching is
O(|E|), which is asymptotically similar to that for computing the random matching.

Modified Heavy Edge Matching (HEM*).The analysis of the multilevel bisection
algorithm in [13] shows that a good edge-cut of a coarser graph is closer to that of a
good edge-cut of the original graph if the average degree of the coarser graph is small. The
modified heavy edge matching(HEM*) is a modification of HEM that tries to decrease
the average degree of coarser graphs.

A HEM* is computed using a randomized algorithm similar to that for computing a
HEM. The vertices are again visited in random order. Letv be such a vertex, and let
H be the set of unmatched adjacent vertices ofv that are connected tov by an edge
of maximum weight (H can contain more than one vertex if some edges connected to
v have identical weights). For each vertexu ∈ H, let Wv–u be the sum of the weights
of the edges ofu that connectu to vertices adjacent tov. In the HEM* scheme,v is
matched with the vertexu ∈ H, such thatWv–u is maximized over all vertices inH.

As illustrated in Fig. 2, HEM* leads to fewer edges in the coarser graph and the average
weight of edges in coarser graphs tend to be higher. Hence, in subsequent coarsening
levels, the weight of the edges included in the matching increases, making HEM* more
effective. HEM* is more effective than HEM in producing a good coarsening of the
original graphG0 when the edges ofG0 have identical weights. In fact, the first level
coarser graphG1 produced by HEM is similar to that produced by RM, since there are no
heavy edge inG0. In contrast,G1 produced by HEM* will have smaller average degree
because the vertices matched by HEM* will be adjacent to many common vertices. The
complexity of computing HEM* isO(|E|), which is asymptotically the same as that for
computing the random matching and heavy edge matching. But the constant for HEM*
is somewhat higher than that for HEM and RM.

FIG. 2. Example of the matchings produced by RM and HEM*.

102 KARYPIS AND KUMAR

2.2. Initial Partitioning Phase

The second phase of a multilevelk-way partitioning algorithm is to compute ak-way
partitioning Pm of the coarse graphGm = (Vm, Em) such that each partition contains
roughly |V0|/k vertex weight of the original graph. Since during coarsening, the weights
of the vertices and edges of the coarser graph were set to reflect the weights of the
vertices and edges of the finer graph,Gm contains sufficient information to intelligently
enforce the balanced partitioning and the minimum edge-cut requirements.

One way to produce the initialk-way partitioning is to keep coarsening the graph
until it has only k vertices left. These coarsek vertices can serve as the initialk-way
partitioning of the original graph. There are two problems with this approach. First, for
many graphs, the reduction in the size of the graph in each coarsening step becomes
very small after some coarsening steps, making it very expensive to continue with the
coarsening process. Second, even if we are able to coarsen the graph down to onlyk
vertices, the weights of these vertices are likely to be quite different, making the initial
partitioning highly unbalanced.

In our algorithm, thek-way partitioning of Gm is computed using our multilevel
bisection algorithm [16]. Our experience has shown that our multilevel recursive bisection
algorithm produces good initial partitionings and requires a relatively small amount of
time as long as the size of the original graph is sufficiently larger thank.

2.3. Uncoarsening Phase

During the uncoarsening phase, the partitioningPm of the coarser graphGm is projected
back to the original graph, by going through the graphsGm−1, Gm−2, . . . , G1. Since each
vertexv of Gi+1 contains a distinct subset of verticesVv

i of Gi, Pi is obtained fromPi+1

by simply assigning the set of verticesVv
i to the partitioningPi+1[v]; i.e., Pi[u] = Pi+1[v],

∀u ∈ Vv
i .

Note that, even if the partitioning ofGi is at a local minima,4 the projected partitioning
of Gi−1 may not be at a local minima. SinceGi−1 is finer, it has more degrees of freedom
that can be used to further improve the partitioning and thus decrease the edge-cut. Hence,
it may still be possible to improve the projected partitioning ofGi−1 by local refinement
heuristics.

A class of local refinement algorithms that tends to produce very good results are
those based on the Kernighan–Lin (KL) partitioning algorithm [17] and their variants [4,
12]. The KL algorithm incrementally swaps vertices among partitions of a bisection to
reduce the edge-cut of the partitioning until the partitioning reaches a local minima. One
commonly used variation of the KL algorithm for bisection refinement is from Fiduccia–
Mattheyses [4]. In particular, for each vertexv, this variation of the KL algorithm
computes thegain which is the reduction in the edge-cut achieved by movingv to
the other partition. These vertices are inserted into two priority queues, one for each
partition, according to their gains. Initially, all vertices areunlocked; i.e., they are free
to move to the other partition. The algorithm iteratively selects an unlocked vertexv

with the largest gain from one of the two priority queues and moves it to the other
partition. When a vertexv is moved, it islockedand the gain of the vertices adjacent to

4A partitioning is at a local minima, if movement of any vertex from one part to the other does not improve
the edge-cut.

MULTILEVEL k-WAY PARTITIONING SCHEME 103

v are updated. After each vertex movement, the algorithm also records the size of the
cut achieved at this point. Note that the algorithm does not allow locked vertices to be
moved since this may result in thrashing (i.e., repeated movement of the same vertex). A
single pass of the algorithm ends when there are no more unlocked vertices (i.e., all the
vertices have been moved). Then, the recorded cut-sizes are checked, the point where the
minimum cut was achieved is selected, and all vertices that were moved after that point
are moved back to their original partition. Now, this becomes the initial partitioning for
the next pass of the algorithm. In the case of multilevel recursive bisection algorithms
[2, 12, 16], KL refinement becomes very powerful, as the initial partitioning available at
each successive uncoarsening level is already a good partition.

However, refining ak-way partitioning is significantly more complicated because
vertices can move from a partition to many other partitions; thus, increasing the
optimization space combinatorially. An extension of the KL refinement algorithm in
the case ofk-way refinement is described in [10]. This algorithm usesk(k − 1) priority
queues, one for each type of move. In each step of the algorithm, the moves with the
highest gain are found from each of thesek(k − 1) queues, and the move with the highest
gain that preserves or improves the balance is performed. After the move, all of thek(k
− 1) priority queues are updated. The complexity ofk-way refinement is significantly
higher than that of 2-way refinement, and for a graph withm edges, this complexity
is O(k * m). This approach is only practical for small values ofk. Due to this high
complexity, the multilevel recursive octasection algorithm described in [10], requires the
same amount of time as multilevel recursive bisection, even though recursive octasection
spends much less time for coarsening.

We have developed simplek-way refinement algorithms that are simplified versions
of the k-way Kernighan–Lin refinement algorithm, and their complexity is independent
of the number of partitions being refined. As the results in Section 3 show, despite the
simplicity of our refinement algorithms, they produce high quality partitionings in a small
amount of time. First, we describe some key concepts and definitions that are used in
the description of our twok-way partitioning refinement algorithms.

Consider a graphGi = (Vi, Ei) and its partitioning vectorPi. For each vertexv ∈ Vi

we define theneighborhood N(v) of v to be the union of the partitions that the vertices
adjacent tov (i.e., Adj(v)) belong to; that is,N(v) = ∪u∈Ad j(v)Pi[u]. Note that ifv is an
interior vertex of a partition, thenN(v) = ∅. On the other hand, the cardinality ofN(v)
can be as high asAdj(v) for the case in which each vertex adjacent tov belongs to a
different partition. During refinement,v can move to any of the partitions inN(v). For
each vertexv we compute the gains of movingv to one of its neighbor partitions. In
particular, for everyb ∈ N(v) we computeED[v] b as the sum of the weights of the edges
(v, u) such thatPi[u] = b. Also, we computeID[v] as the sum of the weights of the
edges (v, u) such thatPi[u] = Pi[v]. The quantityED[v] b is called theexternal degreeof
v to partitionb, while the quantityID[v] is called theinternal degreeof v. Given these
definitions, the gain of moving vertexv to partition b ∈ N(v) is g[v] b − ID[v]. These
definitions are illustrated in Fig. 3. For example, for vertex 5,N[5] = {0, 2}, ID[5] = 2,
ED[5] 0 = 2, andED[5] 2 = 3.

However, in addition to decreasing the edge-cut, moving a vertex from one partition to
another must not create partitions whose size is unbalanced. In particular, our partitioning
refinement algorithms move a vertex only if it satisfies the followingBalancing Condition.

104 KARYPIS AND KUMAR

FIG. 3. Illustration of neighboring partitions and internal and external vertex degrees.

Let Wi be a vector ofk elements, such thatWi[a] is the weight of partitiona of graph
Gi, and letWmin = 0.9|V0|/k and Wmax = C|V0|/k. A vertex v, whose weight isw(v) can
be moved from partitiona to partitionb only if

Wi [b] +w(v) ≤Wmax, (2)

and

Wi [a] −w(v) ≥Wmin (3)

The first condition ensures that movement of a node into a partition does not make its
weight higher thanWmax. Note that by adjusting the value ofC, we can vary the degree
of imbalance among partitions. IfC = 1, then the refinement algorithm tries to make each
partition of equal weight. In our experiments we found that lettingC be greater than 1.0,
tends to improve the quality of the partitionings. However, in order to minimize the load
imbalance, we usedC = 1.03; that puts an upper bound of 3% on load imbalance. Note
that the second condition is not critical for load balance, but it ensures that there is no
partition with too few vertices.

Greedy Refinement (GR).The lookahead in KL algorithm serves a very important
purpose. It allows movement of an entire cluster of vertices across a partition boundary.
Note that it is quite possible that as the cluster is moved across the partition boundary, the
edge-cut increases, but after the entire cluster of vertices moves across the partition, then
the overall edge-cut comes down. In the context of multilevel schemes, this lookahead
becomes less important. The reason is that these clusters of vertices are coarsened into a
single vertex at successive coarsening phases. Hence, movement of a vertex at a coarse
level actually corresponds to the movement of a group of vertices in the original graph.

If the lookahead part of KL is eliminated (i.e., if vertices are moved only if they lead
to positive gain), then it becomes less useful to maintain a priority queue. In particular,
vertices whose move results in a large positive gain will be moved anyway even if they
are not moved earlier in the priority order. Hence, a variation of KL that simply visits
the boundary vertices in a random order and moves them if they result in a positive gain

MULTILEVEL k-WAY PARTITIONING SCHEME 105

is likely to work well in the multilevel context. Ourgreedy refinementalgorithm is based
on this observation. It consists of a number of iterations. In each iteration, all the vertices
are checked to see if they can be moved so that either the edge-cut of the partitioning
can be decreased (while preserving balance), or the balance is improved.

In particular, GR works as follows. Consider a graphGi = (Vi, Ei), and its partitioning
vectorPi. The vertices are checked in a random order. Letv be such a vertex, letPi[v]
= a be the partition thatv belongs to. Ifv is a node internal to partitiona thenN(v) = ∅,
andv is not moved. Ifv is at the boundary of the partition, thenN(v) is nonempty. Let
N ′(v) be the subset ofN(v) that contains all partitionsb such that movement of vertex
v to partitionb does not violate the Balancing Condition. Now vertexv is moved to one
of the adjacent partitionsb, if either one of the following conditions is satisfied:

1. ED[v] b > ID[v] and ED[v] b is maximum among allb ∈ N ′(v).
2. ED[v] b = ID(v) andWi[a] − Wi[b] > w(v).

That is, the GR algorithm movesv to a partition that leads to the largest reduction in
the edge-cut without violating the balance condition. If no reduction in the edge-cut is
possible, by movingv, thenv is moved to the partition (if any) that leads to no increase
in the edge-cut but improves the balance. After moving vertexv, the algorithm updates
the internal and external degrees of the vertices adjacent tov to reflect the change in
the partition.

The GR algorithm converges after a small number of iterations. In our experiments, we
found that for most graphs, and with the HEM (or HEM*) matching scheme in particular,
GR converged within four to eight iterations.

Global Kernighan–Lin Refinement (GKLR).As discussed in the previous section,
the GR algorithm lacks any capabilities of climbing out of local minima. Our second
refinement heuristic calledglobal Kernighan–Lin, is somewhat more powerful and is
closer to the original KL algorithm in spirit. It adds some limited hill-climbing capabilities
to the GR algorithm and also uses a priority queue to determine the sequence of
vertex moves.

The GKLR algorithm uses a global priority queue that stores the vertices according
to their gains. Initially, all the vertices are scanned, and those whose sum of external
degrees5 is greater or equal to their internal degrees are inserted into the priority queue.
In particular, letv be such a vertex, letN(v) be the neighborhood ofv, and b ∈ N(v)
such thatED[v] b is maximum over the external degrees of partitions inN(v). We insert
v into the priority queue with a gain equal toED[v] b − ID[v].

The algorithm then proceeds and selects the vertex from the priority queue with the
highest gain. Having selected such a vertexv, the algorithm selects a partb ∈ N(v) to
movev such thatED[v] b is maximized while satisfying the balance condition (Eqs. (2)
and (3)). Note that these swaps may lead to an increase in the edge-cut, since vertices are
moved even if they have a negative gain value. The GKLR algorithm continues moving
vertices until it has performedx vertex moves that have not decreased the overall edge-

5We used this heuristic to select the vertices that are inserted in the priority queue as a compromise between
inserting all the boundary vertices and inserting only the vertices that lead to a reduction in the edge-cut when
moved to one of their neighboring partitions. If all the boundary vertices were inserted, then the cost would
have been higher. On the other hand, if only the edge-cut reducing vertices were inserted, the hill-climbing
capabilities of the algorithm would have been reduced.

106 KARYPIS AND KUMAR

cut. In that case, the lastx moves are undone. Once a vertex is moved, it is not considered
for movement in the same iteration. This is repeated for a small number of iterations or
until convergence.

Note that in each step, the vertices selected for movement by the GKLR algorithm and
by the generalized KL of [11] may be quite different. GKLR selects a vertexv that has
a move (among all possible moves to neighboring partitionsN(v)) with the highest gain
g[v] max. However, depending on the weight of the partitions, this move may never take
place, and insteadv can be moved to a partitiona ∈ N(v) that leads to a smaller gain
g[a]v. However, there may be another vertexu on the priority queue that has a move
with the highest gaing[u] max that may be permissible. Now ifg[v]v < g[u] max < g[v] max,
the generalization of the KL algorithm will select to move vertexu before considering
vertexv. Thus, in each step, GKLR does not necessarily select the vertex with the largest
realizable gain. Furthermore, since the single priority queue contains only vertices whose
sum of the external degrees in greater or equal to the internal degree, GKLR has less
powerful hill-climbing capabilities than the generalized KL [11] that uses multiple priority
queues and considers all the vertices.

3. EXPERIMENTAL RESULTS

We evaluated the performance of the multilevel graph partitioning algorithm on a
wide range of graphs arising in different application domains. The characteristics of
these graphs are described in Table 1. These graphs are classified into six groups. The
first group contains graphs that correspond to finite element meshes, the second group
contains graphs that correspond to coefficient matrices (i.e., assembled matrices) with
multiple degrees of freedom and linear basis functions, the third group corresponds to
assembled matrices with nonlinear basis functions, the fourth group corresponds to graphs
that represent highway networks, the fifth group corresponds to graphs arising in linear
programming applications, and the sixth group corresponds to graphs that represent VLSI
circuits. For each of the first two groups, we have a large number of graphs, but for the
last four groups, we have only a few graphs per group. So observed trends for the first
two groups are more reliable than those for the last four groups.

All the experiments were performed on an SGI Challenge with 1.2 GBytes of memory
and a 200 MHz MIPS R4400 processor. All times reported are in seconds. Since the nature
of the multilevel algorithm discussed is randomized, we performed all experiments with
fixed seed.

3.1. Matching Schemes

We implemented the three matching schemes described in Section 2.1. These schemes
are (a) random matching (RM), (b) heavy edge matching (HEM), and (c) modified heavy
edge matching (HEM*). For all the experiments, we used the GR refinement policy during
the uncoarsening phase. The results for 32-way and 256-way partitioning are shown in
Figs. 4 and 5 for all the graphs in Table 1.

In Fig. 4 we see that both HEM and HEM* consistently produce partitionings whose
edge-cut is better than that of the partitionings produced by RM. For some groups of
graphs, HEM and HEM* produce partitionings whose edge-cut is better than that of RM
by up to 35%. The reason for the poor performance of RM becomes clear in Table 2 that

MULTILEVEL k-WAY PARTITIONING SCHEME 107

TABLE 1

Various Graphs Used in Evaluating the Multilevel Graph Partitioning

and Sparse Matrix Ordering Algorithm

Matrix name
Number

of vertices Number of edges Description

144 144649 1074393 3D Finite element mes (Parafoil)

598A 110971 741934 3D Finite element mesh (Submarine I)

AUTO 448695 3314611 3D Finite element mesh (GM Saturn)

BRACK2 62631 366559 3D Finite element mesh (Bracket)

COPTER2 55476 352238 3D Finite element mesh (Helicopter blade)

FLAP 51537 479620 3D Finite element mesh

M14B 214765 3358036 3D Finite element mesh (Submarine II)

ROTOR 99617 662431 3D Finite element mesh

TORSO 201142 1479989 3D Finite element mesh (Human torso)

WAVE 156317 1059331 3D Finite element mesh

BCSSTK31 35588 572914 3D Stiffness matrix

BCSSTK32 44609 985046 3D Stiffness matrix

CANT 54195 1960797 3D Stiffness matrix

CYLINDER93 45594 1786726 3D Stiffness matrix

INPRO1 46949 1117809 3D Stiffness matrix

SHELL93 181200 2313765 3D Stiffness matrix

SHYY161 76480 152002 CFD/Navier-Stokes

TROLL 213453 5885829 3D Stiffness matrix

VENKAT25 62424 827684 2D Coefficient matrix

BBMAT 38744 993481 2D Stiffness matrix

MAP1 267241 334931 Highway network

MAP2 78489 98995 Highway network

FINAN512 74752 261120 Linear programming

KEN-11 14694 33880 Linear programming

S38584.1 22143 35608 Sequential circuit

contains the size of the edge-cut of the initialk-way partitioning. For all graphs, the size
of the initial edge-cut on the coarsest graph is significantly worse for RM compared with
HEM and HEM*. Note that the difference in the size of the initial edge-cut on the coarsest
graph is much greater for the three schemes than those shown in Fig. 4. For example, for
the first two groups of graphs, the overall quality of RM, HEM, and HEM* is similar, but
the edge-cut of thek-way partitioning in the coarsest graph obtained by HEM and HEM*

108 KARYPIS AND KUMAR

F
IG

.
4.

Q
ua

lit
y

of
th

e
pa

rt
iti

on
in

gs
of

H
E

M
an

d
H

E
M

*
re

la
tiv

e
to

R
M

m
at

ch
in

g.
F

or
ea

ch
gr

ap
h,

th
e

ra
tio

of
th

e
ed

ge
-c

ut
of

th
e

H
E

M
an

d
H

E
M

*
m

at
ch

in
g

sc
he

m
es

to
th

a
t

of
th

e
R

M
m

at
ch

in
g

sc
he

m
e

is
pl

ot
te

d
fo

r
32

-
an

d
25

6-
w

ay
pa

rt
iti

on
in

gs
.

B
ar

s
un

de
r

th
e

ba
se

lin
e

in
di

ca
te

th
at

th
e

co
rr

es
po

nd
in

g
m

at
ch

in
g

sc
he

m
e

pe
rf

or
m

s
be

tte
r

th
an

R
M

.

MULTILEVEL k-WAY PARTITIONING SCHEME 109

F
IG

.
5.

R
un

tim
e

of
pa

rt
iti

on
in

g
us

in
g

H
E

M
an

d
H

E
M

*
re

la
tiv

e
to

R
M

m
at

ch
in

g.
F

or
ea

ch
gr

ap
h,

th
e

ra
tio

of
th

e
tim

e
re

qu
ire

d
by

th
e

H
E

M
an

d
H

E
M

*
m

at
ch

in
g

sc
he

m
es

to
th

at
of

th
e

R
M

m
at

ch
in

g
sc

he
m

e
is

pl
ot

te
d

fo
r

32
-

an
d

25
6-

w
ay

pa
rt

iti
on

in
gs

.
B

ar
s

un
de

r
th

e
ba

se
lin

e
in

di
ca

te
th

at
th

e
co

rr
es

po
nd

in
g

m
at

ch
in

g
sc

he
m

e
is

fa
st

e
r

th
an

R
M

.

110 KARYPIS AND KUMAR

are 30 to 65% smaller than those obtained by RM (as shown in Table 2). (As a result, for
RM, k-way refinement takes more time compared with HEM and HEM*.) As discussed in
[13], the effectiveness of a coarsening scheme depends on how successful it is in removing
a significant amount of edge-weight from the successive coarser graphs. According to
this criterion, HEM and HEM* are strictly better coarsening schemes than RM because
they remove more edge-weight from the graph.

Comparing HEM against HEM*, we see that for most graphs, their performance is
comparable. The only notable exception isBBMATfor which HEM* does up to 10%
better than HEM.BBMATis the type of graph in which applying RM at the finest graph
(G0) significantly increases the average degree of the first level coarser graph (G1). Note
that HEM and RM compute the same first level coarse graphG1, since the weights of all
edges inG0 is the same. Hence, forBBMATthe average degree ofG1 obtained by HEM
is much higher than that obtained using HEM*. For other types of graphs, particularly
those that correspond to finite element meshes, RM increases the average degree only
slightly in going fromG0 to G1, which in turn allows HEM to perform good coarsening.
As a result, forBBMAT, the initial partitioning found by HEM is much worse than that
found by HEM*. This can be seen in Table 2. Note that the initial edge-cuts for HEM
and HEM* are similar for all problems exceptBBMAT.

In Fig. 5 we see that for 32-way partition, HEM is up to 20% faster than RM, while
HEM* is up to 41% slower than RM. HEM is faster than RM because it requires
much less refinement, and the coarsening step of HEM is only slightly slower than
the coarsening step in RM. HEM* is slower than RM because coarsening using HEM*
is much slower than coarsening using RM. For a 256-way partition, HEM is again faster
than RM (quite consistently), but now for 7 graphs HEM* is faster than RM. This is
because RM requires substantially more refinement time and because the coarsest graph
Gm produced by RM has many more edges than that produced by HEM*, increasing the
initial partitioning time.

TABLE 2

Quality of Initial Partitionings for the RM,

HEM, and HEM* Matching Schemes

64EC 256EC

Graph RM HEM HEM* RM HEM HEM*

144 200855 142464 136949 292079 229401 223615

AUTO 525526 343154 334210 815578 575975 560929

FLAP 58034 42810 39394 119368 95452 92358

BCSSTK32 221234 155286 143176 342679 287300 265350

INPRO1 244035 159632 149373 405038 319496 301075

BBMAT 324794 154878 89305 584891 350850 196325

MAP2 1064 911 839 2382 2205 2173

KEN-11 16273 15677 15578 18697 18067 17813

Note. 64EC and 256EC are the edge-cuts of 64- and 256-way partitionings.

MULTILEVEL k-WAY PARTITIONING SCHEME 111

As the experiments show, for most of the graphs, HEM is an excellent matching scheme
that produces good partitionings, and requires the smallest overall run time. However,
for a certain class of graphs, HEM* does better than HEM.

3.2. Refinement Policies

As described in Section 2.3, there are different ways that a partitioning can be refined
during the uncoarsening phase. We evaluated the performance of two refinement policies,
both in terms of the quality of the partitionings they produce and also how much time
they require. The refinement policies that we evaluate are greedy refinement (GR) and
global Kernighan–Lin refinement (GKLR).

The results of these refinement policies for computing a 32- and 256-way partition for
the graphs in Table 1 are shown in Figs. 6–9. Figures 6 and 7 show the edge-cut of the
partitionings produced by GKLR relative to those produced by GR for the three different
coarsening schemes, while Figs. 8 and 9 show the amount of time required by GKLR
relative to GR for computing these partitionings.

A number of observations can be made from Figs. 6 and 7. GKLR is significantly better
than GR only forBBMAT. For other problems, the difference is minor. If RM coarsening is
used, then GKLR does better than GR more consistently. If HEM or HEM* coarsening
is used, then GKLR performs quite similar to GR for all problems. Even forBBMAT,
the gap between the performance of GKLR and GR is narrower for HEM and HEM*
compared with RM. If we combine the 32- and 256-way partitionings as a set of 150
different runs, GKLR produces better partitionings for 31 out of these 150 runs. Out
of these 31 runs, 14 were obtained using RM, 7 using HEM, and 10 using HEM*.
Another interesting observation is that for most graphs the difference in the quality of
the partitionings produced by GR and GKLR is very small. The difference in the quality
is less than 2% for 139 out of the 150 different runs. The only notable exceptions are
KEN-11 for which GR does up to 7% better than GKLR andBBMATfor which GKLR
does up to 21% better than GR. From these experimental results, it is clear that a simple
refinement scheme such as GR is quite adequate, particularly if the initial partitioning
for the coarsest graph is quite good. The additional power of GKLR is useful only
when it is used in conjunction with the RM matching scheme which leads to poor initial
partitionings.

From Figs. 8 and 9 we see that the amount of time required for a 32- and 256-way
partitioning using GKLR is significantly higher than the time required using GR. GKLR
requires more time for each of the 150 different runs. In some cases, GKLR requires
more than twice the time required by GR. Comparing the different matching schemes,
we see that the relative increase in the run time is higher for RM than for HEM and
HEM*. This is not surprising since RM requires more refinement and also RM benefits
the most from GKLR.

In summary, GR and GKLR tend to produce partitionings that have similar edge-cuts,
but with GKLR requiring significantly more time than GR.

3.3. Comparison with Other Partitioning Schemes

Figure 10 shows the relative quality of our multilevelk-way partitioning algorithm
(MLkP) compared to the multilevel recursive bisection algorithm (MLRB) described in
[16] (implemented in METIS [14]). METIS is a set of programs for partitioning unstructured

112 KARYPIS AND KUMAR

F
IG

.
6.

Q
ua

lit
y

of
G

K
LR

re
fin

em
en

t
sc

he
m

e
fo

r
32

-w
ay

pa
rt

iti
on

in
g

fo
r

R
M

,
H

E
M

,
an

d
H

E
M

*
co

ar
se

ni
ng

sc
he

m
es

re
la

tiv
e

to
G

R
re

fin
em

en
t

sc
he

m
e.

F
or

ea
ch

gr
ap

h,
th

e
ra

tio
of

th
e

ed
ge

-c
ut

of
th

e
G

K
LR

re
fin

em
en

t
al

go
rit

hm
to

th
at

of
th

e
G

R
al

go
rit

hm
sc

he
m

e
is

pl
ot

te
d

fo
r

R
M

,
H

E
M

,
an

d
H

E
M

*
m

at
ch

in
g

sc
he

m
es

.
B

ar
s

un
de

r
th

e
ba

se
lin

e
in

di
ca

te
th

at
G

K
LR

pe
rf

or
m

s
be

tte
r

th
an

G
R

fo
r

th
e

co
rr

es
po

nd
in

g
m

at
ch

in
g

sc
he

m
e.

MULTILEVEL k-WAY PARTITIONING SCHEME 113

F
IG

.7
.Q

ua
lit

y
of

G
K

LR
re

fin
em

en
t

sc
he

m
e

fo
r

25
6-

w
ay

pa
rt

iti
on

in
g

fo
r

R
M

,
H

E
M

,
an

d
H

E
M

*
co

ar
se

ni
ng

sc
he

m
es

re
la

tiv
e

to
G

R
re

fin
em

en
t

sc
he

m
e.

F
or

ea
ch

gr
ap

h,
th

e
ra

tio
of

th
e

ed
ge

-c
ut

of
th

e
G

K
LR

re
fin

em
en

t
al

go
rit

hm
to

th
at

of
th

e
G

R
al

go
rit

hm
sc

he
m

e
is

pl
ot

te
d

fo
r

R
M

,
H

E
M

,
an

d
H

E
M

*
m

at
ch

in
g

sc
he

m
es

.
B

ar
s

un
de

r
th

e
ba

se
lin

e
in

di
ca

te
th

at
G

K
LR

pe
rf

or
m

s
be

tte
r

th
an

G
R

fo
r

th
e

co
rr

es
po

nd
in

g
m

at
ch

in
g

sc
he

m
e.

114 KARYPIS AND KUMAR

F
IG

.
8.

R
un

tim
e

fo
r

th
e

32
-w

ay
pa

rt
iti

on
in

gs
pr

od
uc

ed
by

th
e

G
R

an
d

G
K

LR
re

fin
em

en
t

al
go

rit
hm

s
fo

r
R

M
,

H
E

M
,

an
d

H
E

M
*

co
ar

se
ni

ng
sc

he
m

es
.

F
or

ea
ch

gr
ap

h,
th

e
ra

t
io

of
th

e
tim

e
re

qu
ire

d
fo

r
pa

rt
iti

on
in

g
us

in
g

th
e

G
K

LR
re

fin
em

en
t

al
go

rit
hm

to
th

at
of

th
e

G
R

al
go

rit
hm

sc
he

m
e

is
pl

ot
te

d
fo

r
R

M
,

H
E

M
,

an
d

H
E

M
*

m
at

ch
in

g
sc

he
m

es
.

B
ar

s
un

de
r

th
e

ba
se

lin
e

in
di

ca
te

th
at

G
K

LR
is

fa
st

er
th

an
G

R
fo

r
th

e
co

rr
es

po
nd

in
g

m
at

ch
in

g
sc

he
m

e.

MULTILEVEL k-WAY PARTITIONING SCHEME 115

F
IG

.
9.

R
un

tim
e

fo
r

th
e

25
6-

w
ay

pa
rt

iti
on

in
gs

pr
od

uc
ed

by
th

e
G

R
an

d
G

K
LR

re
fin

em
en

t
al

go
rit

hm
s

fo
r

R
M

,
H

E
M

,
an

d
H

E
M

*
co

ar
se

ni
ng

sc
he

m
es

.
F

or
ea

ch
gr

ap
h,

th
e

ra
tio

of
th

e
tim

e
re

qu
ire

d
fo

r
pa

rt
iti

on
in

g
us

in
g

th
e

G
K

LR
re

fin
em

en
t

al
go

rit
hm

to
th

at
of

th
e

G
R

al
go

rit
hm

sc
he

m
e

is
pl

ot
te

d
fo

r
R

M
,

H
E

M
,

an
d

H
E

M
*

m
at

ch
in

g
sc

he
m

es
.

B
ar

s
un

de
r

th
e

ba
se

lin
e

in
di

ca
te

th
at

G
K

LR
is

fa
st

er
th

an
G

R
fo

r
th

e
co

rr
es

po
nd

in
g

m
at

ch
in

g
sc

he
m

e.

116 KARYPIS AND KUMAR

F
IG

.
10

.Q
ua

lit
y

of
th

e
pa

rt
iti

on
in

gs
pr

od
uc

ed
by

M
Lk

P
re

la
tiv

e
to

M
LR

B
.

T
he

m
ul

til
ev

elk-
w

ay
pa

rt
iti

on
in

g
al

go
rit

hm
us

es
H

E
M

du
rin

g
co

ar
se

ni
ng

an
d

G
R

du
rin

g
re

fin
em

en
t.

F
or

ea
ch

gr
ap

h,
th

e
ra

tio
of

th
e

ed
ge

-c
ut

of
th

e
k-

w
ay

pa
rt

iti
on

in
g

al
go

rit
hm

to
th

at
of

th
e

re
cu

rs
iv

e
bi

se
ct

io
n

al
go

rit
hm

is
pl

ot
te

d
fo

r
32

-,
64

-,
an

d
25

6-
w

ay
pa

rt
iti

on
in

gs
.

B
ar

s
un

de
r

th
e

ba
se

lin
e

in
di

ca
te

th
atk

-w
ay

pa
rt

iti
on

in
g

pe
rf

or
m

s
be

tte
r

th
an

re
cu

rs
iv

e
bi

se
ct

io
n.

MULTILEVEL k-WAY PARTITIONING SCHEME 117

graphs and for ordering sparse matrices that implements various algorithms described in
[16]. For each graph, we plot the ratio of the edge-cut of the MLkP algorithm to the
edge-cut of the MLRB algorithm (the actual edge-cuts are shown in Table 3). Ratios
that are less than one indicate that MLkP produces better partitionings than MLRB. For

TABLE 3

The Edge-Cuts Produced by the Multilevel Recursive Bisection, Multilevel

Recursive Bisection, and Multilevelk-way Partitioning

Multilevel
spectral bisection

Multilevel
recursive bisection

Multilevel
k-way partition

Matrix 64EC 128EC 256EC 64EC 128EC 256EC 64EC 128EC 256EC

144 96538 132761 184200 88806 120611 161563 87750 118112 156145

598A 68107 95220 128619 64443 89298 119699 63262 86909 114846

AUTO 208729 291638 390056 194436 269638 362858 193092 263228 349137

BRACK2 34464 49917 69243 29983 42625 60608 29742 42170 59847

COPTER2 47862 64601 84934 43721 58809 77155 42411 56100 73946

FLAP 35540 54407 80392 30741 49806 74628 30461 49203 73641

M14B 124749 172780 232949 111104 156417 214203 109013 150331 206129

ROTOR 63251 88048 120989 53228 75010 103895 52069 73841 101732

TORSO 413501 473397 522717 117997 160788 218155 112797 155087 209895

WAVE 106858 142060 187192 97978 129785 171101 94251 124377 164187

BCSSTK31 86244 123450 176074 65249 97819 140818 66039 100713 143749

BCSSTK32 130984 185977 259902 106440 152081 222789 106661 160651 223545

CANT 459412 598870 798866 442398 574853 778928 428754 567478 756061

CYLINDER93 290194 431551 594859 289639 416190 590065 284012 409445 582015

INPRO1 125285 185838 264049 116748 171974 250207 118176 172592 251628

SHELL93 178266 238098 318535 124836 185323 269539 123437 181203 261296

SHYY161 6641 9151 11969 4365 6317 9092 4607 6591 9251

TROLL 529158 706605 947564 453812 638074 864287 445215 630918 846822

VENKAT25 50184 77810 116211 47514 73735 110312 49137 74470 111249

BBMAT 179282 250535 348124 55753 92750 132387 62018 109495 158990

MAP1 3546 6314 8933 1388 2221 3389 1122 1892 3108

MAP2 1759 2454 3708 828 1328 2157 726 1213 1984

FINAN512 15360 27575 53387 11388 22136 40201 11853 23365 42589

KEN-11 20931 23308 25159 14257 16515 18101 12360 13563 15836

S38584.1 5381 7595 9609 2428 3996 5906 2362 3869 5715

Note. 64EC, 128EC, and 256EC are the edge-cuts of 64-, 128-, and 256-way partitionings, respectively.

118 KARYPIS AND KUMAR

F
IG

.
11

.R
un

tim
e

of
M

Lk
P

re
la

tiv
e

to
M

LR
B

fo
r

25
6-

w
ay

pa
rt

iti
on

in
g.

T
he

m
ul

til
ev

elk-
w

ay
pa

rt
iti

on
in

g
al

go
rit

hm
us

es
H

E
M

du
rin

g
co

ar
se

ni
ng

an
d

G
R

du
rin

g
re

fin
em

en
t.

F
or

ea
ch

gr
ap

h,
th

e
ra

tio
of

th
e

ru
n

tim
e

of
re

cu
rs

iv
e

bi
se

ct
io

n
al

go
rit

hm
to

th
at

of
th

e
k-

w
ay

pa
rt

iti
on

in
g

al
go

rit
hm

is
pl

ot
te

d
fo

r
25

6-
w

ay
pa

rt
iti

on
in

gs
.

B
ar

s
ab

ov
e

th
e

ba
se

lin
e

in
di

ca
te

th
at

k-
w

ay
pa

rt
iti

on
in

g
is

fa
st

er
th

an
re

cu
rs

iv
e

bi
se

ct
io

n.

MULTILEVEL k-WAY PARTITIONING SCHEME 119

this comparison and for the rest of the comparisons in this section, the MLkP algorithm
uses HEM during coarsening and GR during refinement.

From this figure, we see that for almost all problems, MLkP and MLRB produce
partitionings of similar quality. In particular, for the two highway networks (MAP1

and MAP2), MLkP produces up to 19% smaller edge-cuts than MLRB. For the graphs
that correspond to finite element meshes (144, 598A, AUTO, BRACK2, COPTER2,

M14B, ROTOR, TORSO,and WAVE), MLkP does slightly (up to 5%) and consistently
better than MLRB. For the graphs that correspond to coefficient matrices of finite
element applications with multiple degrees of freedom (BCSSTK31, BCSSTK32, CANT,

CYLINDER93, FLAP, INPRO1, SHELL93, SHYY161, TROLL, and VENKAT25), MLkP
and MLRB perform quite similarly (within 6% of each other). The only problem for which
MLkP performs significantly worse than MLRB isBBMAT, for which MLkP performs
up to 20% worse than MLRB. As discussed in Section 2.1, these graphs correspond to
assembled matrices with nonlinear basis functions, and the HEM coarsening scheme does
not lead to good coarsenings. However, for this graph, both HEM* coarsening and GKLR
refinement perform substantially better than HEM and GR, respectively. In particular, if
we use HEM* for coarsening and GKLR for refinement, then the edge-cut for 128-way
partitioning produced by MLkP is better by 2% than that of MLRB. In summary, for a
large class of graphs, MLkP produces partitionings that are equally good or even better
than those produced by the MLRB algorithm. Furthermore, the combination of HEM and
GR seems quite adequate for most problems. However, for some problems HEM* and
GKLR may be better choices for coarsening and refinement, respectively.

TABLE 4

The Time Required to Find a 256–Way Partitioning by the Multilevel Spectral Bisection,

Multilevel Recursive Bisection, and Multilevel k-way Partition (All Times Are in Seconds)

Matrix

Multilevel
spectral
bisection

Multilevel
recursive
bisection

Multilevel
k-way

partition Matrix

Multilevel
spectral

bisection

Multilevel
recursive
bisection

Multilevel
k-way

partition

144 607.27 48.14 13.40 CYLINDER93 671.33 39.10 13.07

598A 420.12 35.05 9.92 INPRO1 341.88 24.60 7.88

AUTO 2214.24 179.15 39.67 SHELL93 1111.96 71.59 17.40

BRACK2 218.36 16.52 5.65 SHYY161 129.99 10.13 3.42

COPTER2 185.39 16.11 5.71 TROLL 3063.28 132.08 29.08

FLAP 279.67 16.50 5.21 VENKAT25 254.52 20.81 5.54

M14B 970.58 74.04 18.30 BBMAT 474.23 22.51 10.37

ROTOR 550.35 29.46 8.71 MAP1 850.16 44.80 8.12

TORSO 1053.37 63.93 17.13 MAP2 195.09 11.76 3.07

WAVE 658.13 44.55 12.94 FINAN512 311.01 17.98 6.49

BCSSTK31 309.06 15.21 5.53 KEN-11 121.94 4.09 3.13

BCSSTK32 474.64 22.50 7.39 S38584.1 178.11 4.72 2.55

CANT 978.48 47.70 17.44

120 KARYPIS AND KUMAR

F
IG

.
12

.
Q

ua
lit

y
of

M
Lk

P
re

la
tiv

e
to

m
ul

til
ev

el
sp

ec
tr

al
bi

se
ct

io
n.

F
or

ea
ch

gr
ap

h,
th

e
ra

tio
of

th
e

ed
ge

-c
ut

of
th

e
k-

w
ay

pa
rt

iti
on

in
g

al
go

rit
hm

to
th

at
of

th
e

re
cu

rs
iv

e
bi

se
ct

io
n

al
go

rit
hm

is
pl

ot
te

d
fo

r
32

-,
64

-,
12

8-
,

an
d

25
6-

w
ay

pa
rt

iti
on

in
gs

.
B

ar
s

un
de

r
th

e
ba

se
lin

e
in

di
ca

te
th

at
k-

w
ay

pa
rt

iti
on

in
g

pe
rf

or
m

s
be

tte
r

th
an

m
ul

til
ev

el
sp

ec
tr

al
bi

se
ct

io
n.

MULTILEVEL k-WAY PARTITIONING SCHEME 121

F
IG

.
13

.
R

un
tim

e
of

M
Lk

P
re

la
tiv

e
to

sp
ec

tr
al

bi
se

ct
io

n
fo

r
25

6-
w

ay
pa

rt
iti

on
in

g.
F

or
ea

ch
gr

ap
h,

th
e

ra
tio

of
th

e
ru

n
tim

e
of

m
ul

til
ev

el
sp

ec
tr

al
bi

se
ct

io
n

al
go

rit
hm

to
th

at
of

th
e

k-
w

ay
pa

rt
iti

on
in

g
al

go
rit

hm
is

pl
ot

te
d

fo
r

25
6-

w
ay

pa
rt

iti
on

in
gs

.
B

ar
s

ab
ov

e
th

e
ba

se
lin

e
in

di
ca

te
th

at
k-

w
ay

pa
rt

iti
on

in
g

is
fa

st
er

th
an

m
ul

til
ev

el
sp

ec
tr

al
bi

se
ct

io
n.

122 KARYPIS AND KUMAR

MULTILEVEL k-WAY PARTITIONING SCHEME 123

F
IG

.
14

.
Q

ua
lit

y
of

th
e

pa
rt

iti
on

in
gs

pr
od

uc
ed

by
M

Lk
P

re
la

tiv
e

to
C

ha
co

’s
m

ul
til

ev
el

re
cu

rs
iv

e
oc

ta
se

ct
io

n
al

go
rit

hm
.

T
he

M
Lk

P
al

go
rit

hm
us

es
H

E
M

du
rin

g
co

ar
se

ni
ng

an
d

G
R

du
rin

g
re

fin
em

en
t.

F
or

ea
ch

gr
ap

h,
th

e
ra

tio
of

th
e

ed
ge

-c
ut

of
th

e
M

Lk
P

al
go

rit
hm

to
th

at
of

C
ha

co
’s

re
cu

rs
iv

e
oc

ta
se

ct
io

n
al

go
rit

hm
is

pl
ot

te
d

fo
r

8-
a

nd
64

-w
ay

pa
rt

iti
on

in
gs

.
B

ar
s

un
de

r
th

e
ba

se
lin

e
in

di
ca

te
th

at
M

Lk
P

pe
rf

or
m

s
be

tte
r

th
an

C
ha

co
’s

re
cu

rs
iv

e
oc

ta
se

ct
io

n.

124 KARYPIS AND KUMAR

Figure 11 shows the amount of time required by the MLRB algorithm relative to the
time required by the MLkP algorithm for 256-way partitionings. From this graph we see
that MLkP is usually two to four times faster than MLRB. In particular, for moderate
size problems, MLkP is over three times faster, while for the larger problems, MLkP
is over four times faster. The actual run times for a 256-way partitioning is shown in
Table 4. From this table we see that even the larger problem (448,000 vertex mesh of
GM’s Saturn car) is partitioned in under 40 s.

Figures 12 and 13 present the relative quality and run time, respectively, of MLkP with
respect to multilevel spectral bisection (MSB) [1]. From these figures we see that for all
the graphs, MLkP produces better partitionings than MSB. In some cases MLkP produces
partitionings that cut over 70% fewer edges than those cut by the MSB. Furthermore,
from Fig. 13 we see that MLkP is up to two orders of magnitude faster than the MSB.

The graph partitioning package Chaco 2.0 [11, 12] also implements multilevel
quadrisection and octasection partitioning algorithms. Chaco uses random matching
during coarsening and spectral quadrisection and octasection methods to directly divide
the coarsest graph into four and eight parts, respectively6 [10]. The key difference
between our scheme and the one implemented in Chaco’s recursive octasection is that
their Kernighan–Lin refinement algorithm is direct generalization of the 2-way refinement
algorithm to handle both 4- and 8-way refinement. For example, in the case of 8-way
refinement, their algorithm uses 8× 7 priority queues for all the different types of moves.
This algorithm is significantly slower than either the greedy or global Kernighan–Lin
refinement algorithms used by our multilevelk-way partition. In fact, Chaco’s recursive
octasection is not any faster than its recursive bisection. Furthermore, Chaco’s recursive
octasection is even more expensive to generalize beyond 8-way refinement.

Figure 14 shows the relative performance of our MLkP algorithm compared to Chaco’s
multilevel recursive octasection for 8- and 64-way partitionings. Note that for 8-way
partition, no recursive partitioning is performed by Chaco, while for a 64-way partition,
only one level of recursion is performed. From this figure we can see that for both 8- and
64-way partitioning, MLkP produces partitionings that are in general better than those
produced by Chaco’s recursive octasection. For some graphs, MLkP cuts up to 70% fewer
edges than Chaco does. The difference in quality is due to the following two reasons. First,
Chaco’s recursive octasection algorithm uses RM matching during coarsening, which
leads to successive coarser graphs with higher edge-weight. Second, the initial partitioning
obtained by spectral octasection is worse (cuts more edges) than the initial partitioning
obtained by MLRB. Thus, even though Chaco’s recursive octasection algorithm uses the
generalized KL refinement algorithm, it does not seem to be able to gain the losses due
to coarsening and initial partitioning. Figure 15 shows the relative run time of Chaco’s
multilevel recursive octasection compared to our multilevelk-way partitioning algorithm.
From this figure we see that our algorithm is considerably faster. MLkP computes an
8-way partitioning about 2 to 6 times faster than Chaco, and a 64-way partitioning about
4 to 14 times faster. In summary, for most graphs, MLkP produces better or comparable
partitionings than Chaco’s multilevel recursive octasection in significantly less time. This
indicates that for most graphs, greedy refinement coupledwith the HEM coarsening and

6Chaco also has recursive bisection scheme that is similar to MLRB.

MULTILEVEL k-WAY PARTITIONING SCHEME 125

F
IG

.
15

.
R

un
tim

e
of

M
Lk

P
re

la
tiv

e
to

C
ha

co
’s

m
ul

til
ev

el
re

cu
rs

iv
e

oc
ta

se
ct

io
n

al
go

rit
hm

.
T

he
M

Lk
P

al
go

rit
hm

us
es

H
E

M
du

rin
g

co
ar

se
ni

ng
an

d
G

R
du

rin
g

re
fin

em
e

nt
.

F
or

ea
ch

gr
ap

h,
th

e
ra

tio
of

th
e

ru
n

tim
e

of
C

ha
co

’s
re

cu
rs

iv
e

oc
ta

se
ct

io
n

to
th

at
of

th
e

M
Lk

P
al

go
rit

hm
is

pl
ot

te
d

fo
r

25
6-

w
ay

pa
rt

iti
on

in
gs

.
B

ar
s

ab
ov

e
th

e
ba

s
el

in
e

in
di

ca
te

th
at

M
Lk

P
is

fa
st

er
th

an
C

ha
co

’s
re

cu
rs

iv
e

oc
ta

se
ct

io
n.

126 KARYPIS AND KUMAR

a good initialk-way partition is a much better choice than the computationally expensive
8-way Kernighan–Lin refinement.

4. CONCLUSIONS AND DIRECTIONS FOR
FUTURE RESEARCH

Our experiments have shown that the multilevelk-way partitioning algorithm is
significantly faster than recursive bisection basedk-way partitioning scheme. The
complexity of the coarsening and refinement phases of ourk-way partition algorithm
is O(|E|), assuming that in each coarsening step the number of vertices is reduced by
a factor larger than 1 +ε, whereε is a constant greater than zero. The complexity of
obtaining the initialk-way partitioning of the coarsest graph using MLRB isO(k log k).
SinceO(k log k) is often smaller thanO(|E|), the overall complexity of the algorithm is
O(|E|). For instance, forTORSOthe run time for a 2-way partitioning is 10.42 s while
the run time for a 256-way partitioning is only 1.64 times higher (i.e., 17.13 s). As the
problem size increases, this factor decreases. For example, forAUTOthe runtime for a
2-way partitioning is 31.03 s while the run time for a 256-way partitioning is only 1.29
times higher (i.e., 40 s).

The quality of the partitionings produced by thek-way partitioning algorithm is
comparable or better than that produced by the multilevel recursive bisection algorithm for
a wide range of graphs. The scheme works well for a number of reasons. For coarsening
heuristics such as HEM and HEM*, the edge-cut of thek-way partitioning produced by
MLRB on the coarsest graph is usually within a factor of 1.3 of the final edge-cut. This
occurs because the coarsening process creates an excellent smaller replica of the original
graph, and MLRB finds a very goodk-way partitioning on this small graph. A simple
k-way refinement scheme such as GR is able to further improve the initialk-way edge-
cut because the refinements needed are fairly local in nature. Hence, the extra power of
generalized KL schemes (in terms of its capability of look-ahead) is often unnecessary
because the refinement needed are fairly local in nature. (In our experiments, the look-
ahead capability of GKLR refinement was found useful only for one type of graph.)
Furthermore, even a simple refinement scheme such as GR is quite capable of moving
large portions of graphs across the initialk-way partitioning because the refinement is
done in a multilevel context. For coarse graphs, even a movement of a single vertex at
the partition boundary is equivalent to moving a large number of vertices in the original
graph. In fact, as discussed in [16], even for MLRB, many simpler variations of the
KL refinement algorithm result in equally effective refinement scheme due to the same
reason.

Absence of a priority queue in our GR refinement algorithm makes it naturally
suited for parallel implementations. In contrast, the original KL refinement algorithm
(and its generalization in thek-way partitioning context) are inherently sequential
[6]. In [15] we have developed a highly parallel formulation of our multilevelk-way
partitioning algorithm that uses the vertex-coloring of the successively coarser graph to
effectively parallelize both the coarsening as well as thek-way refinement algorithms.
Our experiments on the Cray T3D show that graphs with over a million vertices can be
partitioned in 128 partitions in about 2 s on 128 processors.

An additional advantage of the MLkP algorithm over MLRB is that MLkP is much
more suited in the context of parallel execution of adaptive computations [25, 26]. For
example, in adaptive finite element computations, the mesh that models the physical

MULTILEVEL k-WAY PARTITIONING SCHEME 127

domain changes dynamically as the simulation progresses. In particular, some parts of
the mesh become finer and other parts get coarser. Such dynamic adjustments to the mesh
require partitioning of the mesh to improve load balance. This repartitioning also results in
movement of data structures associated with graph vertices. Hence, a good repartitioning
algorithm should minimize the movement of vertices (in addition to balancing the load
and minimizing the cut of the resulting new partition). If started with the multilevel
representation of the current partitioning of the graph, ourk-way partitioning refinement
algorithm makes only minor adjustments to the previous partitioning and reduces the
overall movement of vertices and associated data structures.

In all of our experiments, we tried to minimize the edge-cut. However, for many
applications, minimizing other quantities, such as the number of vertices at the boundary
of the partitions, the number of adjacent partitions, or the shape of the partitions, may
be desirable. This can be accomplished by modifying the refinement algorithm to take
shape of the partitions, may be desirable. This can be accomplished by modifying the
refinement algorithm to take into account a different objective function. Even though
recursive bisection algorithms can also be modified to use objective functions other than
minimization of edge-cut, the multilevelk-way partitioning algorithm provides a much
better framework for this task. This is because multilevelk-way makes it possible to
incorporate “global” objective functions that cannot be achieved by recursive bisection
schemes. For example, the overall communication overhead of a processor in parallel
sparse matrix–vector multiplication is not proportional to the number of edges that
connect nonlocal vertices. Actually, it is proportional to the number of vertex values
it must communicate to neighboring processors. If a vertex on processorPi is connected
to many vertices on processorPj, then the vertex value must be sent to processorPj only
once (rather than once for each edge). Hence, the overall communication volume for a
processor is equal to

∑
v Nv, wherev are the boundary vertices in a processor, andNv

is the number of other processors to which vertexv is connected. Note that this metric
can easily be used as the objective function in thek-way partitioning algorithm. But this
cannot be used in recursive bisection-based schemes, because

∑
v Nv for each processor

can be computed only in the context of ak-way partition.
Thek-way partitioning algorithms described in this paper are available in the METIS 3.0

graph partitioning package that is publicly available on WWW at http://www.cs.umn.edu/
∼metis.

REFERENCES

1. S. T. Barnard and H. D. Simon, A fast multilevel implementation of recursive spectral bisection for
partitioning unstructured problems,in “Proceedings of the Sixth SIAM Conference on Parallel Processing
for Scientific Computing,” pp. 711–718, 1993.

2. T. Bui and C. Jones, A heuristic for reducing fill in sparse matrix factorization,in “6th SIAM Conf.
Parallel Processing for Scientific Computing,” pp. 445–452, 1993.

3. C.-K. Cheng and Y.-C. A. Wei, An improved two-way partitioning algorithm with stable performance,
IEEE Trans. Computer Aided Design10, 12 (Dec. 1991), 1502–1511.

4. C. M. Fiduccia and R. M. Mattheyses, A linear time heuristic for improving network partitions,in “Proc.
19th IEEE Design Automation Conference,” pp. 175–181, 1982.

5. J. Garbers, H. J. Promel, and A. Steger, Finding clusters in VLSI circuits,in “Proceedings of IEEE
International Conference on Computer Aided Design,” pp. 520–523, 1990.

128 KARYPIS AND KUMAR

6. J. R. Gilbert and E. Zmijewski, A parallel graph partitioning algorithm for a message-passing
multiprocessor,Int. J. Parallel Program.16 (1987), 498–513.

7. L. Hagen and A. Kahng, Fast spectral methods for ratio cut partitioning and clustering,in “Proceedings
of IEEE International Conference on Computer Aided Design,” pp. 10–13, 1991.

8. L. Hagen and A. Kahng, A new approach to effective circuit clustering, “Proceedings of IEEE International
Conference on Computer Aided Design,” pp. 422–427, 1992.

9. M. T. Heath and P. Raghavan, A Cartesian parallel nested dissection algorithm,SIAM J. Matrix Anal.

Appl. 16, 1 (1995), 235–253.

10. B. Hendrickson and R. Leland, “An Improved Pectral Graph Partitioning Algorithm for Mapping Parallel
Computations,” Technical Report SAND92-1460, Sandia National Laboratories, 1992.

11. B. Hendrickson and R. Leland, “The Chaco User’s Guide,” Version 1.0. Technical Report SAND93-2339,
Sandia National Laboratories, 1993.

12. B. Hendrickson and R. Leland, “A Multilevel Algorithm for Partitioning Graphs,” Technical Report
SAND93-1301, Sandia National Laboratories, 1993.

13. G. Karypis and V. Kumar, “Analysis of Multilevel Graph Partitioning,” Technical Report TR 95-037,
Department of Computer Science, University of Minnesota, 1995. [Also available on WWW at URL
http://www.cs.umn.edu/∼karypis] [A short version appears in “Supercomputing ’95”]

14. G. Karypis and V. Kumar, “METIS: Unstructured Graph Partitioning and Sparse Matrix Ordering System,”
Technical Report, Department of Computer Science, University of Minnesota, 1995. [Available on WWW
at URL http://www.cs.umn.edu/∼karypis/metis]

15. G. Karypis and V. Kumar, “Parallel Multilevelk-way Partitioning Scheme for Irregular Graphs,” Technical
Report TR 96-036, Department of Computer Science, University of Minnesota, 1996. [Also available on
WWW at URL http://www.cs.umn.edu/∼karypis] [A short version appears in “Supercomputing ’96”]

16. G. Karypis and V. Kumar, A fast and highly quality multilevel scheme for partitioning irregular graphs,
SIAM J. Sci. Comput.,to appear. [Also available on WWW at URL http://www.cs.umn.edu/∼karypis] [A
short version appears in “Intl. Conf. on Parallel Processing 1995”]

17. B. W. Kernighan and S. Lin, An efficient heuristic procedure for partitioning graphs,Bell System Tech.

J. 1970.

18. G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis, Automatic mesh partitioning,in “Sparse Matrix
Computations: Graph Theory Issues and Algorithms,” An IMA Workshop Volume, (A. George, J. R.
Gilbert, and J. W.-H. Liu, Eds.), Springer-Verlag, New York, 1993.

19. G. L. Miller, S.-H. Teng, and S. A. Vavasis, A unified geometric approach to graph separators,in
“Proceedings of 31st Annual Symposium on Foundations of Computer Science,” pp. 538–547, 1991.

20. B. Nour-Omid, A. Raefsky, and G. Lyzenga, Solving finite element equations on concurrent computers,
in “American Society of Mechanical Engineering,” (A. K. Noor, Ed.), pp. 291–307, 1986.

21. R. Ponnusamy, N. Mansour, A. Choudhary, and G. C. Fox, Graph contraction and physical optimization
methods: A quality–cost tradeoff for mapping data on parallel computers,in “International Conference
of Supercomputing,” 1993.

22. A. Pothen, H. D. Simon, L. Wang, and S. T. Bernard, Towards a fast implementation of spectral nested
dissection,in “Supercomputing ’92 Proceedings,” pp. 42–51, 1992.

23. A. Pothen, H. D. Simon, and K.-P. Liou, Partitioning sparse matrices with eigenvectors of graphs,SIAM

J. Matrix Anal. Appl.11, 3 (1990), 430–452.

24. P. Raghavan, “Line and Plane Separators,” Technical Report UIUCDCS-R-93-1794, Department of
Computer Science, University of Illinois, Urbana, IL 61801, Feb. 1993.

25. K. Schloegel, G. Karypis, and V. Kumar, Multilevel diffusion algorithms for repartitioning of adaptive
meshes,J. Parallel Distrib. Comput.47, No. 2 (1997).

26. K. Schloegel, G. Karypis, and V. Kumar, Repartitioning of adaptive meshes: Experiments with multilevel
diffusion, in “Proceedings of the Third International Euro-Par Conference,” pp. 945–949, Aug. 1997.

27. H. D. Simon and S.-H. Teng, “How Good is Recursive Bisection?,” Technical Report RNR-93-012, NAS
Systems Division, Moffet Field, CA, 1993.

MULTILEVEL k-WAY PARTITIONING SCHEME 129

GEORGE KARYPIS received his Ph.D. in computer science at the University of Minnesota, and he is
currently an assistant professor at the Department of Computer Science and Engineering at the University of
Minnesota. His research interests span the areas of parallel algorithm design, applications of parallel processing
in scientific computing and optimization, sparse matrix computations, parallel programming languages and
libraries, and data mining. His recent work has been in the areas of parallel sparse direct solvers, serial and
parallel graph partitioning algorithms, parallel matrix ordering algorithms, and scalable parallel preconditioners.
His research has resulted in the development of software libraries for unstructured mesh partitioning (METIS
and ParMETIS) and for parallel Cholesky factorization (PSPASES). He is the author of over 20 research articles
and a coauthor of the widely used text book “Introduction to Parallel Computing.”

VIPIN KUMAR received his Ph.D. in computer science at the University of Maryland, and he is currently a
professor at the Department of Computer Science and Engineering at the University of Minnesota. His current
research interests include parallel computing, parallel algorithms for scientific computing problems, and data
mining. His research has resulted in the development of highly efficient parallel algorithms and software for
sparse matrix factorization (PSPASES), graph partitioning (METIS and ParMETIS), and dense hierarchical
solvers. Kumar’s research in performance analysis resulted in the development of the isoefficiency metric for
analyzing the scalability of parallel algorithms. He is the author of over 100 research articles and a coauthor
of the widely used text book “Introduction to Parallel Computing.” Kumar has given over 50 invited talks
at various conferences, workshops, and national labs and has served as chair/co-chair for many conferences/
workshops in the area of parallel computing. Kumar serves on the editorial boards ofIEEE Parallel and
Distributed Technology, IEEE Transactions of Data and Knowledge Engineering, Parallel Computing, and the
Journal of Parallel and Distributed Computing. He is a senior member of IEEE and a member of SIAM
and ACM.

Received November 1, 1996; revised October 15, 1997; accepted October 20, 1997

